Files
opm-simulators/opm/autodiff/StandardWell.cpp
Kai Bao 182bf315f3 implementing getQs() and getBhp() within StandardWell.
It does not compile. Now it is pretty clear that anything related to
Evalulation should go to each individual well model (StandardWell or MS
well ) and not stay with the Wells.
2017-08-25 14:09:26 +02:00

387 lines
12 KiB
C++

/*
Copyright 2017 SINTEF ICT, Applied Mathematics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/autodiff/StandardWell.hpp>
namespace Opm
{
StandardWell::
StandardWell(const Well* well, const int time_step, const Wells* wells)
: WellInterface(well, time_step, wells)
, perf_densities_(number_of_perforations_)
, perf_pressure_diffs_(number_of_perforations_)
, well_variables_(numWellEq) // the number of the primary variables
{
dune_B_.setBuildMode( Mat::row_wise );
dune_C_.setBuildMode( Mat::row_wise );
inv_dune_D_.setBuildMode( Mat::row_wise );
}
const std::vector<double>&
StandardWell::
perfDensities() const
{
return perf_densities_;
}
std::vector<double>&
StandardWell::
perfDensities()
{
return perf_densities_;
}
const std::vector<double>&
StandardWell::
perfPressureDiffs() const
{
return perf_pressure_diffs_;
}
std::vector<double>&
StandardWell::
perfPressureDiffs()
{
return perf_pressure_diffs_;
}
void
StandardWell::
assembleWellEq(Simulator& ebos_simulator,
const double dt,
WellState& well_state,
bool only_wells)
{
}
void StandardWell::
setWellVariables(const WellState& well_state)
{
const int np = number_of_phases_;
const int nw = well_state.bhp().size();
// TODO: it should be the number of primary variables
// TODO: this is from the old version of StandardWellsDense, it is a coincidence, 3 phases and 3 primary variables
// TODO: it needs to be careful.
// TODO: the following code has to be rewritten later for correctness purpose.
for (int phase = 0; phase < np; ++phase) {
well_variables_[phase] = 0.0;
well_variables_[phase].setValue(well_state.wellSolutions()[index_of_well_ + nw * phase]);
well_variables_[phase].setDerivative(numEq + phase, 1.0);
}
}
StandardWell::EvalWell
StandardWell::
getBhp() const
{
const WellControls* wc = well_controls_;
if (well_controls_get_current_type(wc) == BHP) {
EvalWell bhp = 0.0;
const double target_rate = well_controls_get_current_target(wc);
bhp.setValue(target_rate);
return bhp;
} else if (well_controls_get_current_type(wc) == THP) {
const int control = well_controls_get_current(wc);
const double thp = well_controls_get_current_target(wc);
const double alq = well_controls_iget_alq(wc, control);
const int table_id = well_controls_iget_vfp(wc, control);
EvalWell aqua = 0.0;
EvalWell liquid = 0.0;
EvalWell vapour = 0.0;
EvalWell bhp = 0.0;
double vfp_ref_depth = 0.0;
const Opm::PhaseUsage& pu = phaseUsage();
if (active()[ Water ]) {
aqua = getQs(pu.phase_pos[ Water]);
}
if (active()[ Oil ]) {
liquid = getQs(pu.phase_pos[ Oil ]);
}
if (active()[ Gas ]) {
vapour = getQs(pu.phase_pos[ Gas ]);
}
if (wellType() == INJECTOR) {
bhp = vfp_properties_->getInj()->bhp(table_id, aqua, liquid, vapour, thp);
vfp_ref_depth = vfp_properties_->getInj()->getTable(table_id)->getDatumDepth();
} else {
bhp = vfp_properties_->getProd()->bhp(table_id, aqua, liquid, vapour, thp, alq);
vfp_ref_depth = vfp_properties_->getProd()->getTable(table_id)->getDatumDepth();
}
// pick the density in the top layer
const double rho = perf_densities_[0];
// TODO: not sure whether it is always correct
const double well_ref_depth = perf_depth_[0];
const double dp = wellhelpers::computeHydrostaticCorrection(well_ref_depth, vfp_ref_depth, rho, gravity_);
bhp -= dp;
return bhp;
}
return well_variables_[XvarWell];
}
StandardWell::EvalWell
StandardWell::
getQs(const int phase) const
{
EvalWell qs = 0.0;
const WellControls* wc = well_controls_;
const int np = number_of_phases_;
const double target_rate = well_controls_get_current_target(wc);
// TODO: we need to introduce numComponents() for StandardWell
// assert(phase < numComponents());
const auto pu = phase_usage_;
// TODO: the formulation for the injectors decides it only work with single phase
// surface rate injection control. Improvement will be required.
if (wellType() == INJECTOR) {
// TODO: adding the handling related to solvent
/* if (has_solvent_ ) {
// TODO: investigate whether the use of the comp_frac is justified.
double comp_frac = 0.0;
if (compIdx == solventCompIdx) { // solvent
comp_frac = wells().comp_frac[np*wellIdx + pu.phase_pos[ Gas ]] * wsolvent(wellIdx);
} else if (compIdx == pu.phase_pos[ Gas ]) {
comp_frac = wells().comp_frac[np*wellIdx + compIdx] * (1.0 - wsolvent(wellIdx));
} else {
comp_frac = wells().comp_frac[np*wellIdx + compIdx];
}
if (comp_frac == 0.0) {
return qs; //zero
}
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP) {
return comp_frac * well_variables_[nw*XvarWell + wellIdx];
}
qs.setValue(comp_frac * target_rate);
return qs;
} */
const double comp_frac = compFrac()[phase];
if (comp_frac == 0.0) {
return qs;
}
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP) {
return well_variables_[XvarWell];
}
qs.setValue(target_rate);
return qs;
}
// Producers
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP ) {
return well_variables_[XvarWell] * wellVolumeFractionScaled(phase);
}
if (well_controls_get_current_type(wc) == SURFACE_RATE) {
// checking how many phases are included in the rate control
// to decide wheter it is a single phase rate control or not
const double* distr = well_controls_get_current_distr(wc);
int num_phases_under_rate_control = 0;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
num_phases_under_rate_control += 1;
}
}
// there should be at least one phase involved
assert(num_phases_under_rate_control > 0);
// when it is a single phase rate limit
if (num_phases_under_rate_control == 1) {
// looking for the phase under control
int phase_under_control = -1;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
phase_under_control = phase;
break;
}
}
assert(phase_under_control >= 0);
EvalWell wellVolumeFractionScaledPhaseUnderControl = wellVolumeFractionScaled(phase_under_control);
// TODO: handling solvent related later
/* if (has_solvent_ && phase_under_control == Gas) {
// for GRAT controlled wells solvent is included in the target
wellVolumeFractionScaledPhaseUnderControl += wellVolumeFractionScaled(solventCompIdx);
} */
if (phase == phase_under_control) {
/* if (has_solvent_ && phase_under_control == Gas) {
qs.setValue(target_rate * wellVolumeFractionScaled(Gas).value() / wellVolumeFractionScaledPhaseUnderControl.value() );
return qs;
} */
qs.setValue(target_rate);
return qs;
}
// TODO: not sure why the single phase under control will have near zero fraction
const double eps = 1e-6;
if (wellVolumeFractionScaledPhaseUnderControl < eps) {
return qs;
}
return (target_rate * wellVolumeFractionScaled(phase) / wellVolumeFractionScaledPhaseUnderControl);
}
// when it is a combined two phase rate limit, such like LRAT
// we neec to calculate the rate for the certain phase
if (num_phases_under_rate_control == 2) {
EvalWell combined_volume_fraction = 0.;
for (int p = 0; p < np; ++p) {
if (distr[p] == 1.0) {
combined_volume_fraction += wellVolumeFractionScaled(p);
}
}
return (target_rate * wellVolumeFractionScaled(phase) / combined_volume_fraction);
}
// TODO: three phase surface rate control is not tested yet
if (num_phases_under_rate_control == 3) {
return target_rate * wellSurfaceVolumeFraction(phase);
}
} else if (well_controls_get_current_type(wc) == RESERVOIR_RATE) {
// ReservoirRate
return target_rate * wellVolumeFractionScaled(phase);
} else {
OPM_THROW(std::logic_error, "Unknown control type for well " << name());
}
// avoid warning of condition reaches end of non-void function
return qs;
}
StandardWell::EvalWell
StandardWell::
wellVolumeFractionScaled(const int phase) const
{
// TODO: we should be able to set the g for the well based on the control type
// instead of using explicit code for g all the times
const WellControls* wc = well_controls_;
if (well_controls_get_current_type(wc) == RESERVOIR_RATE) {
const double* distr = well_controls_get_current_distr(wc);
if (distr[phase] > 0.) {
return wellVolumeFraction(phase) / distr[phase];
} else {
// TODO: not sure why return EvalWell(0.) causing problem here
// Probably due to the wrong Jacobians.
return wellVolumeFraction(phase);
}
}
std::vector<double> g = {1,1,0.01};
return (wellVolumeFraction(phase) / g[phase]);
}
StandardWell::EvalWell
StandardWell::
wellVolumeFraction(const int phase) const
{
if (phase == Water) {
return well_variables_[WFrac];
}
if (phase == Gas) {
return well_variables_[GFrac];
}
// Oil fraction
EvalWell well_fraction = 1.0;
if (active()[Water]) {
well_fraction -= well_variables_[WFrac];
}
if (active()[Gas]) {
well_fraction -= well_variables_[GFrac];
}
return well_fraction;
}
StandardWell::EvalWell
StandardWell::
wellSurfaceVolumeFraction(const int phase) const
{
EvalWell sum_volume_fraction_scaled = 0.;
const int np = number_of_phases_;
for (int p = 0; p < np; ++p) {
sum_volume_fraction_scaled += wellVolumeFractionScaled(p);
}
assert(sum_volume_fraction_scaled.value() != 0.);
return wellVolumeFractionScaled(phase) / sum_volume_fraction_scaled;
}
}