opm-simulators/opm/core/WellsManager.cpp

700 lines
31 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/core/WellsManager.hpp>
#include <opm/core/eclipse/EclipseGridParser.hpp>
#include <opm/core/grid.h>
#include <opm/core/newwells.h>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/core/WellCollection.hpp>
#include <opm/core/fluid/blackoil/phaseUsageFromDeck.hpp>
#include <tr1/array>
#include <cmath>
// Helper structs and functions for the implementation.
namespace
{
struct WellData
{
WellType type;
// WellControlType control;
// double target;
double reference_bhp_depth;
// Opm::InjectionSpecification::InjectorType injected_phase;
};
struct PerfData
{
int cell;
double well_index;
};
namespace ProductionControl
{
enum Mode { ORAT, WRAT, GRAT,
LRAT, CRAT, RESV,
BHP, THP, GRUP };
Mode mode(const std::string& control)
{
const int num_prod_control_modes = 9;
static std::string prod_control_modes[num_prod_control_modes] =
{std::string("ORAT"), std::string("WRAT"), std::string("GRAT"),
std::string("LRAT"), std::string("CRAT"), std::string("RESV"),
std::string("BHP"), std::string("THP"), std::string("GRUP") };
int m = -1;
for (int i=0; i<num_prod_control_modes; ++i) {
if (control == prod_control_modes[i]) {
m = i;
break;
}
}
if (m >= 0) {
return static_cast<Mode>(m);
} else {
THROW("Unknown well control mode = " << control << " in input file");
}
}
} // namespace ProductionControl
namespace InjectionControl
{
enum Mode { RATE, RESV, BHP,
THP, GRUP };
Mode mode(const std::string& control)
{
const int num_inje_control_modes = 5;
static std::string inje_control_modes[num_inje_control_modes] =
{std::string("RATE"), std::string("RESV"), std::string("BHP"),
std::string("THP"), std::string("GRUP") };
int m = -1;
for (int i=0; i<num_inje_control_modes; ++i) {
if (control == inje_control_modes[i]) {
m = i;
break;
}
}
if (m >= 0) {
return static_cast<Mode>(m);
} else {
THROW("Unknown well control mode = " << control << " in input file");
}
}
} // namespace InjectionControl
std::tr1::array<double, 3> getCubeDim(const UnstructuredGrid& grid, int cell)
{
using namespace std;
tr1::array<double, 3> cube;
int num_local_faces = grid.cell_facepos[cell + 1] - grid.cell_facepos[cell];
vector<double> x(num_local_faces);
vector<double> y(num_local_faces);
vector<double> z(num_local_faces);
for (int lf=0; lf<num_local_faces; ++ lf) {
int face = grid.cell_faces[grid.cell_facepos[cell] + lf];
const double* centroid = &grid.face_centroids[grid.dimensions*face];
x[lf] = centroid[0];
y[lf] = centroid[1];
z[lf] = centroid[2];
}
cube[0] = *max_element(x.begin(), x.end()) - *min_element(x.begin(), x.end());
cube[1] = *max_element(y.begin(), y.end()) - *min_element(y.begin(), y.end());
cube[2] = *max_element(z.begin(), z.end()) - *min_element(z.begin(), z.end());
return cube;
}
// Use the Peaceman well model to compute well indices.
// radius is the radius of the well.
// cubical contains [dx, dy, dz] of the cell.
// (Note that the well model asumes that each cell is a cuboid).
// cell_permeability is the permeability tensor of the given cell.
// returns the well index of the cell.
double computeWellIndex(const double radius,
const std::tr1::array<double, 3>& cubical,
const double* cell_permeability,
const double skin_factor)
{
using namespace std;
// sse: Using the Peaceman model.
// NOTE: The formula is valid for cartesian grids, so the result can be a bit
// (in worst case: there is no upper bound for the error) off the mark.
const double permx = cell_permeability[0];
const double permy = cell_permeability[3*1 + 1];
double effective_perm = sqrt(permx*permy);
// sse: The formula for r_0 can be found on page 39 of
// "Well Models for Mimetic Finite Differerence Methods and Improved Representation
// of Wells in Multiscale Methods" by Ingeborg Skjelkvåle Ligaarden.
assert(permx > 0.0);
assert(permy > 0.0);
double kxoy = permx / permy;
double kyox = permy / permx;
double r0_denominator = pow(kyox, 0.25) + pow(kxoy, 0.25);
double r0_numerator = sqrt((sqrt(kyox)*cubical[0]*cubical[0]) +
(sqrt(kxoy)*cubical[1]*cubical[1]));
assert(r0_denominator > 0.0);
double r0 = 0.28 * r0_numerator / r0_denominator;
assert(radius > 0.0);
assert(r0 > 0.0);
if (r0 < radius) {
std::cout << "ERROR: Too big well radius detected.";
std::cout << "Specified well radius is " << radius
<< " while r0 is " << r0 << ".\n";
}
const long double two_pi = 6.2831853071795864769252867665590057683943387987502116419498;
double wi_denominator = log(r0 / radius) + skin_factor;
double wi_numerator = two_pi * cubical[2];
assert(wi_denominator > 0.0);
double wi = effective_perm * wi_numerator / wi_denominator;
assert(wi > 0.0);
return wi;
}
} // anonymous namespace
namespace Opm
{
/// Default constructor.
WellsManager::WellsManager()
: w_(0)
{
}
/// Construct wells from deck.
WellsManager::WellsManager(const Opm::EclipseGridParser& deck,
const UnstructuredGrid& grid,
const double* permeability)
: w_(0)
{
if (grid.dimensions != 3) {
THROW("We cannot initialize wells from a deck unless the corresponding grid is 3-dimensional.");
}
// NOTE: Implementation copied and modified from dune-porsol's class BlackoilWells.
std::vector<std::string> keywords;
keywords.push_back("WELSPECS");
keywords.push_back("COMPDAT");
// keywords.push_back("WELTARG");
if (!deck.hasFields(keywords)) {
MESSAGE("Missing well keywords in deck, initializing no wells.");
return;
}
if (!(deck.hasField("WCONINJE") || deck.hasField("WCONPROD")) ) {
THROW("Needed field is missing in file");
}
// Obtain phase usage data.
PhaseUsage pu = phaseUsageFromDeck(deck);
// These data structures will be filled in this constructor,
// then used to initialize the Wells struct.
std::vector<std::string> well_names;
std::vector<WellData> well_data;
std::vector<std::vector<PerfData> > wellperf_data;
// For easy lookup:
std::map<std::string, int> well_names_to_index;
// Get WELSPECS data
const WELSPECS& welspecs = deck.getWELSPECS();
const int num_wells = welspecs.welspecs.size();
well_names.reserve(num_wells);
well_data.reserve(num_wells);
wellperf_data.resize(num_wells);
for (int w = 0; w < num_wells; ++w) {
well_names.push_back(welspecs.welspecs[w].name_);
WellData wd;
well_data.push_back(wd);
well_names_to_index[welspecs.welspecs[w].name_] = w;
well_data.back().reference_bhp_depth = welspecs.welspecs[w].datum_depth_BHP_;
if (welspecs.welspecs[w].datum_depth_BHP_ < 0.0) {
// Set refdepth to a marker value, will be changed
// after getting perforation data to the centroid of
// the cell of the top well perforation.
well_data.back().reference_bhp_depth = -1e100;
}
}
// global_cell is a map from compressed cells to Cartesian grid cells.
// We must make the inverse lookup.
const int* global_cell = grid.global_cell;
const int* cpgdim = grid.cartdims;
std::map<int,int> cartesian_to_compressed;
for (int i = 0; i < grid.number_of_cells; ++i) {
cartesian_to_compressed.insert(std::make_pair(global_cell[i], i));
}
// Get COMPDAT data
const COMPDAT& compdat = deck.getCOMPDAT();
const int num_compdat = compdat.compdat.size();
for (int kw = 0; kw < num_compdat; ++kw) {
// Extract well name, or the part of the well name that
// comes before the '*'.
std::string name = compdat.compdat[kw].well_;
std::string::size_type len = name.find('*');
if (len != std::string::npos) {
name = name.substr(0, len);
}
// Look for well with matching name.
bool found = false;
for (int wix = 0; wix < num_wells; ++wix) {
if (well_names[wix].compare(0,len, name) == 0) { // equal
// We have a matching name.
int ix = compdat.compdat[kw].grid_ind_[0] - 1;
int jy = compdat.compdat[kw].grid_ind_[1] - 1;
int kz1 = compdat.compdat[kw].grid_ind_[2] - 1;
int kz2 = compdat.compdat[kw].grid_ind_[3] - 1;
for (int kz = kz1; kz <= kz2; ++kz) {
int cart_grid_indx = ix + cpgdim[0]*(jy + cpgdim[1]*kz);
std::map<int, int>::const_iterator cgit =
cartesian_to_compressed.find(cart_grid_indx);
if (cgit == cartesian_to_compressed.end()) {
THROW("Cell with i,j,k indices " << ix << ' ' << jy << ' '
<< kz << " not found in grid!");
}
int cell = cgit->second;
PerfData pd;
pd.cell = cell;
if (compdat.compdat[kw].connect_trans_fac_ > 0.0) {
pd.well_index = compdat.compdat[kw].connect_trans_fac_;
} else {
double radius = 0.5*compdat.compdat[kw].diameter_;
if (radius <= 0.0) {
radius = 0.5*unit::feet;
MESSAGE("**** Warning: Well bore internal radius set to " << radius);
}
std::tr1::array<double, 3> cubical = getCubeDim(grid, cell);
const double* cell_perm = &permeability[grid.dimensions*grid.dimensions*cell];
pd.well_index = computeWellIndex(radius, cubical, cell_perm,
compdat.compdat[kw].skin_factor_);
}
wellperf_data[wix].push_back(pd);
}
found = true;
break;
}
}
if (!found) {
THROW("Undefined well name: " << compdat.compdat[kw].well_
<< " in COMPDAT");
}
}
// Set up reference depths that were defaulted. Count perfs.
int num_perfs = 0;
ASSERT(grid.dimensions == 3);
for (int w = 0; w < num_wells; ++w) {
num_perfs += wellperf_data[w].size();
if (well_data[w].reference_bhp_depth == -1e100) {
// It was defaulted. Set reference depth to minimum perforation depth.
double min_depth = 1e100;
int num_wperfs = wellperf_data[w].size();
for (int perf = 0; perf < num_wperfs; ++perf) {
double depth = grid.cell_centroids[3*wellperf_data[w][perf].cell + 2];
min_depth = std::min(min_depth, depth);
}
well_data[w].reference_bhp_depth = min_depth;
}
}
// Create the well data structures.
w_ = create_wells(pu.num_phases, num_wells, num_perfs);
if (!w_) {
THROW("Failed creating Wells struct.");
}
// Classify wells
if (deck.hasField("WCONINJE")) {
const std::vector<WconinjeLine>& lines = deck.getWCONINJE().wconinje;
for (size_t i = 0 ; i < lines.size(); ++i) {
const std::map<std::string, int>::const_iterator it = well_names_to_index.find(lines[i].well_);
if (it != well_names_to_index.end()) {
const int well_index = it->second;
well_data[well_index].type = INJECTOR;
}
else {
THROW("Unseen well name: " << lines[i].well_ << " first seen in WCONINJE");
}
}
}
if (deck.hasField("WCONPROD")) {
const std::vector<WconprodLine>& lines = deck.getWCONPROD().wconprod;
for (size_t i = 0; i < lines.size(); ++i) {
const std::map<std::string, int>::const_iterator it = well_names_to_index.find(lines[i].well_);
if (it != well_names_to_index.end()) {
const int well_index = it->second;
well_data[well_index].type = PRODUCER;
} else {
THROW("Unseen well name: " << lines[i].well_ << " first seen in WCONPROD");
}
}
}
// Add wells.
for (int w = 0; w < num_wells; ++w) {
const int w_num_perf = wellperf_data[w].size();
std::vector<int> perf_cells(w_num_perf);
std::vector<double> perf_prodind(w_num_perf);
for (int perf = 0; perf < w_num_perf; ++perf) {
perf_cells[perf] = wellperf_data[w][perf].cell;
perf_prodind[perf] = wellperf_data[w][perf].well_index;
}
const double* comp_frac = NULL;
// We initialize all wells with a null component fraction,
// and must (for injection wells) overwrite it later.
int ok = add_well(well_data[w].type, well_data[w].reference_bhp_depth, w_num_perf,
comp_frac, &perf_cells[0], &perf_prodind[0], w_);
if (!ok) {
THROW("Failed adding well " << well_names[w] << " to Wells data structure.");
}
}
// Get WCONINJE data, add injection controls to wells.
if (deck.hasField("WCONINJE")) {
const WCONINJE& wconinjes = deck.getWCONINJE();
const int num_wconinjes = wconinjes.wconinje.size();
for (int kw = 0; kw < num_wconinjes; ++kw) {
const WconinjeLine& wci_line = wconinjes.wconinje[kw];
// Extract well name, or the part of the well name that
// comes before the '*'.
std::string name = wci_line.well_;
std::string::size_type len = name.find('*');
if (len != std::string::npos) {
name = name.substr(0, len);
}
bool well_found = false;
for (int wix = 0; wix < num_wells; ++wix) {
if (well_names[wix].compare(0,len, name) == 0) { //equal
well_found = true;
ASSERT(well_data[wix].type == w_->type[wix]);
if (well_data[wix].type != INJECTOR) {
THROW("Found WCONINJE entry for a non-injector well: " << well_names[wix]);
}
// Add all controls that are present in well.
int ok = 1;
int control_pos[5] = { -1, -1, -1, -1, -1 };
if (ok && wci_line.surface_flow_max_rate_ > 0.0) {
control_pos[InjectionControl::RATE] = w_->ctrls[wix]->num;
const double distr[3] = { 1.0, 1.0, 1.0 };
ok = append_well_controls(SURFACE_RATE, wci_line.surface_flow_max_rate_,
distr, wix, w_);
}
if (ok && wci_line.reservoir_flow_max_rate_ > 0.0) {
control_pos[InjectionControl::RESV] = w_->ctrls[wix]->num;
const double distr[3] = { 1.0, 1.0, 1.0 };
ok = append_well_controls(RESERVOIR_RATE, wci_line.reservoir_flow_max_rate_,
distr, wix, w_);
}
if (ok && wci_line.BHP_limit_ > 0.0) {
control_pos[InjectionControl::BHP] = w_->ctrls[wix]->num;
ok = append_well_controls(BHP, wci_line.BHP_limit_,
NULL, wix, w_);
}
if (ok && wci_line.THP_limit_ > 0.0) {
THROW("We cannot handle THP limit for well " << well_names[wix]);
}
if (!ok) {
THROW("Failure occured appending controls for well " << well_names[wix]);
}
InjectionControl::Mode mode = InjectionControl::mode(wci_line.control_mode_);
const int cpos = control_pos[mode];
if (cpos == -1 && mode != InjectionControl::GRUP) {
THROW("Control mode type " << mode << " not present in well " << well_names[wix]);
}
set_current_control(wix, cpos, w_);
// Set well component fraction.
double cf[3] = { 0.0, 0.0, 0.0 };
if (wci_line.injector_type_ == "WATER") {
if (!pu.phase_used[BlackoilPhases::Aqua]) {
THROW("Water phase not used, yet found water-injecting well.");
}
cf[pu.phase_pos[BlackoilPhases::Aqua]] = 1.0;
} else if (wci_line.injector_type_ == "OIL") {
if (!pu.phase_used[BlackoilPhases::Liquid]) {
THROW("Oil phase not used, yet found oil-injecting well.");
}
cf[pu.phase_pos[BlackoilPhases::Liquid]] = 1.0;
} else if (wci_line.injector_type_ == "GAS") {
if (!pu.phase_used[BlackoilPhases::Vapour]) {
THROW("Water phase not used, yet found water-injecting well.");
}
cf[pu.phase_pos[BlackoilPhases::Vapour]] = 1.0;
}
std::copy(cf, cf + pu.num_phases, w_->comp_frac + wix*pu.num_phases);
}
}
if (!well_found) {
THROW("Undefined well name: " << wci_line.well_
<< " in WCONINJE");
}
}
}
// Get WCONPROD data
if (deck.hasField("WCONPROD")) {
const WCONPROD& wconprods = deck.getWCONPROD();
const int num_wconprods = wconprods.wconprod.size();
for (int kw = 0; kw < num_wconprods; ++kw) {
const WconprodLine& wcp_line = wconprods.wconprod[kw];
std::string name = wcp_line.well_;
std::string::size_type len = name.find('*');
if (len != std::string::npos) {
name = name.substr(0, len);
}
bool well_found = false;
for (int wix = 0; wix < num_wells; ++wix) {
if (well_names[wix].compare(0,len, name) == 0) { //equal
well_found = true;
ASSERT(well_data[wix].type == w_->type[wix]);
if (well_data[wix].type != PRODUCER) {
THROW("Found WCONPROD entry for a non-producer well: " << well_names[wix]);
}
// Add all controls that are present in well.
int control_pos[9] = { -1, -1, -1, -1, -1, -1, -1, -1, -1 };
int ok = 1;
if (ok && wcp_line.oil_max_rate_ > 0.0) {
if (!pu.phase_used[BlackoilPhases::Liquid]) {
THROW("Oil phase not active and ORAT control specified.");
}
control_pos[ProductionControl::ORAT] = w_->ctrls[wix]->num;
double distr[3] = { 0.0, 0.0, 0.0 };
distr[pu.phase_pos[BlackoilPhases::Liquid]] = 1.0;
ok = append_well_controls(SURFACE_RATE, wcp_line.oil_max_rate_,
distr, wix, w_);
}
if (ok && wcp_line.water_max_rate_ > 0.0) {
if (!pu.phase_used[BlackoilPhases::Aqua]) {
THROW("Water phase not active and WRAT control specified.");
}
control_pos[ProductionControl::WRAT] = w_->ctrls[wix]->num;
double distr[3] = { 0.0, 0.0, 0.0 };
distr[pu.phase_pos[BlackoilPhases::Aqua]] = 1.0;
ok = append_well_controls(SURFACE_RATE, wcp_line.water_max_rate_,
distr, wix, w_);
}
if (ok && wcp_line.gas_max_rate_ > 0.0) {
if (!pu.phase_used[BlackoilPhases::Vapour]) {
THROW("Gas phase not active and GRAT control specified.");
}
control_pos[ProductionControl::GRAT] = w_->ctrls[wix]->num;
double distr[3] = { 0.0, 0.0, 0.0 };
distr[pu.phase_pos[BlackoilPhases::Vapour]] = 1.0;
ok = append_well_controls(SURFACE_RATE, wcp_line.gas_max_rate_,
distr, wix, w_);
}
if (ok && wcp_line.liquid_max_rate_ > 0.0) {
if (!pu.phase_used[BlackoilPhases::Aqua]) {
THROW("Water phase not active and LRAT control specified.");
}
if (!pu.phase_used[BlackoilPhases::Liquid]) {
THROW("Oil phase not active and LRAT control specified.");
}
control_pos[ProductionControl::LRAT] = w_->ctrls[wix]->num;
double distr[3] = { 0.0, 0.0, 0.0 };
distr[pu.phase_pos[BlackoilPhases::Aqua]] = 1.0;
distr[pu.phase_pos[BlackoilPhases::Liquid]] = 1.0;
ok = append_well_controls(SURFACE_RATE, wcp_line.liquid_max_rate_,
distr, wix, w_);
}
if (ok && wcp_line.reservoir_flow_max_rate_ > 0.0) {
control_pos[ProductionControl::RESV] = w_->ctrls[wix]->num;
double distr[3] = { 1.0, 1.0, 1.0 };
ok = append_well_controls(RESERVOIR_RATE, wcp_line.reservoir_flow_max_rate_,
distr, wix, w_);
}
if (ok && wcp_line.BHP_limit_ > 0.0) {
control_pos[ProductionControl::BHP] = w_->ctrls[wix]->num;
ok = append_well_controls(BHP, wcp_line.BHP_limit_,
NULL, wix, w_);
}
if (ok && wcp_line.THP_limit_ > 0.0) {
THROW("We cannot handle THP limit for well " << well_names[wix]);
}
if (!ok) {
THROW("Failure occured appending controls for well " << well_names[wix]);
}
ProductionControl::Mode mode = ProductionControl::mode(wcp_line.control_mode_);
const int cpos = control_pos[mode];
if (cpos == -1 && mode != ProductionControl::GRUP) {
THROW("Control mode type " << mode << " not present in well " << well_names[wix]);
}
set_current_control(wix, cpos, w_);
}
}
if (!well_found) {
THROW("Undefined well name: " << wcp_line.well_
<< " in WCONPROD");
}
}
}
// Get WELTARG data
if (deck.hasField("WELTARG")) {
THROW("We currently do not handle WELTARG.");
/*
const WELTARG& weltargs = deck.getWELTARG();
const int num_weltargs = weltargs.weltarg.size();
for (int kw = 0; kw < num_weltargs; ++kw) {
std::string name = weltargs.weltarg[kw].well_;
std::string::size_type len = name.find('*');
if (len != std::string::npos) {
name = name.substr(0, len);
}
bool well_found = false;
for (int wix = 0; wix < num_wells; ++wix) {
if (well_names[wix].compare(0,len, name) == 0) { //equal
well_found = true;
well_data[wix].target = weltargs.weltarg[kw].new_value_;
break;
}
}
if (!well_found) {
THROW("Undefined well name: " << weltargs.weltarg[kw].well_
<< " in WELTARG");
}
}
*/
}
// Debug output.
#define EXTRA_OUTPUT
#ifdef EXTRA_OUTPUT
/*
std::cout << "\t WELL DATA" << std::endl;
for(int i = 0; i< num_wells; ++i) {
std::cout << i << ": " << well_data[i].type << " "
<< well_data[i].control << " " << well_data[i].target
<< std::endl;
}
std::cout << "\n\t PERF DATA" << std::endl;
for(int i=0; i< int(wellperf_data.size()); ++i) {
for(int j=0; j< int(wellperf_data[i].size()); ++j) {
std::cout << i << ": " << wellperf_data[i][j].cell << " "
<< wellperf_data[i][j].well_index << std::endl;
}
}
*/
#endif
// Build the well_collection_ well group hierarchy.
if (deck.hasField("GRUPTREE")) {
std::cout << "Found gruptree" << std::endl;
const GRUPTREE& gruptree = deck.getGRUPTREE();
std::map<std::string, std::string>::const_iterator it = gruptree.tree.begin();
for( ; it != gruptree.tree.end(); ++it) {
well_collection_.addChild(it->first, it->second, deck);
}
}
for (size_t i = 0; i < welspecs.welspecs.size(); ++i) {
WelspecsLine line = welspecs.welspecs[i];
well_collection_.addChild(line.name_, line.group_, deck);
}
// Set the guide rates:
if (deck.hasField("WGRUPCON")) {
std::cout << "Found Wgrupcon" << std::endl;
WGRUPCON wgrupcon = deck.getWGRUPCON();
const std::vector<WgrupconLine>& lines = wgrupcon.wgrupcon;
std::cout << well_collection_.getLeafNodes().size() << std::endl;
for (size_t i = 0; i < lines.size(); i++) {
std::string name = lines[i].well_;
const int wix = well_names_to_index[name];
WellNode& wellnode = *well_collection_.getLeafNodes()[wix];
ASSERT(wellnode.name() == name);
if (well_data[wix].type == PRODUCER) {
wellnode.prodSpec().guide_rate_ = lines[i].guide_rate_;
if (lines[i].phase_ == "OIL") {
wellnode.prodSpec().guide_rate_type_ = ProductionSpecification::OIL;
} else {
THROW("Guide rate type " << lines[i].phase_ << " specified for producer "
<< name << " in WGRUPCON, cannot handle.");
}
} else if (well_data[wix].type == INJECTOR) {
wellnode.injSpec().guide_rate_ = lines[i].guide_rate_;
if (lines[i].phase_ == "RAT") {
wellnode.injSpec().guide_rate_type_ = InjectionSpecification::RAT;
} else {
THROW("Guide rate type " << lines[i].phase_ << " specified for injector "
<< name << " in WGRUPCON, cannot handle.");
}
} else {
THROW("Unknown well type " << well_data[wix].type << " for well " << name);
}
}
}
well_collection_.setWellsPointer(w_);
well_collection_.applyGroupControls();
}
/// Destructor.
WellsManager::~WellsManager()
{
destroy_wells(w_);
}
/// Access the managed Wells.
/// The method is named similarly to c_str() in std::string,
/// to make it clear that we are returning a C-compatible struct.
const Wells* WellsManager::c_wells() const
{
return w_;
}
const WellCollection& WellsManager::wellCollection() const
{
return well_collection_;
}
bool WellsManager::conditionsMet(const std::vector<double>& well_bhp,
const std::vector<double>& well_reservoirrates_phase,
const std::vector<double>& well_surfacerates_phase)
{
return well_collection_.conditionsMet(well_bhp,
well_reservoirrates_phase,
well_surfacerates_phase);
}
} // namespace Opm