mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-26 22:16:24 -06:00
3a7f5799af
- Replace use of Base:: with this-> in derived classes - Add AquiferInterface::size() utility functions - Remove AquiferInterface::cell_idx_ member
275 lines
11 KiB
C++
275 lines
11 KiB
C++
/*
|
|
Copyright 2017 TNO - Heat Transfer & Fluid Dynamics, Modelling & Optimization of the Subsurface
|
|
Copyright 2017 Statoil ASA.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_AQUIFERCT_HEADER_INCLUDED
|
|
#define OPM_AQUIFERCT_HEADER_INCLUDED
|
|
|
|
#include <opm/simulators/aquifers/AquiferInterface.hpp>
|
|
|
|
#include <opm/output/data/Aquifer.hpp>
|
|
|
|
#include <exception>
|
|
#include <stdexcept>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
template <typename TypeTag>
|
|
class AquiferCarterTracy : public AquiferInterface<TypeTag>
|
|
{
|
|
public:
|
|
typedef AquiferInterface<TypeTag> Base;
|
|
|
|
using typename Base::BlackoilIndices;
|
|
using typename Base::ElementContext;
|
|
using typename Base::Eval;
|
|
using typename Base::FluidState;
|
|
using typename Base::FluidSystem;
|
|
using typename Base::IntensiveQuantities;
|
|
using typename Base::RateVector;
|
|
using typename Base::Scalar;
|
|
using typename Base::Simulator;
|
|
|
|
using Base::waterCompIdx;
|
|
using Base::waterPhaseIdx;
|
|
AquiferCarterTracy(const std::vector<Aquancon::AquancCell>& connections,
|
|
const std::unordered_map<int, int>& cartesian_to_compressed,
|
|
const Simulator& ebosSimulator,
|
|
const AquiferCT::AQUCT_data& aquct_data)
|
|
: Base(aquct_data.aquiferID, connections, cartesian_to_compressed, ebosSimulator)
|
|
, aquct_data_(aquct_data)
|
|
{
|
|
}
|
|
|
|
void endTimeStep() override
|
|
{
|
|
for (const auto& q : this->Qai_) {
|
|
this->W_flux_ += q * this->ebos_simulator_.timeStepSize();
|
|
}
|
|
}
|
|
|
|
protected:
|
|
// Variables constants
|
|
const AquiferCT::AQUCT_data aquct_data_;
|
|
Scalar beta_; // Influx constant
|
|
// TODO: it is possible it should be a AD variable
|
|
Scalar mu_w_; // water viscosity
|
|
|
|
// This function is used to initialize and calculate the alpha_i for each grid connection to the aquifer
|
|
inline void initializeConnections() override
|
|
{
|
|
const auto& eclState = this->ebos_simulator_.vanguard().eclState();
|
|
const auto& ugrid = this->ebos_simulator_.vanguard().grid();
|
|
const auto& grid = eclState.getInputGrid();
|
|
|
|
auto globalCellIdx = ugrid.globalCell();
|
|
|
|
// We hack the cell depth values for now. We can actually get it from elementcontext pos
|
|
this->cell_depth_.resize(this->size(), aquct_data_.d0);
|
|
this->alphai_.resize(this->size(), 1.0);
|
|
this->faceArea_connected_.resize(this->size(), 0.0);
|
|
|
|
auto cell2Faces = Opm::UgGridHelpers::cell2Faces(ugrid);
|
|
auto faceCells = Opm::UgGridHelpers::faceCells(ugrid);
|
|
|
|
// Translate the C face tag into the enum used by opm-parser's TransMult class
|
|
Opm::FaceDir::DirEnum faceDirection;
|
|
|
|
// denom_face_areas is the sum of the areas connected to an aquifer
|
|
Scalar denom_face_areas = 0.;
|
|
this->cellToConnectionIdx_.resize(this->ebos_simulator_.gridView().size(/*codim=*/0), -1);
|
|
for (size_t idx = 0; idx < this->size(); ++idx) {
|
|
const int cell_index = this->cartesian_to_compressed_.at(this->connections_[idx].global_index);
|
|
this->cellToConnectionIdx_[cell_index] = idx;
|
|
|
|
const auto cellFacesRange = cell2Faces[cell_index];
|
|
for (auto cellFaceIter = cellFacesRange.begin(); cellFaceIter != cellFacesRange.end(); ++cellFaceIter) {
|
|
// The index of the face in the compressed grid
|
|
const int faceIdx = *cellFaceIter;
|
|
|
|
// the logically-Cartesian direction of the face
|
|
const int faceTag = Opm::UgGridHelpers::faceTag(ugrid, cellFaceIter);
|
|
|
|
switch (faceTag) {
|
|
case 0:
|
|
faceDirection = Opm::FaceDir::XMinus;
|
|
break;
|
|
case 1:
|
|
faceDirection = Opm::FaceDir::XPlus;
|
|
break;
|
|
case 2:
|
|
faceDirection = Opm::FaceDir::YMinus;
|
|
break;
|
|
case 3:
|
|
faceDirection = Opm::FaceDir::YPlus;
|
|
break;
|
|
case 4:
|
|
faceDirection = Opm::FaceDir::ZMinus;
|
|
break;
|
|
case 5:
|
|
faceDirection = Opm::FaceDir::ZPlus;
|
|
break;
|
|
default:
|
|
OPM_THROW(Opm::NumericalIssue,
|
|
"Initialization of Aquifer Carter Tracy problem. Make sure faceTag is correctly defined");
|
|
}
|
|
|
|
if (faceDirection == this->connections_[idx].face_dir) {
|
|
this->faceArea_connected_.at(idx) = this->getFaceArea(faceCells, ugrid, faceIdx, idx);
|
|
denom_face_areas += (this->connections_[idx].influx_mult * this->faceArea_connected_.at(idx));
|
|
}
|
|
}
|
|
auto cellCenter = grid.getCellCenter(this->connections_[idx].global_index);
|
|
this->cell_depth_.at(idx) = cellCenter[2];
|
|
}
|
|
|
|
const double eps_sqrt = std::sqrt(std::numeric_limits<double>::epsilon());
|
|
for (size_t idx = 0; idx < this->size(); ++idx) {
|
|
this->alphai_.at(idx) = (denom_face_areas < eps_sqrt)
|
|
? // Prevent no connection NaNs due to division by zero
|
|
0.
|
|
: (this->connections_[idx].influx_mult * this->faceArea_connected_.at(idx)) / denom_face_areas;
|
|
}
|
|
}
|
|
|
|
void assignRestartData(const data::AquiferData& /* xaq */) override
|
|
{
|
|
throw std::runtime_error {"Restart-based initialization not currently supported "
|
|
"for Carter-Tracey analytic aquifers"};
|
|
}
|
|
|
|
inline void getInfluenceTableValues(Scalar& pitd, Scalar& pitd_prime, const Scalar& td)
|
|
{
|
|
// We use the opm-common numeric linear interpolator
|
|
pitd = Opm::linearInterpolation(aquct_data_.td, aquct_data_.pi, td);
|
|
pitd_prime = Opm::linearInterpolationDerivative(aquct_data_.td, aquct_data_.pi, td);
|
|
}
|
|
|
|
inline Scalar dpai(int idx)
|
|
{
|
|
Scalar dp = this->pa0_
|
|
+ this->rhow_.at(idx).value() * this->gravity_() * (this->cell_depth_.at(idx) - aquct_data_.d0)
|
|
- this->pressure_previous_.at(idx);
|
|
return dp;
|
|
}
|
|
|
|
// This function implements Eqs 5.8 and 5.9 of the EclipseTechnicalDescription
|
|
inline void calculateEqnConstants(Scalar& a, Scalar& b, const int idx, const Simulator& simulator)
|
|
{
|
|
const Scalar td_plus_dt = (simulator.timeStepSize() + simulator.time()) / this->Tc_;
|
|
const Scalar td = simulator.time() / this->Tc_;
|
|
Scalar PItdprime = 0.;
|
|
Scalar PItd = 0.;
|
|
getInfluenceTableValues(PItd, PItdprime, td_plus_dt);
|
|
a = 1.0 / this->Tc_ * ((beta_ * dpai(idx)) - (this->W_flux_.value() * PItdprime)) / (PItd - td * PItdprime);
|
|
b = beta_ / (this->Tc_ * (PItd - td * PItdprime));
|
|
}
|
|
|
|
// This function implements Eq 5.7 of the EclipseTechnicalDescription
|
|
inline void calculateInflowRate(int idx, const Simulator& simulator) override
|
|
{
|
|
Scalar a, b;
|
|
calculateEqnConstants(a, b, idx, simulator);
|
|
this->Qai_.at(idx)
|
|
= this->alphai_.at(idx) * (a - b * (this->pressure_current_.at(idx) - this->pressure_previous_.at(idx)));
|
|
}
|
|
|
|
inline void calculateAquiferConstants() override
|
|
{
|
|
// We calculate the influx constant
|
|
beta_ = aquct_data_.c2 * aquct_data_.h * aquct_data_.theta * aquct_data_.phi_aq * aquct_data_.C_t
|
|
* aquct_data_.r_o * aquct_data_.r_o;
|
|
// We calculate the time constant
|
|
this->Tc_ = mu_w_ * aquct_data_.phi_aq * aquct_data_.C_t * aquct_data_.r_o * aquct_data_.r_o
|
|
/ (aquct_data_.k_a * aquct_data_.c1);
|
|
}
|
|
|
|
inline void calculateAquiferCondition() override
|
|
{
|
|
|
|
int pvttableIdx = aquct_data_.pvttableID - 1;
|
|
this->rhow_.resize(this->size(), 0.);
|
|
if (!aquct_data_.p0.first) {
|
|
this->pa0_ = calculateReservoirEquilibrium();
|
|
} else {
|
|
this->pa0_ = aquct_data_.p0.second;
|
|
}
|
|
|
|
// use the thermodynamic state of the first active cell as a
|
|
// reference. there might be better ways to do this...
|
|
ElementContext elemCtx(this->ebos_simulator_);
|
|
auto elemIt = this->ebos_simulator_.gridView().template begin</*codim=*/0>();
|
|
elemCtx.updatePrimaryStencil(*elemIt);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
// Initialize a FluidState object first
|
|
FluidState fs_aquifer;
|
|
// We use the temperature of the first cell connected to the aquifer
|
|
// Here we copy the fluidstate of the first cell, so we do not accidentally mess up the reservoir fs
|
|
fs_aquifer.assign(iq0.fluidState());
|
|
Eval temperature_aq, pa0_mean;
|
|
temperature_aq = fs_aquifer.temperature(0);
|
|
pa0_mean = this->pa0_;
|
|
Eval mu_w_aquifer = FluidSystem::waterPvt().viscosity(pvttableIdx, temperature_aq, pa0_mean);
|
|
mu_w_ = mu_w_aquifer.value();
|
|
}
|
|
|
|
// This function is for calculating the aquifer properties from equilibrium state with the reservoir
|
|
// TODO: this function can be moved to the Inteface class, since it is the same for both Aquifer models
|
|
inline Scalar calculateReservoirEquilibrium() override
|
|
{
|
|
// Since the global_indices are the reservoir index, we just need to extract the fluidstate at those indices
|
|
std::vector<Scalar> pw_aquifer;
|
|
Scalar water_pressure_reservoir;
|
|
|
|
ElementContext elemCtx(this->ebos_simulator_);
|
|
const auto& gridView = this->ebos_simulator_.gridView();
|
|
auto elemIt = gridView.template begin</*codim=*/0>();
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0>();
|
|
for (; elemIt != elemEndIt; ++elemIt) {
|
|
const auto& elem = *elemIt;
|
|
elemCtx.updatePrimaryStencil(elem);
|
|
|
|
size_t cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
int idx = this->cellToConnectionIdx_[cellIdx];
|
|
if (idx < 0)
|
|
continue;
|
|
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& fs = iq0.fluidState();
|
|
|
|
water_pressure_reservoir = fs.pressure(waterPhaseIdx).value();
|
|
this->rhow_[idx] = fs.density(waterPhaseIdx);
|
|
pw_aquifer.push_back(
|
|
(water_pressure_reservoir
|
|
- this->rhow_[idx].value() * this->gravity_() * (this->cell_depth_[idx] - aquct_data_.d0))
|
|
* this->alphai_[idx]);
|
|
}
|
|
|
|
// We take the average of the calculated equilibrium pressures.
|
|
Scalar aquifer_pres_avg = std::accumulate(pw_aquifer.begin(), pw_aquifer.end(), 0.) / pw_aquifer.size();
|
|
return aquifer_pres_avg;
|
|
}
|
|
}; // class AquiferCarterTracy
|
|
} // namespace Opm
|
|
|
|
#endif
|