mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-24 02:16:26 -06:00
0f997a537a
it is also copied from WellDensitySegmented while only handle one Standard Well.
1666 lines
67 KiB
C++
1666 lines
67 KiB
C++
/*
|
|
Copyright 2017 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2017 Statoil ASA.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
namespace Opm
|
|
{
|
|
template<typename TypeTag>
|
|
StandardWell<TypeTag>::
|
|
StandardWell(const Well* well, const int time_step, const Wells* wells)
|
|
: WellInterface<TypeTag>(well, time_step, wells)
|
|
, perf_densities_(numberOfPerforations())
|
|
, perf_pressure_diffs_(numberOfPerforations())
|
|
, well_variables_(numWellEq) // the number of the primary variables
|
|
{
|
|
duneB_.setBuildMode( Mat::row_wise );
|
|
duneC_.setBuildMode( Mat::row_wise );
|
|
invDuneD_.setBuildMode( Mat::row_wise );
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
init(const PhaseUsage* phase_usage_arg,
|
|
const std::vector<bool>* active_arg,
|
|
const VFPProperties* vfp_properties_arg,
|
|
const double gravity_arg,
|
|
const int num_cells)
|
|
{
|
|
WellInterface<TypeTag>(phase_usage_arg, active_arg,
|
|
vfp_properties_arg, gravity_arg, num_cells);
|
|
|
|
// setup sparsity pattern for the matrices
|
|
// TODO: C and B are opposite compared with the notations used in the paper.
|
|
//[A B^T [x = [ res
|
|
// C D] x_well] res_well]
|
|
// set the size of the matrices
|
|
invDuneD_.setSize(1, 1, 1);
|
|
duneC_.setSize(1, num_cells, numberOfPerforations());
|
|
duneB_.setSize(1, num_cells, numberOfPerforations());
|
|
|
|
for (auto row=invDuneD_.createbegin(), end = invDuneD_.createend(); row!=end; ++row) {
|
|
// Add nonzeros for diagonal
|
|
row.insert(row.index());
|
|
}
|
|
|
|
for (auto row = duneC_.createbegin(), end = duneC_.createend(); row!=end; ++row) {
|
|
// Add nonzeros for diagonal
|
|
for (int perf = 0 ; perf < numberOfPerforations(); ++perf) {
|
|
const int cell_idx = wellCells()[perf];
|
|
row.insert(cell_idx);
|
|
}
|
|
}
|
|
|
|
// make the B^T matrix
|
|
for (auto row = duneB_.createbegin(), end = duneB_.createend(); row!=end; ++row) {
|
|
for (int perf = 0; perf < numberOfPerforations(); ++perf) {
|
|
const int cell_idx = wellCells()[perf];
|
|
row.insert(cell_idx);
|
|
}
|
|
}
|
|
|
|
resWell_.resize(1);
|
|
|
|
// resize temporary class variables
|
|
Cx_.resize( duneC_.N() );
|
|
invDrw_.resize( invDuneD_.N() );
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
const std::vector<double>&
|
|
StandardWell<TypeTag>::
|
|
perfDensities() const
|
|
{
|
|
return perf_densities_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
std::vector<double>&
|
|
StandardWell<TypeTag>::
|
|
perfDensities()
|
|
{
|
|
return perf_densities_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
const std::vector<double>&
|
|
StandardWell<TypeTag>::
|
|
perfPressureDiffs() const
|
|
{
|
|
return perf_pressure_diffs_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
std::vector<double>&
|
|
StandardWell<TypeTag>::
|
|
perfPressureDiffs()
|
|
{
|
|
return perf_pressure_diffs_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void StandardWell<TypeTag>::
|
|
setWellVariables(const WellState& well_state)
|
|
{
|
|
const int nw = well_state.bhp().size();
|
|
const int numComp = numComponents();
|
|
for (int eqIdx = 0; eqIdx < numComp; ++eqIdx) {
|
|
const unsigned int idx = nw * eqIdx + indexOfWell();
|
|
assert( eqIdx < well_variables_.size() );
|
|
assert( idx < well_state.wellSolutions().size() );
|
|
|
|
well_variables_[eqIdx] = 0.0;
|
|
well_variables_[eqIdx].setValue(well_state.wellSolutions()[idx]);
|
|
well_variables_[eqIdx].setDerivative(numEq + eqIdx, 1.0);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWell<TypeTag>::EvalWell
|
|
StandardWell<TypeTag>::
|
|
getBhp() const
|
|
{
|
|
const WellControls* wc = wellControls();
|
|
if (well_controls_get_current_type(wc) == BHP) {
|
|
EvalWell bhp = 0.0;
|
|
const double target_rate = well_controls_get_current_target(wc);
|
|
bhp.setValue(target_rate);
|
|
return bhp;
|
|
} else if (well_controls_get_current_type(wc) == THP) {
|
|
const int control = well_controls_get_current(wc);
|
|
const double thp = well_controls_get_current_target(wc);
|
|
const double alq = well_controls_iget_alq(wc, control);
|
|
const int table_id = well_controls_iget_vfp(wc, control);
|
|
EvalWell aqua = 0.0;
|
|
EvalWell liquid = 0.0;
|
|
EvalWell vapour = 0.0;
|
|
EvalWell bhp = 0.0;
|
|
double vfp_ref_depth = 0.0;
|
|
|
|
const Opm::PhaseUsage& pu = phaseUsage();
|
|
|
|
if (active()[ Water ]) {
|
|
aqua = getQs(pu.phase_pos[ Water]);
|
|
}
|
|
if (active()[ Oil ]) {
|
|
liquid = getQs(pu.phase_pos[ Oil ]);
|
|
}
|
|
if (active()[ Gas ]) {
|
|
vapour = getQs(pu.phase_pos[ Gas ]);
|
|
}
|
|
if (wellType() == INJECTOR) {
|
|
bhp = vfp_properties_->getInj()->bhp(table_id, aqua, liquid, vapour, thp);
|
|
vfp_ref_depth = vfp_properties_->getInj()->getTable(table_id)->getDatumDepth();
|
|
} else {
|
|
bhp = vfp_properties_->getProd()->bhp(table_id, aqua, liquid, vapour, thp, alq);
|
|
vfp_ref_depth = vfp_properties_->getProd()->getTable(table_id)->getDatumDepth();
|
|
}
|
|
|
|
// pick the density in the top layer
|
|
const double rho = perf_densities_[0];
|
|
// TODO: not sure whether it is always correct
|
|
const double well_ref_depth = perfDepth()[0];
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(well_ref_depth, vfp_ref_depth, rho, gravity_);
|
|
bhp -= dp;
|
|
return bhp;
|
|
}
|
|
|
|
return well_variables_[XvarWell];
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWell<TypeTag>::EvalWell
|
|
StandardWell<TypeTag>::
|
|
getQs(const int phase) const
|
|
{
|
|
EvalWell qs = 0.0;
|
|
|
|
const WellControls* wc = wellControls();
|
|
const int np = numberOfPhases();
|
|
const double target_rate = well_controls_get_current_target(wc);
|
|
|
|
// TODO: we need to introduce numComponents() for StandardWell
|
|
// assert(phase < numComponents());
|
|
const auto pu = phaseUsage();
|
|
|
|
// TODO: the formulation for the injectors decides it only work with single phase
|
|
// surface rate injection control. Improvement will be required.
|
|
if (wellType() == INJECTOR) {
|
|
// TODO: adding the handling related to solvent
|
|
/* if (has_solvent_ ) {
|
|
// TODO: investigate whether the use of the comp_frac is justified.
|
|
double comp_frac = 0.0;
|
|
if (compIdx == solventCompIdx) { // solvent
|
|
comp_frac = wells().comp_frac[np*wellIdx + pu.phase_pos[ Gas ]] * wsolvent(wellIdx);
|
|
} else if (compIdx == pu.phase_pos[ Gas ]) {
|
|
comp_frac = wells().comp_frac[np*wellIdx + compIdx] * (1.0 - wsolvent(wellIdx));
|
|
} else {
|
|
comp_frac = wells().comp_frac[np*wellIdx + compIdx];
|
|
}
|
|
if (comp_frac == 0.0) {
|
|
return qs; //zero
|
|
}
|
|
|
|
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP) {
|
|
return comp_frac * well_variables_[nw*XvarWell + wellIdx];
|
|
}
|
|
|
|
qs.setValue(comp_frac * target_rate);
|
|
return qs;
|
|
} */
|
|
const double comp_frac = compFrac()[phase];
|
|
if (comp_frac == 0.0) {
|
|
return qs;
|
|
}
|
|
|
|
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP) {
|
|
return well_variables_[XvarWell];
|
|
}
|
|
qs.setValue(target_rate);
|
|
return qs;
|
|
}
|
|
|
|
// Producers
|
|
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP ) {
|
|
return well_variables_[XvarWell] * wellVolumeFractionScaled(phase);
|
|
}
|
|
|
|
if (well_controls_get_current_type(wc) == SURFACE_RATE) {
|
|
// checking how many phases are included in the rate control
|
|
// to decide wheter it is a single phase rate control or not
|
|
const double* distr = well_controls_get_current_distr(wc);
|
|
int num_phases_under_rate_control = 0;
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
if (distr[phase] > 0.0) {
|
|
num_phases_under_rate_control += 1;
|
|
}
|
|
}
|
|
|
|
// there should be at least one phase involved
|
|
assert(num_phases_under_rate_control > 0);
|
|
|
|
// when it is a single phase rate limit
|
|
if (num_phases_under_rate_control == 1) {
|
|
|
|
// looking for the phase under control
|
|
int phase_under_control = -1;
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
if (distr[phase] > 0.0) {
|
|
phase_under_control = phase;
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(phase_under_control >= 0);
|
|
|
|
EvalWell wellVolumeFractionScaledPhaseUnderControl = wellVolumeFractionScaled(phase_under_control);
|
|
// TODO: handling solvent related later
|
|
/* if (has_solvent_ && phase_under_control == Gas) {
|
|
// for GRAT controlled wells solvent is included in the target
|
|
wellVolumeFractionScaledPhaseUnderControl += wellVolumeFractionScaled(solventCompIdx);
|
|
} */
|
|
|
|
if (phase == phase_under_control) {
|
|
/* if (has_solvent_ && phase_under_control == Gas) {
|
|
qs.setValue(target_rate * wellVolumeFractionScaled(Gas).value() / wellVolumeFractionScaledPhaseUnderControl.value() );
|
|
return qs;
|
|
} */
|
|
qs.setValue(target_rate);
|
|
return qs;
|
|
}
|
|
|
|
// TODO: not sure why the single phase under control will have near zero fraction
|
|
const double eps = 1e-6;
|
|
if (wellVolumeFractionScaledPhaseUnderControl < eps) {
|
|
return qs;
|
|
}
|
|
return (target_rate * wellVolumeFractionScaled(phase) / wellVolumeFractionScaledPhaseUnderControl);
|
|
}
|
|
|
|
// when it is a combined two phase rate limit, such like LRAT
|
|
// we neec to calculate the rate for the certain phase
|
|
if (num_phases_under_rate_control == 2) {
|
|
EvalWell combined_volume_fraction = 0.;
|
|
for (int p = 0; p < np; ++p) {
|
|
if (distr[p] == 1.0) {
|
|
combined_volume_fraction += wellVolumeFractionScaled(p);
|
|
}
|
|
}
|
|
return (target_rate * wellVolumeFractionScaled(phase) / combined_volume_fraction);
|
|
}
|
|
|
|
// TODO: three phase surface rate control is not tested yet
|
|
if (num_phases_under_rate_control == 3) {
|
|
return target_rate * wellSurfaceVolumeFraction(phase);
|
|
}
|
|
} else if (well_controls_get_current_type(wc) == RESERVOIR_RATE) {
|
|
// ReservoirRate
|
|
return target_rate * wellVolumeFractionScaled(phase);
|
|
} else {
|
|
OPM_THROW(std::logic_error, "Unknown control type for well " << name());
|
|
}
|
|
|
|
// avoid warning of condition reaches end of non-void function
|
|
return qs;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWell<TypeTag>::EvalWell
|
|
StandardWell<TypeTag>::
|
|
wellVolumeFractionScaled(const int compIdx) const
|
|
{
|
|
// TODO: we should be able to set the g for the well based on the control type
|
|
// instead of using explicit code for g all the times
|
|
const WellControls* wc = wellControls();
|
|
if (well_controls_get_current_type(wc) == RESERVOIR_RATE) {
|
|
|
|
if (has_solvent && compIdx == solventCompIdx) {
|
|
return wellVolumeFraction(compIdx);
|
|
}
|
|
const double* distr = well_controls_get_current_distr(wc);
|
|
assert(compIdx < 3);
|
|
if (distr[compIdx] > 0.) {
|
|
return wellVolumeFraction(compIdx) / distr[compIdx];
|
|
} else {
|
|
// TODO: not sure why return EvalWell(0.) causing problem here
|
|
// Probably due to the wrong Jacobians.
|
|
return wellVolumeFraction(compIdx);
|
|
}
|
|
}
|
|
|
|
std::vector<double> g = {1, 1, 0.01, 0.01};
|
|
return (wellVolumeFraction(compIdx) / g[compIdx]);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWell<TypeTag>::EvalWell
|
|
StandardWell<TypeTag>::
|
|
wellVolumeFraction(const int compIdx) const
|
|
{
|
|
if (compIdx == Water) {
|
|
return well_variables_[WFrac];
|
|
}
|
|
|
|
if (compIdx == Gas) {
|
|
return well_variables_[GFrac];
|
|
}
|
|
|
|
if (compIdx == solventCompIdx) {
|
|
return well_variables_[SFrac];
|
|
}
|
|
|
|
// Oil fraction
|
|
EvalWell well_fraction = 1.0;
|
|
if (active()[Water]) {
|
|
well_fraction -= well_variables_[WFrac];
|
|
}
|
|
|
|
if (active()[Gas]) {
|
|
well_fraction -= well_variables_[GFrac];
|
|
}
|
|
if (has_solvent) {
|
|
well_fraction -= well_variables_[SFrac];
|
|
}
|
|
return well_fraction;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWell<TypeTag>::EvalWell
|
|
StandardWell<TypeTag>::
|
|
wellSurfaceVolumeFraction(const int compIdx) const
|
|
{
|
|
EvalWell sum_volume_fraction_scaled = 0.;
|
|
const int numComp = numComponents();
|
|
for (int idx = 0; idx < numComp; ++idx) {
|
|
sum_volume_fraction_scaled += wellVolumeFractionScaled(idx);
|
|
}
|
|
|
|
assert(sum_volume_fraction_scaled.value() != 0.);
|
|
|
|
return wellVolumeFractionScaled(compIdx) / sum_volume_fraction_scaled;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWell<TypeTag>::EvalWell
|
|
StandardWell<TypeTag>::
|
|
extendEval(const Eval& in) const
|
|
{
|
|
EvalWell out = 0.0;
|
|
out.setValue(in.value());
|
|
for(int eqIdx = 0; eqIdx < numEq;++eqIdx) {
|
|
out.setDerivative(eqIdx, in.derivative(flowToEbosPvIdx(eqIdx)));
|
|
}
|
|
return out;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
computePerfRate(const IntensiveQuantities& intQuants,
|
|
const std::vector<EvalWell>& mob_perfcells_dense,
|
|
const double Tw, const EvalWell& bhp, const double& cdp,
|
|
const bool& allow_cf, std::vector<EvalWell>& cq_s) const
|
|
{
|
|
const Opm::PhaseUsage& pu = phaseUsage();
|
|
const int np = numPhases();
|
|
const int numComp = numComponents();
|
|
std::vector<EvalWell> cmix_s(numComp,0.0);
|
|
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
|
|
cmix_s[componentIdx] = wellSurfaceVolumeFraction(componentIdx);
|
|
}
|
|
auto& fs = intQuants.fluidState();
|
|
|
|
EvalWell pressure = extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
|
|
EvalWell rs = extendEval(fs.Rs());
|
|
EvalWell rv = extendEval(fs.Rv());
|
|
std::vector<EvalWell> b_perfcells_dense(numComp, 0.0);
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
|
|
b_perfcells_dense[phase] = extendEval(fs.invB(ebosPhaseIdx));
|
|
}
|
|
if (has_solvent) {
|
|
b_perfcells_dense[solventCompIdx] = extendEval(intQuants.solventInverseFormationVolumeFactor());
|
|
}
|
|
|
|
// Pressure drawdown (also used to determine direction of flow)
|
|
EvalWell well_pressure = bhp + cdp;
|
|
EvalWell drawdown = pressure - well_pressure;
|
|
|
|
// producing perforations
|
|
if ( drawdown.value() > 0 ) {
|
|
//Do nothing if crossflow is not allowed
|
|
if (!allow_cf && wellType() == INJECTOR) {
|
|
return;
|
|
}
|
|
|
|
// compute component volumetric rates at standard conditions
|
|
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
|
|
const EvalWell cq_p = - Tw * (mob_perfcells_dense[componentIdx] * drawdown);
|
|
cq_s[componentIdx] = b_perfcells_dense[componentIdx] * cq_p;
|
|
}
|
|
|
|
if (active()[Oil] && active()[Gas]) {
|
|
const int oilpos = pu.phase_pos[Oil];
|
|
const int gaspos = pu.phase_pos[Gas];
|
|
const EvalWell cq_sOil = cq_s[oilpos];
|
|
const EvalWell cq_sGas = cq_s[gaspos];
|
|
cq_s[gaspos] += rs * cq_sOil;
|
|
cq_s[oilpos] += rv * cq_sGas;
|
|
}
|
|
|
|
} else {
|
|
//Do nothing if crossflow is not allowed
|
|
if (!allow_cf && wellType() == PRODUCER) {
|
|
return;
|
|
}
|
|
|
|
// Using total mobilities
|
|
EvalWell total_mob_dense = mob_perfcells_dense[0];
|
|
for (int componentIdx = 1; componentIdx < numComp; ++componentIdx) {
|
|
total_mob_dense += mob_perfcells_dense[componentIdx];
|
|
}
|
|
|
|
// injection perforations total volume rates
|
|
const EvalWell cqt_i = - Tw * (total_mob_dense * drawdown);
|
|
|
|
// compute volume ratio between connection at standard conditions
|
|
EvalWell volumeRatio = 0.0;
|
|
if (active()[Water]) {
|
|
const int watpos = pu.phase_pos[Water];
|
|
volumeRatio += cmix_s[watpos] / b_perfcells_dense[watpos];
|
|
}
|
|
|
|
if (has_solvent) {
|
|
volumeRatio += cmix_s[solventCompIdx] / b_perfcells_dense[solventCompIdx];
|
|
}
|
|
|
|
if (active()[Oil] && active()[Gas]) {
|
|
const int oilpos = pu.phase_pos[Oil];
|
|
const int gaspos = pu.phase_pos[Gas];
|
|
|
|
// Incorporate RS/RV factors if both oil and gas active
|
|
const EvalWell d = 1.0 - rv * rs;
|
|
|
|
if (d.value() == 0.0) {
|
|
OPM_THROW(Opm::NumericalProblem, "Zero d value obtained for well " << name() << " during flux calcuation"
|
|
<< " with rs " << rs << " and rv " << rv);
|
|
}
|
|
|
|
const EvalWell tmp_oil = (cmix_s[oilpos] - rv * cmix_s[gaspos]) / d;
|
|
//std::cout << "tmp_oil " <<tmp_oil << std::endl;
|
|
volumeRatio += tmp_oil / b_perfcells_dense[oilpos];
|
|
|
|
const EvalWell tmp_gas = (cmix_s[gaspos] - rs * cmix_s[oilpos]) / d;
|
|
//std::cout << "tmp_gas " <<tmp_gas << std::endl;
|
|
volumeRatio += tmp_gas / b_perfcells_dense[gaspos];
|
|
}
|
|
else {
|
|
if (active()[Oil]) {
|
|
const int oilpos = pu.phase_pos[Oil];
|
|
volumeRatio += cmix_s[oilpos] / b_perfcells_dense[oilpos];
|
|
}
|
|
if (active()[Gas]) {
|
|
const int gaspos = pu.phase_pos[Gas];
|
|
volumeRatio += cmix_s[gaspos] / b_perfcells_dense[gaspos];
|
|
}
|
|
}
|
|
|
|
// injecting connections total volumerates at standard conditions
|
|
EvalWell cqt_is = cqt_i/volumeRatio;
|
|
//std::cout << "volrat " << volumeRatio << " " << volrat_perf_[perf] << std::endl;
|
|
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
|
|
cq_s[componentIdx] = cmix_s[componentIdx] * cqt_is; // * b_perfcells_dense[phase];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
assembleWellEq(Simulator& ebosSimulator,
|
|
const double dt,
|
|
WellState& well_state,
|
|
bool only_wells)
|
|
{
|
|
// TODO: accessing well_state information is the only place to use nw at the moment
|
|
const int nw = well_state.bhp().size();
|
|
const int numComp = numComponents();
|
|
const int np = numPhases();
|
|
|
|
// clear all entries
|
|
duneB_ = 0.0;
|
|
duneC_ = 0.0;
|
|
invDuneD_ = 0.0;
|
|
resWell_ = 0.0;
|
|
|
|
auto& ebosJac = ebosSimulator.model().linearizer().matrix();
|
|
auto& ebosResid = ebosSimulator.model().linearizer().residual();
|
|
|
|
// TODO: it probably can be static member for StandardWell
|
|
const double volume = 0.002831684659200; // 0.1 cu ft;
|
|
|
|
const bool allow_cf = allow_cross_flow(ebosSimulator);
|
|
|
|
const EvalWell& bhp = getBhp();
|
|
|
|
for (int perf = 0; perf < numberOfPerforations(); ++perf) {
|
|
|
|
const int cell_idx = wellCells()[perf];
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
|
|
std::vector<EvalWell> cq_s(numComp,0.0);
|
|
std::vector<EvalWell> mob(numComp, 0.0);
|
|
getMobility(ebosSimulator, perf, mob);
|
|
computePerfRate(intQuants, mob, wellIndex()[perf], bhp, perfPressureDiffs()[perf], allow_cf, cq_s);
|
|
|
|
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
|
|
// the cq_s entering mass balance equations need to consider the efficiency factors.
|
|
const EvalWell cq_s_effective = cq_s[componentIdx] * well_efficiency_factor_;
|
|
|
|
if (!only_wells) {
|
|
// subtract sum of component fluxes in the reservoir equation.
|
|
// need to consider the efficiency factor
|
|
ebosResid[cell_idx][flowPhaseToEbosCompIdx(componentIdx)] -= cq_s_effective.value();
|
|
}
|
|
|
|
// subtract sum of phase fluxes in the well equations.
|
|
resWell_[0][componentIdx] -= cq_s[componentIdx].value();
|
|
|
|
// assemble the jacobians
|
|
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
|
|
if (!only_wells) {
|
|
// also need to consider the efficiency factor when manipulating the jacobians.
|
|
ebosJac[cell_idx][cell_idx][flowPhaseToEbosCompIdx(componentIdx)][flowToEbosPvIdx(pvIdx)] -= cq_s_effective.derivative(pvIdx);
|
|
duneB_[0][cell_idx][pvIdx][flowPhaseToEbosCompIdx(componentIdx)] -= cq_s_effective.derivative(pvIdx+numEq); // intput in transformed matrix
|
|
duneC_[0][cell_idx][componentIdx][flowToEbosPvIdx(pvIdx)] -= cq_s_effective.derivative(pvIdx);
|
|
}
|
|
invDuneD_[0][0][componentIdx][pvIdx] -= cq_s[componentIdx].derivative(pvIdx+numEq);
|
|
}
|
|
|
|
// add trivial equation for 2p cases (Only support water + oil)
|
|
if (numComp == 2) {
|
|
assert(!active()[ Gas ]);
|
|
invDuneD_[0][0][Gas][Gas] = 1.0;
|
|
}
|
|
|
|
// Store the perforation phase flux for later usage.
|
|
if (componentIdx == solventCompIdx) {// if (flowPhaseToEbosCompIdx(componentIdx) == Solvent)
|
|
well_state.perfRateSolvent()[perf] = cq_s[componentIdx].value();
|
|
} else {
|
|
well_state.perfPhaseRates()[perf*np + componentIdx] = cq_s[componentIdx].value();
|
|
}
|
|
}
|
|
|
|
// Store the perforation pressure for later usage.
|
|
well_state.perfPress()[perf] = well_state.bhp()[indexOfWell()] + perfPressureDiffs()[perf];
|
|
}
|
|
|
|
// add vol * dF/dt + Q to the well equations;
|
|
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
|
|
// TODO: the F0_ here is not initialized yet here, which should happen in the first iteration, so it should happen in the assemble function
|
|
EvalWell resWell_loc = (wellSurfaceVolumeFraction(componentIdx) - F0_[componentIdx]) * volume / dt;
|
|
resWell_loc += getQs(componentIdx);
|
|
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
|
|
invDuneD_[0][0][componentIdx][pvIdx] += resWell_loc.derivative(pvIdx+numEq);
|
|
}
|
|
resWell_[0][componentIdx] += resWell_loc.value();
|
|
}
|
|
|
|
// do the local inversion of D.
|
|
localInvert( invDuneD_ );
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
StandardWell<TypeTag>::
|
|
allow_cross_flow(const Simulator& ebosSimulator) const
|
|
{
|
|
if (allowCrossFlow()) {
|
|
return true;
|
|
}
|
|
|
|
// TODO: investigate the justification of the following situation
|
|
|
|
// check for special case where all perforations have cross flow
|
|
// then the wells must allow for cross flow
|
|
for (int perf = 0; perf < numberOfPerforations(); ++perf) {
|
|
const int cell_idx = wellCells()[perf];
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
|
|
const auto& fs = intQuants.fluidState();
|
|
EvalWell pressure = extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
|
|
EvalWell bhp = getBhp();
|
|
|
|
// Pressure drawdown (also used to determine direction of flow)
|
|
EvalWell well_pressure = bhp + perfPressureDiffs()[perf];
|
|
EvalWell drawdown = pressure - well_pressure;
|
|
|
|
if (drawdown.value() < 0 && wellType() == INJECTOR) {
|
|
return false;
|
|
}
|
|
|
|
if (drawdown.value() > 0 && wellType() == PRODUCER) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
getMobility(const Simulator& ebosSimulator,
|
|
const int perf,
|
|
std::vector<EvalWell>& mob) const
|
|
{
|
|
const int np = numberOfPhases();
|
|
const int cell_idx = wellCells()[perf];
|
|
assert (int(mob.size()) == numComponents());
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
|
|
const auto& materialLawManager = ebosSimulator.problem().materialLawManager();
|
|
|
|
// either use mobility of the perforation cell or calcualte its own
|
|
// based on passing the saturation table index
|
|
const int satid = saturationTableNumber()[perf] - 1;
|
|
const int satid_elem = materialLawManager->satnumRegionIdx(cell_idx);
|
|
if( satid == satid_elem ) { // the same saturation number is used. i.e. just use the mobilty from the cell
|
|
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
|
|
mob[phase] = extendEval(intQuants.mobility(ebosPhaseIdx));
|
|
}
|
|
if (has_solvent) {
|
|
mob[solventCompIdx] = extendEval(intQuants.solventMobility());
|
|
}
|
|
} else {
|
|
|
|
const auto& paramsCell = materialLawManager->connectionMaterialLawParams(satid, cell_idx);
|
|
Eval relativePerms[3] = { 0.0, 0.0, 0.0 };
|
|
MaterialLaw::relativePermeabilities(relativePerms, paramsCell, intQuants.fluidState());
|
|
|
|
// reset the satnumvalue back to original
|
|
materialLawManager->connectionMaterialLawParams(satid_elem, cell_idx);
|
|
|
|
// compute the mobility
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
|
|
mob[phase] = extendEval(relativePerms[ebosPhaseIdx] / intQuants.fluidState().viscosity(ebosPhaseIdx));
|
|
}
|
|
|
|
// this may not work if viscosity and relperms has been modified?
|
|
if (has_solvent) {
|
|
OPM_THROW(std::runtime_error, "individual mobility for wells does not work in combination with solvent");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
updateWellState(const BVector& dwells,
|
|
const BlackoilModelParameters& param,
|
|
WellState& well_state) const
|
|
{
|
|
const int np = numberOfPhases();
|
|
const int nw = well_state.bhp().size();
|
|
const double dFLimit = param.dbhp_max_rel_;
|
|
const double dBHPLimit = param.dwell_fraction_max_;
|
|
|
|
std::vector<double> xvar_well_old(numWellEq);
|
|
// TODO: better way to handle this?
|
|
for (int i = 0; i < numWellEq; ++i) {
|
|
xvar_well_old[i] = well_state.wellSolutions()[i * nw + indexOfWell()];
|
|
}
|
|
|
|
// update the second and third well variable (The flux fractions)
|
|
std::vector<double> F(np,0.0);
|
|
if (active()[ Water ]) {
|
|
const int sign2 = dwells[0][WFrac] > 0 ? 1: -1;
|
|
const double dx2_limited = sign2 * std::min(std::abs(dwells[0][WFrac]),dFLimit);
|
|
well_state.wellSolutions()[WFrac * nw + indexOfWell()] = xvar_well_old[WFrac] - dx2_limited;
|
|
}
|
|
|
|
if (active()[ Gas ]) {
|
|
const int sign3 = dwells[0][GFrac] > 0 ? 1: -1;
|
|
const double dx3_limited = sign3 * std::min(std::abs(dwells[0][GFrac]),dFLimit);
|
|
well_state.wellSolutions()[GFrac*nw + indexOfWell()] = xvar_well_old[GFrac] - dx3_limited;
|
|
}
|
|
|
|
if (has_solvent) {
|
|
const int sign4 = dwells[0][SFrac] > 0 ? 1: -1;
|
|
const double dx4_limited = sign4 * std::min(std::abs(dwells[0][SFrac]),dFLimit);
|
|
well_state.wellSolutions()[SFrac*nw + indexOfWell()] = xvar_well_old[SFrac] - dx4_limited;
|
|
}
|
|
|
|
assert(active()[ Oil ]);
|
|
F[Oil] = 1.0;
|
|
|
|
if (active()[ Water ]) {
|
|
F[Water] = well_state.wellSolutions()[WFrac*nw + indexOfWell()];
|
|
F[Oil] -= F[Water];
|
|
}
|
|
|
|
if (active()[ Gas ]) {
|
|
F[Gas] = well_state.wellSolutions()[GFrac*nw + indexOfWell()];
|
|
F[Oil] -= F[Gas];
|
|
}
|
|
|
|
double F_solvent = 0.0;
|
|
if (has_solvent) {
|
|
F_solvent = well_state.wellSolutions()[SFrac*nw + indexOfWell()];
|
|
F[Oil] -= F_solvent;
|
|
}
|
|
|
|
if (active()[ Water ]) {
|
|
if (F[Water] < 0.0) {
|
|
if (active()[ Gas ]) {
|
|
F[Gas] /= (1.0 - F[Water]);
|
|
}
|
|
if (has_solvent) {
|
|
F_solvent /= (1.0 - F[Water]);
|
|
}
|
|
F[Oil] /= (1.0 - F[Water]);
|
|
F[Water] = 0.0;
|
|
}
|
|
}
|
|
|
|
if (active()[ Gas ]) {
|
|
if (F[Gas] < 0.0) {
|
|
if (active()[ Water ]) {
|
|
F[Water] /= (1.0 - F[Gas]);
|
|
}
|
|
if (has_solvent) {
|
|
F_solvent /= (1.0 - F[Gas]);
|
|
}
|
|
F[Oil] /= (1.0 - F[Gas]);
|
|
F[Gas] = 0.0;
|
|
}
|
|
}
|
|
|
|
if (F[Oil] < 0.0) {
|
|
if (active()[ Water ]) {
|
|
F[Water] /= (1.0 - F[Oil]);
|
|
}
|
|
if (active()[ Gas ]) {
|
|
F[Gas] /= (1.0 - F[Oil]);
|
|
}
|
|
if (has_solvent) {
|
|
F_solvent /= (1.0 - F[Oil]);
|
|
}
|
|
F[Oil] = 0.0;
|
|
}
|
|
|
|
if (active()[ Water ]) {
|
|
well_state.wellSolutions()[WFrac*nw + indexOfWell()] = F[Water];
|
|
}
|
|
if (active()[ Gas ]) {
|
|
well_state.wellSolutions()[GFrac*nw + indexOfWell()] = F[Gas];
|
|
}
|
|
if(has_solvent) {
|
|
well_state.wellSolutions()[SFrac*nw + indexOfWell()] = F_solvent;
|
|
}
|
|
|
|
// F_solvent is added to F_gas. This means that well_rate[Gas] also contains solvent.
|
|
// More testing is needed to make sure this is correct for well groups and THP.
|
|
if (has_solvent){
|
|
F[Gas] += F_solvent;
|
|
}
|
|
|
|
// The interpretation of the first well variable depends on the well control
|
|
const WellControls* wc = wellControls();
|
|
|
|
// TODO: we should only maintain one current control either from the well_state or from well_controls struct.
|
|
// Either one can be more favored depending on the final strategy for the initilzation of the well control
|
|
const int current = well_state.currentControls()[indexOfWell()];
|
|
const double target_rate = well_controls_iget_target(wc, current);
|
|
|
|
std::vector<double> g = {1,1,0.01};
|
|
if (well_controls_iget_type(wc, current) == RESERVOIR_RATE) {
|
|
const double* distr = well_controls_iget_distr(wc, current);
|
|
for (int p = 0; p < np; ++p) {
|
|
if (distr[p] > 0.) { // For injection wells, there only one non-zero distr value
|
|
F[p] /= distr[p];
|
|
} else {
|
|
F[p] = 0.;
|
|
}
|
|
}
|
|
} else {
|
|
for (int p = 0; p < np; ++p) {
|
|
F[p] /= g[p];
|
|
}
|
|
}
|
|
|
|
switch (well_controls_iget_type(wc, current)) {
|
|
case THP: // The BHP and THP both uses the total rate as first well variable.
|
|
case BHP:
|
|
{
|
|
well_state.wellSolutions()[nw*XvarWell + indexOfWell()] = xvar_well_old[XvarWell] - dwells[0][XvarWell];
|
|
|
|
switch (wellType()) {
|
|
case INJECTOR:
|
|
for (int p = 0; p < np; ++p) {
|
|
const double comp_frac = compFrac()[p];
|
|
well_state.wellRates()[indexOfWell() * np + p] = comp_frac * well_state.wellSolutions()[nw*XvarWell + indexOfWell()];
|
|
}
|
|
break;
|
|
case PRODUCER:
|
|
for (int p = 0; p < np; ++p) {
|
|
well_state.wellRates()[indexOfWell() * np + p] = well_state.wellSolutions()[nw*XvarWell + indexOfWell()] * F[p];
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (well_controls_iget_type(wc, current) == THP) {
|
|
|
|
// Calculate bhp from thp control and well rates
|
|
double aqua = 0.0;
|
|
double liquid = 0.0;
|
|
double vapour = 0.0;
|
|
|
|
const Opm::PhaseUsage& pu = phaseUsage();
|
|
|
|
if (active()[ Water ]) {
|
|
aqua = well_state.wellRates()[indexOfWell() * np + pu.phase_pos[ Water ] ];
|
|
}
|
|
if (active()[ Oil ]) {
|
|
liquid = well_state.wellRates()[indexOfWell() * np + pu.phase_pos[ Oil ] ];
|
|
}
|
|
if (active()[ Gas ]) {
|
|
vapour = well_state.wellRates()[indexOfWell() * np + pu.phase_pos[ Gas ] ];
|
|
}
|
|
|
|
const int vfp = well_controls_iget_vfp(wc, current);
|
|
const double& thp = well_controls_iget_target(wc, current);
|
|
const double& alq = well_controls_iget_alq(wc, current);
|
|
|
|
// Set *BHP* target by calculating bhp from THP
|
|
const WellType& well_type = wellType();
|
|
// pick the density in the top layer
|
|
const double rho = perf_densities_[0];
|
|
const double well_ref_depth = perfDepth()[0];
|
|
|
|
if (well_type == INJECTOR) {
|
|
const double vfp_ref_depth = vfp_properties_->getInj()->getTable(vfp)->getDatumDepth();
|
|
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(well_ref_depth, vfp_ref_depth, rho, gravity_);
|
|
|
|
well_state.bhp()[indexOfWell()] = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp;
|
|
}
|
|
else if (well_type == PRODUCER) {
|
|
const double vfp_ref_depth = vfp_properties_->getProd()->getTable(vfp)->getDatumDepth();
|
|
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(well_ref_depth, vfp_ref_depth, rho, gravity_);
|
|
|
|
well_state.bhp()[indexOfWell()] = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp;
|
|
}
|
|
else {
|
|
OPM_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well");
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case SURFACE_RATE: // Both rate controls use bhp as first well variable
|
|
case RESERVOIR_RATE:
|
|
{
|
|
const int sign1 = dwells[0][XvarWell] > 0 ? 1: -1;
|
|
const double dx1_limited = sign1 * std::min(std::abs(dwells[0][XvarWell]),std::abs(xvar_well_old[nw*XvarWell + indexOfWell()])*dBHPLimit);
|
|
well_state.wellSolutions()[nw*XvarWell + indexOfWell()] = std::max(xvar_well_old[nw*XvarWell + indexOfWell()] - dx1_limited,1e5);
|
|
well_state.bhp()[indexOfWell()] = well_state.wellSolutions()[nw*XvarWell + indexOfWell()];
|
|
|
|
if (well_controls_iget_type(wc, current) == SURFACE_RATE) {
|
|
if (wellType() == PRODUCER) {
|
|
|
|
const double* distr = well_controls_iget_distr(wc, current);
|
|
|
|
double F_target = 0.0;
|
|
for (int p = 0; p < np; ++p) {
|
|
F_target += distr[p] * F[p];
|
|
}
|
|
for (int p = 0; p < np; ++p) {
|
|
well_state.wellRates()[np * indexOfWell() + p] = F[p] * target_rate / F_target;
|
|
}
|
|
} else {
|
|
|
|
for (int p = 0; p < np; ++p) {
|
|
well_state.wellRates()[indexOfWell() * np + p] = compFrac()[p] * target_rate;
|
|
}
|
|
}
|
|
} else { // RESERVOIR_RATE
|
|
for (int p = 0; p < np; ++p) {
|
|
well_state.wellRates()[np * indexOfWell() + p] = F[p] * target_rate;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
} // end of switch (well_controls_iget_type(wc, current))
|
|
|
|
// for the wells having a THP constaint, we should update their thp value
|
|
// If it is under THP control, it will be set to be the target value. Otherwise,
|
|
// the thp value will be calculated based on the bhp value, assuming the bhp value is correctly calculated.
|
|
const int nwc = well_controls_get_num(wc);
|
|
// Looping over all controls until we find a THP constraint
|
|
int ctrl_index = 0;
|
|
for ( ; ctrl_index < nwc; ++ctrl_index) {
|
|
if (well_controls_iget_type(wc, ctrl_index) == THP) {
|
|
// the current control
|
|
const int current = well_state.currentControls()[indexOfWell()];
|
|
// If under THP control at the moment
|
|
if (current == ctrl_index) {
|
|
const double thp_target = well_controls_iget_target(wc, current);
|
|
well_state.thp()[indexOfWell()] = thp_target;
|
|
} else { // otherwise we calculate the thp from the bhp value
|
|
double aqua = 0.0;
|
|
double liquid = 0.0;
|
|
double vapour = 0.0;
|
|
|
|
const Opm::PhaseUsage& pu = phaseUsage();
|
|
|
|
if (active()[ Water ]) {
|
|
aqua = well_state.wellRates()[indexOfWell()*np + pu.phase_pos[ Water ] ];
|
|
}
|
|
if (active()[ Oil ]) {
|
|
liquid = well_state.wellRates()[indexOfWell()*np + pu.phase_pos[ Oil ] ];
|
|
}
|
|
if (active()[ Gas ]) {
|
|
vapour = well_state.wellRates()[indexOfWell()*np + pu.phase_pos[ Gas ] ];
|
|
}
|
|
|
|
const double alq = well_controls_iget_alq(wc, ctrl_index);
|
|
const int table_id = well_controls_iget_vfp(wc, ctrl_index);
|
|
|
|
const WellType& well_type = wellType();
|
|
const double rho = perf_densities_[0];
|
|
const double well_ref_depth = perfDepth()[0];
|
|
if (well_type == INJECTOR) {
|
|
const double vfp_ref_depth = vfp_properties_->getInj()->getTable(table_id)->getDatumDepth();
|
|
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(well_ref_depth, vfp_ref_depth, rho, gravity_);
|
|
|
|
const double bhp = well_state.bhp()[indexOfWell()];
|
|
|
|
well_state.thp()[indexOfWell()] = vfp_properties_->getInj()->thp(table_id, aqua, liquid, vapour, bhp + dp);
|
|
} else if (well_type == PRODUCER) {
|
|
const double vfp_ref_depth = vfp_properties_->getProd()->getTable(table_id)->getDatumDepth();
|
|
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(well_ref_depth, vfp_ref_depth, rho, gravity_);
|
|
|
|
const double bhp = well_state.bhp()[indexOfWell()];
|
|
|
|
well_state.thp()[indexOfWell()] = vfp_properties_->getProd()->thp(table_id, aqua, liquid, vapour, bhp + dp, alq);
|
|
} else {
|
|
OPM_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well");
|
|
}
|
|
}
|
|
|
|
// the THP control is found, we leave the loop now
|
|
break;
|
|
}
|
|
} // end of for loop for seaching THP constraints
|
|
|
|
// no THP constraint found
|
|
if (ctrl_index == nwc) { // not finding a THP contstraints
|
|
well_state.thp()[indexOfWell()] = 0.0;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
localInvert(Mat& istlA) const
|
|
{
|
|
for (auto row = istlA.begin(), rowend = istlA.end(); row != rowend; ++row ) {
|
|
for (auto col = row->begin(), colend = row->end(); col != colend; ++col ) {
|
|
//std::cout << (*col) << std::endl;
|
|
(*col).invert();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
updateWellStateWithTarget(const int current,
|
|
WellState& xw) const
|
|
{
|
|
// number of phases
|
|
const int np = numberOfPhases();
|
|
const int well_index = indexOfWell();
|
|
const WellControls* wc = wellControls();
|
|
// Updating well state and primary variables.
|
|
// Target values are used as initial conditions for BHP, THP, and SURFACE_RATE
|
|
const double target = well_controls_iget_target(wc, current);
|
|
const double* distr = well_controls_iget_distr(wc, current);
|
|
switch (well_controls_iget_type(wc, current)) {
|
|
case BHP:
|
|
xw.bhp()[well_index] = target;
|
|
// TODO: similar to the way below to handle THP
|
|
// we should not something related to thp here when there is thp constraint
|
|
break;
|
|
|
|
case THP: {
|
|
xw.thp()[well_index] = target;
|
|
|
|
double aqua = 0.0;
|
|
double liquid = 0.0;
|
|
double vapour = 0.0;
|
|
|
|
const Opm::PhaseUsage& pu = phase_usage_;
|
|
|
|
if (active_[ Water ]) {
|
|
aqua = xw.wellRates()[well_index*np + pu.phase_pos[ Water ] ];
|
|
}
|
|
if (active_[ Oil ]) {
|
|
liquid = xw.wellRates()[well_index*np + pu.phase_pos[ Oil ] ];
|
|
}
|
|
if (active_[ Gas ]) {
|
|
vapour = xw.wellRates()[well_index*np + pu.phase_pos[ Gas ] ];
|
|
}
|
|
|
|
const int table_id = well_controls_iget_vfp(wc, current);
|
|
const double& thp = well_controls_iget_target(wc, current);
|
|
const double& alq = well_controls_iget_alq(wc, current);
|
|
|
|
//Set *BHP* target by calculating bhp from THP
|
|
|
|
// pick the density in the top layer
|
|
const double rho = perf_densities_[0];
|
|
const double well_ref_depth = perfDepth()[0];
|
|
|
|
// TODO: make the following a function and we call it so many times.
|
|
if (wellType() == INJECTOR) {
|
|
|
|
const double vfp_ref_depth = vfp_properties_->getInj()->getTable(table_id)->getDatumDepth();
|
|
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(well_ref_depth, vfp_ref_depth, rho, gravity_);
|
|
|
|
xw.bhp()[well_index] = vfp_properties_->getInj()->bhp(table_id, aqua, liquid, vapour, thp) - dp;
|
|
}
|
|
else if (wellType() == PRODUCER) {
|
|
const double vfp_ref_depth = vfp_properties_->getProd()->getTable(table_id)->getDatumDepth();
|
|
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(well_ref_depth, vfp_ref_depth, rho, gravity_);
|
|
|
|
xw.bhp()[well_index] = vfp_properties_->getProd()->bhp(table_id, aqua, liquid, vapour, thp, alq) - dp;
|
|
}
|
|
else {
|
|
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
|
|
}
|
|
break;
|
|
}
|
|
|
|
case RESERVOIR_RATE: // intentional fall-through
|
|
case SURFACE_RATE:
|
|
// checking the number of the phases under control
|
|
int numPhasesWithTargetsUnderThisControl = 0;
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
if (distr[phase] > 0.0) {
|
|
numPhasesWithTargetsUnderThisControl += 1;
|
|
}
|
|
}
|
|
|
|
assert(numPhasesWithTargetsUnderThisControl > 0);
|
|
|
|
if (wellType() == INJECTOR) {
|
|
// assign target value as initial guess for injectors
|
|
// only handles single phase control at the moment
|
|
assert(numPhasesWithTargetsUnderThisControl == 1);
|
|
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
if (distr[phase] > 0.) {
|
|
xw.wellRates()[np*well_index + phase] = target / distr[phase];
|
|
} else {
|
|
xw.wellRates()[np * well_index + phase] = 0.;
|
|
}
|
|
}
|
|
} else if (wellType() == PRODUCER) {
|
|
// update the rates of phases under control based on the target,
|
|
// and also update rates of phases not under control to keep the rate ratio,
|
|
// assuming the mobility ratio does not change for the production wells
|
|
double original_rates_under_phase_control = 0.0;
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
if (distr[phase] > 0.0) {
|
|
original_rates_under_phase_control += xw.wellRates()[np * well_index + phase] * distr[phase];
|
|
}
|
|
}
|
|
|
|
if (original_rates_under_phase_control != 0.0 ) {
|
|
double scaling_factor = target / original_rates_under_phase_control;
|
|
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
xw.wellRates()[np * well_index + phase] *= scaling_factor;
|
|
}
|
|
} else { // scaling factor is not well defied when original_rates_under_phase_control is zero
|
|
// separating targets equally between phases under control
|
|
const double target_rate_divided = target / numPhasesWithTargetsUnderThisControl;
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
if (distr[phase] > 0.0) {
|
|
xw.wellRates()[np * well_index + phase] = target_rate_divided / distr[phase];
|
|
} else {
|
|
// this only happens for SURFACE_RATE control
|
|
xw.wellRates()[np * well_index + phase] = target_rate_divided;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
|
|
}
|
|
|
|
break;
|
|
} // end of switch
|
|
|
|
|
|
std::vector<double> g = {1.0, 1.0, 0.01};
|
|
if (well_controls_iget_type(wc, current) == RESERVOIR_RATE) {
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
g[phase] = distr[phase];
|
|
}
|
|
}
|
|
|
|
// the number of wells
|
|
const int nw = xw.bhp().size();
|
|
|
|
switch (well_controls_iget_type(wc, current)) {
|
|
case THP:
|
|
case BHP: {
|
|
xw.wellSolutions()[nw*XvarWell + well_index] = 0.0;
|
|
if (wellType() == INJECTOR) {
|
|
for (int p = 0; p < np; ++p) {
|
|
xw.wellSolutions()[nw*XvarWell + well_index] += xw.wellRates()[np*well_index + p] * compFrac()[p];
|
|
}
|
|
} else {
|
|
for (int p = 0; p < np; ++p) {
|
|
xw.wellSolutions()[nw*XvarWell + well_index] += g[p] * xw.wellRates()[np*well_index + p];
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case RESERVOIR_RATE: // Intentional fall-through
|
|
case SURFACE_RATE:
|
|
xw.wellSolutions()[nw*XvarWell + well_index] = xw.bhp()[well_index];
|
|
break;
|
|
} // end of switch
|
|
|
|
double tot_well_rate = 0.0;
|
|
for (int p = 0; p < np; ++p) {
|
|
tot_well_rate += g[p] * xw.wellRates()[np*well_index + p];
|
|
}
|
|
if(std::abs(tot_well_rate) > 0) {
|
|
if (active_[ Water ]) {
|
|
xw.wellSolutions()[WFrac*nw + well_index] = g[Water] * xw.wellRates()[np*well_index + Water] / tot_well_rate;
|
|
}
|
|
if (active_[ Gas ]) {
|
|
xw.wellSolutions()[GFrac*nw + well_index] = g[Gas] * (1.0 - wsolvent()) * xw.wellRates()[np*well_index + Gas] / tot_well_rate ;
|
|
}
|
|
if (has_solvent) {
|
|
xw.wellSolutions()[SFrac*nw + well_index] = g[Gas] * wsolvent() * xw.wellRates()[np*well_index + Gas] / tot_well_rate ;
|
|
}
|
|
} else { // tot_well_rate == 0
|
|
if (wellType() == INJECTOR) {
|
|
// only single phase injection handled
|
|
if (active_[Water]) {
|
|
if (distr[Water] > 0.0) {
|
|
xw.wellSolutions()[WFrac * nw + well_index] = 1.0;
|
|
} else {
|
|
xw.wellSolutions()[WFrac * nw + well_index] = 0.0;
|
|
}
|
|
}
|
|
|
|
if (active_[Gas]) {
|
|
if (distr[Gas] > 0.0) {
|
|
xw.wellSolutions()[GFrac * nw + well_index] = 1.0 - wsolvent();
|
|
if (has_solvent) {
|
|
xw.wellSolutions()[SFrac * nw + well_index] = wsolvent();
|
|
}
|
|
} else {
|
|
xw.wellSolutions()[GFrac * nw + well_index] = 0.0;
|
|
}
|
|
}
|
|
|
|
// TODO: it is possible to leave injector as a oil well,
|
|
// when F_w and F_g both equals to zero, not sure under what kind of circumstance
|
|
// this will happen.
|
|
} else if (wellType() == PRODUCER) { // producers
|
|
// TODO: the following are not addressed for the solvent case yet
|
|
if (active_[Water]) {
|
|
xw.wellSolutions()[WFrac * nw + well_index] = 1.0 / np;
|
|
}
|
|
if (active_[Gas]) {
|
|
xw.wellSolutions()[GFrac * nw + well_index] = 1.0 / np;
|
|
}
|
|
} else {
|
|
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
updateWellControl(WellState& xw) const
|
|
{
|
|
const int np = numberOfPhases();
|
|
const int nw = xw.bhp().size();
|
|
const int w = indexOfWell();
|
|
|
|
const int old_control_index = xw.currentControls()[w];
|
|
|
|
// Find, for each well, if any constraints are broken. If so,
|
|
// switch control to first broken constraint.
|
|
WellControls* wc = wellControls();
|
|
|
|
// Loop over all controls except the current one, and also
|
|
// skip any RESERVOIR_RATE controls, since we cannot
|
|
// handle those.
|
|
const int nwc = well_controls_get_num(wc);
|
|
// the current control index
|
|
int current = xw.currentControls()[w];
|
|
int ctrl_index = 0;
|
|
for (; ctrl_index < nwc; ++ctrl_index) {
|
|
if (ctrl_index == current) {
|
|
// This is the currently used control, so it is
|
|
// used as an equation. So this is not used as an
|
|
// inequality constraint, and therefore skipped.
|
|
continue;
|
|
}
|
|
if (wellhelpers::constraintBroken(
|
|
xw.bhp(), xw.thp(), xw.wellRates(),
|
|
w, np, wellType(), wc, ctrl_index)) {
|
|
// ctrl_index will be the index of the broken constraint after the loop.
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ctrl_index != nwc) {
|
|
// Constraint number ctrl_index was broken, switch to it.
|
|
xw.currentControls()[w] = ctrl_index;
|
|
current = xw.currentControls()[w];
|
|
well_controls_set_current( wc, current);
|
|
}
|
|
|
|
// update whether well is under group control
|
|
/* if (wellCollection()->groupControlActive()) {
|
|
// get well node in the well collection
|
|
WellNode& well_node = well_collection_->findWellNode(std::string(wells().name[w]));
|
|
|
|
// update whehter the well is under group control or individual control
|
|
if (well_node.groupControlIndex() >= 0 && current == well_node.groupControlIndex()) {
|
|
// under group control
|
|
well_node.setIndividualControl(false);
|
|
} else {
|
|
// individual control
|
|
well_node.setIndividualControl(true);
|
|
}
|
|
} */
|
|
|
|
// the new well control indices after all the related updates,
|
|
const int updated_control_index = xw.currentControls()[w];
|
|
|
|
// checking whether control changed
|
|
wellhelpers::WellSwitchingLogger logger;
|
|
if (updated_control_index != old_control_index) {
|
|
logger.wellSwitched(name(),
|
|
well_controls_iget_type(wc, old_control_index),
|
|
well_controls_iget_type(wc, updated_control_index));
|
|
}
|
|
|
|
if (updated_control_index != old_control_index) { // || well_collection_->groupControlActive()) {
|
|
updateWellStateWithTarget(updated_control_index, xw);
|
|
}
|
|
|
|
// upate the well targets following group controls
|
|
// it will not change the control mode, only update the targets
|
|
/* if (wellCollection()->groupControlActive()) {
|
|
applyVREPGroupControl(xw);
|
|
wellCollection()->updateWellTargets(xw.wellRates());
|
|
for (int w = 0; w < nw; ++w) {
|
|
const WellControls* wc = wells().ctrls[w];
|
|
updateWellStateWithTarget(wc, updated_control_index[w], w, xw);
|
|
}
|
|
} */
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
computePropertiesForWellConnectionPressures(const Simulator& ebosSimulator,
|
|
const WellState& xw,
|
|
std::vector<double>& b_perf,
|
|
std::vector<double>& rsmax_perf,
|
|
std::vector<double>& rvmax_perf,
|
|
std::vector<double>& surf_dens_perf) const
|
|
{
|
|
const int nperf = numberOfPerforations();
|
|
// TODO: can make this a member?
|
|
const int nw = xw.bhp().size();
|
|
const int numComp = numComponents();
|
|
const PhaseUsage& pu = phase_usage_;
|
|
b_perf.resize(nperf*numComp);
|
|
surf_dens_perf.resize(nperf*numComp);
|
|
const int w = indexOfWell();
|
|
|
|
//rs and rv are only used if both oil and gas is present
|
|
if (pu.phase_used[BlackoilPhases::Vapour] && pu.phase_pos[BlackoilPhases::Liquid]) {
|
|
rsmax_perf.resize(nperf);
|
|
rvmax_perf.resize(nperf);
|
|
}
|
|
|
|
// Compute the average pressure in each well block
|
|
for (int perf = 0; perf < nperf; ++perf) {
|
|
const int cell_idx = wellCells()[perf];
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
// TODO: this is another place to show why WellState need to be a vector of WellState.
|
|
// TODO: to check why should be perf - 1
|
|
const double p_above = perf == 0 ? xw.bhp()[w] : xw.perfPress()[first_perf_ + perf - 1];
|
|
const double p_avg = (xw.perfPress()[perf] + p_above)/2;
|
|
const double temperature = fs.temperature(FluidSystem::oilPhaseIdx).value();
|
|
|
|
if (pu.phase_used[BlackoilPhases::Aqua]) {
|
|
b_perf[ pu.phase_pos[BlackoilPhases::Aqua] + perf * numComp] =
|
|
FluidSystem::waterPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
}
|
|
|
|
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
|
const int gaspos = pu.phase_pos[BlackoilPhases::Vapour] + perf * numComp;
|
|
const int gaspos_well = pu.phase_pos[BlackoilPhases::Vapour] + w * pu.num_phases;
|
|
|
|
if (pu.phase_used[BlackoilPhases::Liquid]) {
|
|
const int oilpos_well = pu.phase_pos[BlackoilPhases::Liquid] + w * pu.num_phases;
|
|
const double oilrate = std::abs(xw.wellRates()[oilpos_well]); //in order to handle negative rates in producers
|
|
rvmax_perf[perf] = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
if (oilrate > 0) {
|
|
const double gasrate = std::abs(xw.wellRates()[gaspos_well]) - xw.solventWellRate(w);
|
|
double rv = 0.0;
|
|
if (gasrate > 0) {
|
|
rv = oilrate / gasrate;
|
|
}
|
|
rv = std::min(rv, rvmax_perf[perf]);
|
|
|
|
b_perf[gaspos] = FluidSystem::gasPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rv);
|
|
}
|
|
else {
|
|
b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
}
|
|
|
|
} else {
|
|
b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
}
|
|
}
|
|
|
|
if (pu.phase_used[BlackoilPhases::Liquid]) {
|
|
const int oilpos = pu.phase_pos[BlackoilPhases::Liquid] + perf * numComp;
|
|
const int oilpos_well = pu.phase_pos[BlackoilPhases::Liquid] + w * pu.num_phases;
|
|
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
|
rsmax_perf[perf] = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
const int gaspos_well = pu.phase_pos[BlackoilPhases::Vapour] + w * pu.num_phases;
|
|
const double gasrate = std::abs(xw.wellRates()[gaspos_well]) - xw.solventWellRate(w);
|
|
if (gasrate > 0) {
|
|
const double oilrate = std::abs(xw.wellRates()[oilpos_well]);
|
|
double rs = 0.0;
|
|
if (oilrate > 0) {
|
|
rs = gasrate / oilrate;
|
|
}
|
|
rs = std::min(rs, rsmax_perf[perf]);
|
|
b_perf[oilpos] = FluidSystem::oilPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rs);
|
|
} else {
|
|
b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
}
|
|
} else {
|
|
b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
}
|
|
}
|
|
|
|
// Surface density.
|
|
for (int p = 0; p < pu.num_phases; ++p) {
|
|
surf_dens_perf[numComp*perf + p] = FluidSystem::referenceDensity( flowPhaseToEbosPhaseIdx( p ), fs.pvtRegionIndex());
|
|
}
|
|
|
|
// We use cell values for solvent injector
|
|
if (has_solvent) {
|
|
b_perf[numComp*perf + solventCompIdx] = intQuants.solventInverseFormationVolumeFactor().value();
|
|
surf_dens_perf[numComp*perf + solventCompIdx] = intQuants.solventRefDensity();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
computeConnectionDensities(const std::vector<double>& perfComponentRates,
|
|
const std::vector<double>& b_perf,
|
|
const std::vector<double>& rsmax_perf,
|
|
const std::vector<double>& rvmax_perf,
|
|
const std::vector<double>& surf_dens_perf)
|
|
{
|
|
// Verify that we have consistent input.
|
|
const int np = numberOfPhases();
|
|
const int nperf = numberOfPerforations();
|
|
const int num_comp = numComponents();
|
|
const PhaseUsage* phase_usage = phase_usage_;
|
|
|
|
// 1. Compute the flow (in surface volume units for each
|
|
// component) exiting up the wellbore from each perforation,
|
|
// taking into account flow from lower in the well, and
|
|
// in/out-flow at each perforation.
|
|
std::vector<double> q_out_perf(nperf*num_comp);
|
|
|
|
// TODO: investigate whether we should use the following techniques to calcuate the composition of flows in the wellbore
|
|
// Iterate over well perforations from bottom to top.
|
|
for (int perf = nperf - 1; perf >= 0; --perf) {
|
|
for (int component = 0; component < num_comp; ++component) {
|
|
if (perf == nperf - 1) {
|
|
// This is the bottom perforation. No flow from below.
|
|
q_out_perf[perf*num_comp+ component] = 0.0;
|
|
} else {
|
|
// Set equal to flow from below.
|
|
q_out_perf[perf*num_comp + component] = q_out_perf[(perf+1)*num_comp + component];
|
|
}
|
|
// Subtract outflow through perforation.
|
|
q_out_perf[perf*num_comp + component] -= perfComponentRates[perf*num_comp + component];
|
|
}
|
|
}
|
|
|
|
// 2. Compute the component mix at each perforation as the
|
|
// absolute values of the surface rates divided by their sum.
|
|
// Then compute volume ratios (formation factors) for each perforation.
|
|
// Finally compute densities for the segments associated with each perforation.
|
|
const int gaspos = phase_usage->phase_pos[BlackoilPhases::Vapour];
|
|
const int oilpos = phase_usage->phase_pos[BlackoilPhases::Liquid];
|
|
std::vector<double> mix(num_comp,0.0);
|
|
std::vector<double> x(num_comp);
|
|
std::vector<double> surf_dens(num_comp);
|
|
std::vector<double> dens(nperf);
|
|
|
|
for (int perf = 0; perf < nperf; ++perf) {
|
|
// Find component mix.
|
|
const double tot_surf_rate = std::accumulate(q_out_perf.begin() + num_comp*perf,
|
|
q_out_perf.begin() + num_comp*(perf+1), 0.0);
|
|
if (tot_surf_rate != 0.0) {
|
|
for (int component = 0; component < num_comp; ++component) {
|
|
mix[component] = std::fabs(q_out_perf[perf*num_comp + component]/tot_surf_rate);
|
|
}
|
|
} else {
|
|
// No flow => use well specified fractions for mix.
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
mix[phase] = compFrac()[phase];
|
|
}
|
|
// intialize 0.0 for comIdx >= np;
|
|
}
|
|
// Compute volume ratio.
|
|
x = mix;
|
|
double rs = 0.0;
|
|
double rv = 0.0;
|
|
if (!rsmax_perf.empty() && mix[oilpos] > 0.0) {
|
|
rs = std::min(mix[gaspos]/mix[oilpos], rsmax_perf[perf]);
|
|
}
|
|
if (!rvmax_perf.empty() && mix[gaspos] > 0.0) {
|
|
rv = std::min(mix[oilpos]/mix[gaspos], rvmax_perf[perf]);
|
|
}
|
|
if (rs != 0.0) {
|
|
// Subtract gas in oil from gas mixture
|
|
x[gaspos] = (mix[gaspos] - mix[oilpos]*rs)/(1.0 - rs*rv);
|
|
}
|
|
if (rv != 0.0) {
|
|
// Subtract oil in gas from oil mixture
|
|
x[oilpos] = (mix[oilpos] - mix[gaspos]*rv)/(1.0 - rs*rv);;
|
|
}
|
|
double volrat = 0.0;
|
|
for (int component = 0; component < num_comp; ++component) {
|
|
volrat += x[component] / b_perf[perf*num_comp+ component];
|
|
}
|
|
for (int component = 0; component < num_comp; ++component) {
|
|
surf_dens[component] = surf_dens_perf[perf*num_comp+ component];
|
|
}
|
|
|
|
// Compute segment density.
|
|
perf_densities_[perf] = std::inner_product(surf_dens.begin(), surf_dens.end(), mix.begin(), 0.0) / volrat;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
computeConnectionPressureDelta()
|
|
{
|
|
// Algorithm:
|
|
|
|
// We'll assume the perforations are given in order from top to
|
|
// bottom for each well. By top and bottom we do not necessarily
|
|
// mean in a geometric sense (depth), but in a topological sense:
|
|
// the 'top' perforation is nearest to the surface topologically.
|
|
// Our goal is to compute a pressure delta for each perforation.
|
|
|
|
// 1. Compute pressure differences between perforations.
|
|
// dp_perf will contain the pressure difference between a
|
|
// perforation and the one above it, except for the first
|
|
// perforation for each well, for which it will be the
|
|
// difference to the reference (bhp) depth.
|
|
|
|
const int nperf = numberOfPerforations();
|
|
perf_pressure_diffs_.resize(nperf, 0.0);
|
|
|
|
for (int perf = 0; perf < nperf; ++perf) {
|
|
const double z_above = perf == 0 ? ref_depth_ : perf_depth_[perf - 1];
|
|
const double dz = perf_depth_[perf] - z_above;
|
|
perf_pressure_diffs_[perf] = dz * perf_densities_[perf] * gravity_;
|
|
}
|
|
|
|
// 2. Compute pressure differences to the reference point (bhp) by
|
|
// accumulating the already computed adjacent pressure
|
|
// differences, storing the result in dp_perf.
|
|
// This accumulation must be done per well.
|
|
const auto beg = perf_pressure_diffs_.begin();
|
|
const auto end = perf_pressure_diffs_.end();
|
|
std::partial_sum(beg, end, beg);
|
|
}
|
|
|
|
}
|