mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-24 18:20:22 -06:00
5f6c97ff3b
Implement graphcoloring to expose rows in level sets that that can be executed in parallel during the sparse triangular solves. Add copy of A matrix that is reordered to ensure continuous memory reads when traversing the matrix in level set order. TODO: add number of threads available as constructor argument in DILU
851 lines
22 KiB
C++
851 lines
22 KiB
C++
/*
|
|
Copyright 2022-2023 SINTEF AS
|
|
This file is part of the Open Porous Media project (OPM).
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#define BOOST_TEST_MODULE TestSeqDILU
|
|
|
|
#include <config.h>
|
|
#include <opm/simulators/linalg/DILU.hpp>
|
|
|
|
#include <boost/mpl/list.hpp>
|
|
#include <boost/test/unit_test.hpp>
|
|
#include <dune/common/fmatrix.hh>
|
|
#include <dune/istl/bcrsmatrix.hh>
|
|
#include <dune/istl/preconditioners.hh>
|
|
|
|
using NumericTypes = boost::mpl::list<double, float>;
|
|
|
|
|
|
BOOST_AUTO_TEST_CASE_TEMPLATE(SeqDILUDiagIsCorrect2x2NoZeros, T, NumericTypes)
|
|
{
|
|
/*
|
|
Tests that the dilu decomposition mathces the expected result
|
|
for a 2x2 matrix with no zero blocks, with block size 2x2.
|
|
|
|
A
|
|
| | 3 1| | 1 0| |
|
|
| | 2 1| | 0 1| |
|
|
| |
|
|
| | 2 0| |-1 0| |
|
|
| | 0 2| | 0 -1| |
|
|
*/
|
|
|
|
const int N = 2;
|
|
constexpr int bz = 2;
|
|
const int nonZeroes = 4;
|
|
using Matrix = Dune::BCRSMatrix<Dune::FieldMatrix<double, bz, bz>>;
|
|
using Vector = Dune::BlockVector<Dune::FieldVector<double, bz>>;
|
|
|
|
Matrix A(N, N, nonZeroes, Matrix::row_wise);
|
|
for (auto row = A.createbegin(); row != A.createend(); ++row) {
|
|
row.insert(0);
|
|
row.insert(1);
|
|
}
|
|
|
|
A[0][0][0][0] = 3.0;
|
|
A[0][0][0][1] = 1.0;
|
|
A[0][0][1][0] = 2.0;
|
|
A[0][0][1][1] = 1.0;
|
|
|
|
A[0][1][0][0] = 1.0;
|
|
A[0][1][1][1] = 1.0;
|
|
|
|
A[1][0][0][0] = 2.0;
|
|
A[1][0][1][1] = 2.0;
|
|
|
|
|
|
A[1][1][0][0] = -1.0;
|
|
A[1][1][1][1] = -1.0;
|
|
|
|
|
|
auto D_00 = A[0][0];
|
|
auto D_00_inv = D_00;
|
|
D_00_inv.invert();
|
|
// D_11 = A_11 - L_10 D_00_inv U_01
|
|
auto D_11 = A[1][1] - A[1][0] * D_00_inv * A[0][1];
|
|
|
|
Dune::MultithreadDILU<Matrix, Vector, Vector> seqdilu(A);
|
|
|
|
auto Dinv = seqdilu.getDiagonal();
|
|
|
|
// diagonal stores inverse
|
|
auto D_00_dilu = Dinv[0];
|
|
D_00_dilu.invert();
|
|
auto D_11_dilu = Dinv[1];
|
|
D_11_dilu.invert();
|
|
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 2; ++j) {
|
|
BOOST_CHECK_CLOSE(D_00_dilu[i][j], D_00[i][j], 1e-7);
|
|
BOOST_CHECK_CLOSE(D_11_dilu[i][j], D_11[i][j], 1e-7);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
BOOST_AUTO_TEST_CASE_TEMPLATE(SeqDILUDiagIsCorrect2x2, T, NumericTypes)
|
|
{
|
|
/*
|
|
Tests that the dilu decomposition mathces the expected result
|
|
for a 2x2 matrix, with block size 2x2.
|
|
|
|
A
|
|
| | 3 1| | 1 0| |
|
|
| | 2 1| | 0 1| |
|
|
| |
|
|
| | 0 0| |-1 0| |
|
|
| | 0 0| | 0 -1| |
|
|
*/
|
|
|
|
const int N = 2;
|
|
constexpr int bz = 2;
|
|
const int nonZeroes = 3;
|
|
using Matrix = Dune::BCRSMatrix<Dune::FieldMatrix<double, bz, bz>>;
|
|
using Vector = Dune::BlockVector<Dune::FieldVector<double, bz>>;
|
|
|
|
Matrix A(N, N, nonZeroes, Matrix::row_wise);
|
|
for (auto row = A.createbegin(); row != A.createend(); ++row) {
|
|
row.insert(row.index());
|
|
if (row.index() == 0) {
|
|
row.insert(row.index() + 1);
|
|
}
|
|
}
|
|
|
|
A[0][0][0][0] = 3.0;
|
|
A[0][0][0][1] = 1.0;
|
|
A[0][0][1][0] = 2.0;
|
|
A[0][0][1][1] = 1.0;
|
|
|
|
A[0][1][0][0] = 1.0;
|
|
A[0][1][1][1] = 1.0;
|
|
|
|
A[1][1][0][0] = -1.0;
|
|
A[1][1][1][1] = -1.0;
|
|
|
|
|
|
auto D_00 = A[0][0];
|
|
auto D_00_inv = D_00;
|
|
D_00_inv.invert();
|
|
// D_11 = A_11 - L_10 D_00_inv U_01 = A_11
|
|
auto D_11 = A[1][1];
|
|
|
|
Dune::MultithreadDILU<Matrix, Vector, Vector> seqdilu(A);
|
|
|
|
|
|
auto Dinv = seqdilu.getDiagonal();
|
|
|
|
// diagonal stores inverse
|
|
auto D_00_dilu = Dinv[0];
|
|
D_00_dilu.invert();
|
|
auto D_11_dilu = Dinv[1];
|
|
D_11_dilu.invert();
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 2; ++j) {
|
|
BOOST_CHECK_CLOSE(D_00_dilu[i][j], D_00[i][j], 1e-7);
|
|
BOOST_CHECK_CLOSE(D_11_dilu[i][j], D_11[i][j], 1e-7);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
BOOST_AUTO_TEST_CASE_TEMPLATE(SeqDILUApplyIsCorrectNoZeros, T, NumericTypes)
|
|
{
|
|
/*
|
|
Tests that applying the dilu preconditioner mathces the expected result
|
|
for a 2x2 matrix with no zero blocks, with block size 2x2.
|
|
|
|
A x = b
|
|
| | 3 1| | 1 0| | | |1| | | |2| |
|
|
| | 2 1| | 0 1| | | |2| | | |1| |
|
|
| | x | | = | |
|
|
| | 2 0| |-1 0| | | |1| | | |3| |
|
|
| | 0 2| | 0 -1| | | |1| | | |4| |
|
|
*/
|
|
|
|
const int N = 2;
|
|
constexpr int bz = 2;
|
|
const int nonZeroes = 4;
|
|
using Matrix = Dune::BCRSMatrix<Dune::FieldMatrix<double, bz, bz>>;
|
|
using Vector = Dune::BlockVector<Dune::FieldVector<double, bz>>;
|
|
|
|
Matrix A(N, N, nonZeroes, Matrix::row_wise);
|
|
for (auto row = A.createbegin(); row != A.createend(); ++row) {
|
|
row.insert(0);
|
|
row.insert(1);
|
|
}
|
|
|
|
A[0][0][0][0] = 3.0;
|
|
A[0][0][0][1] = 1.0;
|
|
A[0][0][1][0] = 2.0;
|
|
A[0][0][1][1] = 1.0;
|
|
|
|
A[0][1][0][0] = 1.0;
|
|
A[0][1][1][1] = 1.0;
|
|
|
|
A[1][0][0][0] = 2.0;
|
|
A[1][0][1][1] = 2.0;
|
|
|
|
|
|
A[1][1][0][0] = -1.0;
|
|
A[1][1][1][1] = -1.0;
|
|
|
|
|
|
Vector x(2);
|
|
x[0][0] = 1.0;
|
|
x[0][1] = 2.0;
|
|
x[1][0] = 1.0;
|
|
x[1][1] = 1.0;
|
|
|
|
Vector b(2);
|
|
b[0][0] = 2.0;
|
|
b[0][1] = 1.0;
|
|
b[1][0] = 3.0;
|
|
b[1][1] = 4.0;
|
|
|
|
|
|
auto D_00 = A[0][0];
|
|
auto D_00_inv = D_00;
|
|
D_00_inv.invert();
|
|
// D_11= A_11 - L_10 D_00_inv U_01
|
|
auto D_11 = A[1][1] - A[1][0] * D_00_inv * A[0][1];
|
|
auto D_11_inv = D_11;
|
|
D_11_inv.invert();
|
|
|
|
// define: z = M^-1(b - Ax)
|
|
// where: M = (D + L_A) A^-1 (D + U_A)
|
|
// lower triangular solve: (E + L) y = b - Ax
|
|
// y_0 = D_00_inv*[b_0 - (A_00*x_0 + A_01*x_1)]
|
|
Vector y(2);
|
|
|
|
auto rhs = b[0];
|
|
A[0][0].mmv(x[0], rhs);
|
|
A[0][1].mmv(x[1], rhs);
|
|
D_00_inv.mv(rhs, y[0]);
|
|
|
|
// y_1 = D_11_inv*(b_1 - (A_10*x_0 + A_11*x_1) - A_10*y_0)
|
|
rhs = b[1];
|
|
A[1][0].mmv(x[0], rhs);
|
|
A[1][1].mmv(x[1], rhs);
|
|
A[1][0].mmv(y[0], rhs);
|
|
D_11_inv.mv(rhs, y[1]);
|
|
|
|
|
|
// upper triangular solve: (E + U) z = Ey
|
|
// z_1 = y_1
|
|
Vector z(2);
|
|
z[1] = y[1];
|
|
|
|
// z_0 = y_0 - D_00_inv*A_01*z_1
|
|
z[0] = y[0];
|
|
auto temp = D_00_inv * A[0][1];
|
|
temp.mmv(z[1], z[0]);
|
|
|
|
// x_k+1 = x_k + z
|
|
Vector new_x = x;
|
|
new_x += z;
|
|
|
|
Dune::MultithreadDILU<Matrix, Vector, Vector> seqdilu(A);
|
|
seqdilu.apply(x, b);
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 2; ++j) {
|
|
BOOST_CHECK_CLOSE(x[i][j], new_x[i][j], 1e-7);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
BOOST_AUTO_TEST_CASE_TEMPLATE(SeqDILUApplyIsCorrect1, T, NumericTypes)
|
|
{
|
|
/*
|
|
Tests that applying the dilu preconditioner mathces the expected result
|
|
for a 2x2 matrix, with block size 2x2.
|
|
|
|
A x = b
|
|
| | 3 1| | 1 0| | | |1| | | |2| |
|
|
| | 2 1| | 0 1| | | |2| | | |1| |
|
|
| | x | | = | |
|
|
| | 0 0| |-1 0| | | |1| | | |3| |
|
|
| | 0 0| | 0 -1| | | |1| | | |4| |
|
|
*/
|
|
|
|
|
|
const int N = 2;
|
|
constexpr int bz = 2;
|
|
const int nonZeroes = 3;
|
|
using Matrix = Dune::BCRSMatrix<Dune::FieldMatrix<double, bz, bz>>;
|
|
using Vector = Dune::BlockVector<Dune::FieldVector<double, bz>>;
|
|
|
|
Matrix A(N, N, nonZeroes, Matrix::row_wise);
|
|
for (auto row = A.createbegin(); row != A.createend(); ++row) {
|
|
row.insert(row.index());
|
|
if (row.index() == 0) {
|
|
row.insert(row.index() + 1);
|
|
}
|
|
}
|
|
|
|
A[0][0][0][0] = 3.0;
|
|
A[0][0][0][1] = 1.0;
|
|
A[0][0][1][0] = 2.0;
|
|
A[0][0][1][1] = 1.0;
|
|
|
|
A[0][1][0][0] = 1.0;
|
|
A[0][1][1][1] = 1.0;
|
|
|
|
A[1][1][0][0] = -1.0;
|
|
A[1][1][1][1] = -1.0;
|
|
|
|
|
|
Vector x(2);
|
|
x[0][0] = 1.0;
|
|
x[0][1] = 2.0;
|
|
x[1][0] = 1.0;
|
|
x[1][1] = 1.0;
|
|
|
|
Vector b(2);
|
|
b[0][0] = 2.0;
|
|
b[0][1] = 1.0;
|
|
b[1][0] = 3.0;
|
|
b[1][1] = 4.0;
|
|
|
|
|
|
auto D_00 = A[0][0];
|
|
auto D_00_inv = D_00;
|
|
D_00_inv.invert();
|
|
// D_11 = A_11 - L_10 D_0_inv U_01 = A_11
|
|
auto D_11 = A[1][1];
|
|
auto D_11_inv = D_11;
|
|
D_11_inv.invert();
|
|
|
|
// define: z = M^-1(b - Ax)
|
|
// where: M = (D + L_A) A^-1 (D + U_A)
|
|
// lower triangular solve: (E + L) y = b - Ax
|
|
// y_0 = D_00_inv*[b_0 - (A_00*x_0 + A_01*x_1)]
|
|
Vector y(2);
|
|
|
|
auto rhs = b[0];
|
|
A[0][0].mmv(x[0], rhs);
|
|
A[0][1].mmv(x[1], rhs);
|
|
D_00_inv.mv(rhs, y[0]);
|
|
|
|
// y_1 = D_11_inv*(b_1 - (A_10*x_0 + A_11*x_1) - A_10*y_0) = D_11_inv*(b_1 - A_11*x_1)
|
|
rhs = b[1];
|
|
A[1][1].mmv(x[1], rhs);
|
|
D_11_inv.mv(rhs, y[1]);
|
|
|
|
|
|
// upper triangular solve: (E + U) z = Ey
|
|
// z_1 = y_1
|
|
Vector z(2);
|
|
z[1] = y[1];
|
|
|
|
// z_0 = y_0 - D_00_inv*A_01*z_1
|
|
z[0] = y[0];
|
|
auto temp = D_00_inv * A[0][1];
|
|
temp.mmv(z[1], z[0]);
|
|
|
|
// x_k+1 = x_k + z
|
|
Vector new_x = x;
|
|
new_x += z;
|
|
|
|
Dune::MultithreadDILU<Matrix, Vector, Vector> seqdilu(A);
|
|
seqdilu.apply(x, b);
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 2; ++j) {
|
|
BOOST_CHECK_CLOSE(x[i][j], new_x[i][j], 1e-7);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
BOOST_AUTO_TEST_CASE_TEMPLATE(SeqDILUApplyIsCorrect2, T, NumericTypes)
|
|
{
|
|
/*
|
|
Tests that applying the dilu preconditioner mathces the expected result
|
|
for a 2x2 matrix, with block size 2x2.
|
|
|
|
A x = b
|
|
| | 3 1| | 0 0| | | |1| | | |2| |
|
|
| | 2 1| | 0 0| | | |2| | | |1| |
|
|
| | x | | = | |
|
|
| | 2 0| |-1 0| | | |1| | | |3| |
|
|
| | 0 2| | 0 -1| | | |1| | | |4| |
|
|
*/
|
|
const int N = 2;
|
|
constexpr int bz = 2;
|
|
const int nonZeroes = 3;
|
|
using Matrix = Dune::BCRSMatrix<Dune::FieldMatrix<double, bz, bz>>;
|
|
using Vector = Dune::BlockVector<Dune::FieldVector<double, bz>>;
|
|
|
|
Matrix A(N, N, nonZeroes, Matrix::row_wise);
|
|
for (auto row = A.createbegin(); row != A.createend(); ++row) {
|
|
row.insert(row.index());
|
|
if (row.index() == 1) {
|
|
row.insert(row.index() - 1);
|
|
}
|
|
}
|
|
|
|
A[0][0][0][0] = 3.0;
|
|
A[0][0][0][1] = 1.0;
|
|
A[0][0][1][0] = 2.0;
|
|
A[0][0][1][1] = 1.0;
|
|
|
|
A[1][1][0][0] = 2.0;
|
|
A[1][1][1][1] = 2.0;
|
|
|
|
A[1][1][0][0] = -1.0;
|
|
A[1][1][1][1] = -1.0;
|
|
|
|
Vector x(2);
|
|
x[0][0] = 1.0;
|
|
x[0][1] = 2.0;
|
|
x[1][0] = 1.0;
|
|
x[1][1] = 1.0;
|
|
|
|
Vector b(2);
|
|
b[0][0] = 2.0;
|
|
b[0][1] = 1.0;
|
|
b[1][0] = 3.0;
|
|
b[1][1] = 4.0;
|
|
|
|
|
|
auto D_00 = A[0][0];
|
|
auto D_00_inv = D_00;
|
|
D_00_inv.invert();
|
|
// D_11 = A_11 - L_10 D_0_inv U_01 = A_11
|
|
auto D_11 = A[1][1];
|
|
auto D_11_inv = D_11;
|
|
D_11_inv.invert();
|
|
|
|
// define: z = M^-1(b - Ax)
|
|
// where: M = (D + L_A) A^-1 (D + U_A)
|
|
// lower triangular solve: (E + L) y = b - Ax
|
|
// y_0 = D_00_inv*[b_0 - (A_00*x_0 + A_01*x_1)] = D_00_inv*[b_0 - A_00*x_0]
|
|
Vector y(2);
|
|
auto rhs = b[0];
|
|
|
|
A[0][0].mmv(x[0], rhs);
|
|
D_00_inv.mv(rhs, y[0]);
|
|
|
|
// y_1 = D_11_inv*(b_1 - (A_10*x_0 + A_11*x_1) - A_10*y_0)
|
|
rhs = b[1];
|
|
A[1][1].mmv(x[1], rhs);
|
|
D_11_inv.mv(rhs, y[1]);
|
|
|
|
|
|
// upper triangular solve: (E + U) z = Ey
|
|
// z_1 = y_1
|
|
Vector z(2);
|
|
z[1] = y[1];
|
|
|
|
// z_0 = y_0 - D_00_inv*A_01*z_1 = y_0
|
|
z[0] = y[0];
|
|
|
|
// x_k+1 = x_k + z
|
|
Vector new_x = x;
|
|
new_x += z;
|
|
|
|
Dune::MultithreadDILU<Matrix, Vector, Vector> seqdilu(A);
|
|
seqdilu.apply(x, b);
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 2; ++j) {
|
|
BOOST_CHECK_CLOSE(x[i][j], new_x[i][j], 1e-7);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
BOOST_AUTO_TEST_CASE_TEMPLATE(SeqDILUDiagIsCorrect3x3, T, NumericTypes)
|
|
{
|
|
/*
|
|
Tests that the dilu decomposition mathces the expected result
|
|
for a 3x3 matrix, with block size 3x3.
|
|
|
|
A
|
|
| | 3 1 2| | 0 0 0| | 0 0 0| |
|
|
| | 2 3 1| | 0 0 0| | 0 0 0| |
|
|
| | 2 1 0| | 0 0 0| | 0 0 0| |
|
|
| |
|
|
| | 0 0 0| | 1 0 1| | 1 0 2| |
|
|
| | 0 0 0| | 4 1 0| | 0 1 1| |
|
|
| | 0 0 0| | 3 1 3| | 0 1 3| |
|
|
| |
|
|
| | 0 0 0| | 1 0 2| | 1 3 2| |
|
|
| | 0 0 0| | 0 1 4| | 2 1 3| |
|
|
| | 0 0 0| | 5 1 1| | 3 1 2| |
|
|
*/
|
|
|
|
|
|
const int N = 3;
|
|
constexpr int bz = 3;
|
|
const int nonZeroes = 5;
|
|
using Matrix = Dune::BCRSMatrix<Dune::FieldMatrix<double, bz, bz>>;
|
|
using Vector = Dune::BlockVector<Dune::FieldVector<double, bz>>;
|
|
|
|
Matrix A(N, N, nonZeroes, Matrix::row_wise);
|
|
for (auto row = A.createbegin(); row != A.createend(); ++row) {
|
|
if (row.index() == 0) {
|
|
row.insert(row.index());
|
|
} else if (row.index() == 1) {
|
|
row.insert(row.index());
|
|
row.insert(row.index() + 1);
|
|
} else if (row.index() == 2) {
|
|
row.insert(row.index() - 1);
|
|
row.insert(row.index());
|
|
}
|
|
}
|
|
|
|
A[0][0][0][0] = 3.0;
|
|
A[1][1][0][0] = 1.0;
|
|
A[1][2][0][0] = 1.0;
|
|
A[0][0][0][1] = 1.0;
|
|
A[1][1][0][1] = 0.0;
|
|
A[1][2][0][1] = 0.0;
|
|
A[0][0][0][2] = 2.0;
|
|
A[1][1][0][2] = 1.0;
|
|
A[1][2][0][2] = 2.0;
|
|
A[0][0][1][0] = 2.0;
|
|
A[1][1][1][0] = 4.0;
|
|
A[1][2][1][0] = 0.0;
|
|
A[0][0][1][1] = 3.0;
|
|
A[1][1][1][1] = 1.0;
|
|
A[1][2][1][1] = 1.0;
|
|
A[0][0][1][2] = 1.0;
|
|
A[1][1][1][2] = 0.0;
|
|
A[1][2][1][2] = 1.0;
|
|
A[0][0][2][0] = 2.0;
|
|
A[1][1][2][0] = 3.0;
|
|
A[1][2][2][0] = 0.0;
|
|
A[0][0][2][1] = 1.0;
|
|
A[1][1][2][1] = 1.0;
|
|
A[1][2][2][1] = 1.0;
|
|
A[0][0][2][2] = 0.0;
|
|
A[1][1][2][2] = 3.0;
|
|
A[1][2][2][2] = 3.0;
|
|
|
|
A[2][1][0][0] = 1.0;
|
|
A[2][2][0][0] = 1.0;
|
|
A[2][1][0][1] = 0.0;
|
|
A[2][2][0][1] = 3.0;
|
|
A[2][1][0][2] = 2.0;
|
|
A[2][2][0][2] = 2.0;
|
|
A[2][1][1][0] = 0.0;
|
|
A[2][2][1][0] = 2.0;
|
|
A[2][1][1][1] = 1.0;
|
|
A[2][2][1][1] = 1.0;
|
|
A[2][1][1][2] = 4.0;
|
|
A[2][2][1][2] = 3.0;
|
|
A[2][1][2][0] = 5.0;
|
|
A[2][2][2][0] = 3.0;
|
|
A[2][1][2][1] = 1.0;
|
|
A[2][2][2][1] = 1.0;
|
|
A[2][1][2][2] = 1.0;
|
|
A[2][2][2][2] = 2.0;
|
|
|
|
|
|
auto D_00 = A[0][0];
|
|
auto D_00_inv = D_00;
|
|
D_00_inv.invert();
|
|
// D_11 = A_11 - L_10 D_00_inv U_01 = A_11
|
|
auto D_11 = A[1][1];
|
|
auto D_11_inv = D_11;
|
|
D_11_inv.invert();
|
|
// D_22 = A_22 - A_20 D_00_inv A_02 - A_21 D_11_inv A_12 = A_22 - A_21 D_11_inv A_12
|
|
auto D_22 = A[2][2] - A[2][1] * D_11_inv * A[1][2];
|
|
auto D_22_inv = D_22;
|
|
D_22_inv.invert();
|
|
|
|
Dune::MultithreadDILU<Matrix, Vector, Vector> seqdilu(A);
|
|
auto Dinv = seqdilu.getDiagonal();
|
|
|
|
// diagonal stores inverse
|
|
auto D_00_dilu = Dinv[0];
|
|
D_00_dilu.invert();
|
|
auto D_11_dilu = Dinv[1];
|
|
D_11_dilu.invert();
|
|
auto D_22_dilu = Dinv[2];
|
|
D_22_dilu.invert();
|
|
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
BOOST_CHECK_CLOSE(D_00_dilu[i][j], D_00[i][j], 1e-7);
|
|
BOOST_CHECK_CLOSE(D_11_dilu[i][j], D_11[i][j], 1e-7);
|
|
BOOST_CHECK_CLOSE(D_22_dilu[i][j], D_22[i][j], 1e-7);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
BOOST_AUTO_TEST_CASE_TEMPLATE(SeqDILUApplyIsCorrect3, T, NumericTypes)
|
|
{
|
|
/*
|
|
Tests that applying the dilu preconditioner mathces the expected result
|
|
for a 3x3 matrix, with block size 3x3.
|
|
|
|
A x = b
|
|
| | 3 1 2| | 0 0 0| | 0 0 0| | | |1| | | |2| |
|
|
| | 2 3 1| | 0 0 0| | 0 0 0| | | |2| | | |1| |
|
|
| | 2 1 0| | 0 0 0| | 0 0 0| | | |3| | | |2| |
|
|
| | | | | |
|
|
| | 0 0 0| | 1 0 1| | 1 0 2| | | |1| | | |2| |
|
|
| | 0 0 0| | 4 1 0| | 0 1 1| | x | |3| | = | |3| |
|
|
| | 0 0 0| | 3 1 3| | 0 1 3| | | |2| | | |2| |
|
|
| | | | | |
|
|
| | 0 0 0| | 1 0 2| | 1 3 2| | | |1| | | |0| |
|
|
| | 0 0 0| | 0 1 4| | 2 1 3| | | |0| | | |2| |
|
|
| | 0 0 0| | 5 1 1| | 3 1 2| | | |2| | | |1| |
|
|
|
|
*/
|
|
|
|
const int N = 3;
|
|
constexpr int bz = 3;
|
|
const int nonZeroes = 5;
|
|
using Matrix = Dune::BCRSMatrix<Dune::FieldMatrix<double, bz, bz>>;
|
|
using Vector = Dune::BlockVector<Dune::FieldVector<double, bz>>;
|
|
|
|
Matrix A(N, N, nonZeroes, Matrix::row_wise);
|
|
for (auto row = A.createbegin(); row != A.createend(); ++row) {
|
|
if (row.index() == 0) {
|
|
row.insert(row.index());
|
|
} else if (row.index() == 1) {
|
|
row.insert(row.index());
|
|
row.insert(row.index() + 1);
|
|
} else if (row.index() == 2) {
|
|
row.insert(row.index() - 1);
|
|
row.insert(row.index());
|
|
}
|
|
}
|
|
|
|
A[0][0][0][0] = 3.0;
|
|
A[1][1][0][0] = 1.0;
|
|
A[1][2][0][0] = 1.0;
|
|
A[0][0][0][1] = 1.0;
|
|
A[1][1][0][1] = 0.0;
|
|
A[1][2][0][1] = 0.0;
|
|
A[0][0][0][2] = 2.0;
|
|
A[1][1][0][2] = 1.0;
|
|
A[1][2][0][2] = 2.0;
|
|
A[0][0][1][0] = 2.0;
|
|
A[1][1][1][0] = 4.0;
|
|
A[1][2][1][0] = 0.0;
|
|
A[0][0][1][1] = 3.0;
|
|
A[1][1][1][1] = 1.0;
|
|
A[1][2][1][1] = 1.0;
|
|
A[0][0][1][2] = 1.0;
|
|
A[1][1][1][2] = 0.0;
|
|
A[1][2][1][2] = 1.0;
|
|
A[0][0][2][0] = 2.0;
|
|
A[1][1][2][0] = 3.0;
|
|
A[1][2][2][0] = 0.0;
|
|
A[0][0][2][1] = 1.0;
|
|
A[1][1][2][1] = 1.0;
|
|
A[1][2][2][1] = 1.0;
|
|
A[0][0][2][2] = 0.0;
|
|
A[1][1][2][2] = 3.0;
|
|
A[1][2][2][2] = 3.0;
|
|
|
|
A[2][1][0][0] = 1.0;
|
|
A[2][2][0][0] = 1.0;
|
|
A[2][1][0][1] = 0.0;
|
|
A[2][2][0][1] = 3.0;
|
|
A[2][1][0][2] = 2.0;
|
|
A[2][2][0][2] = 2.0;
|
|
A[2][1][1][0] = 0.0;
|
|
A[2][2][1][0] = 2.0;
|
|
A[2][1][1][1] = 1.0;
|
|
A[2][2][1][1] = 1.0;
|
|
A[2][1][1][2] = 4.0;
|
|
A[2][2][1][2] = 3.0;
|
|
A[2][1][2][0] = 5.0;
|
|
A[2][2][2][0] = 3.0;
|
|
A[2][1][2][1] = 1.0;
|
|
A[2][2][2][1] = 1.0;
|
|
A[2][1][2][2] = 1.0;
|
|
A[2][2][2][2] = 2.0;
|
|
|
|
Vector x(3);
|
|
x[0][0] = 1.0;
|
|
x[1][0] = 1.0;
|
|
x[2][0] = 1.0;
|
|
x[0][1] = 2.0;
|
|
x[1][1] = 3.0;
|
|
x[2][1] = 0.0;
|
|
x[0][2] = 3.0;
|
|
x[1][2] = 2.0;
|
|
x[2][2] = 2.0;
|
|
|
|
Vector b(3);
|
|
b[0][0] = 2.0;
|
|
b[1][0] = 2.0;
|
|
b[2][0] = 0.0;
|
|
b[0][1] = 1.0;
|
|
b[1][1] = 3.0;
|
|
b[2][1] = 2.0;
|
|
b[0][2] = 2.0;
|
|
b[1][2] = 2.0;
|
|
b[2][2] = 1.0;
|
|
|
|
|
|
// D_00 = A_00
|
|
auto D_00 = A[0][0];
|
|
auto D_00_inv = D_00;
|
|
D_00_inv.invert();
|
|
// D_11 = A_11 - L_10 D_00_inv U_01
|
|
// = A_11
|
|
auto D_11 = A[1][1];
|
|
auto D_11_inv = D_11;
|
|
D_11_inv.invert();
|
|
// D_22 = A_22 - A_20 D_00_inv A_02 - A_21 D_11_inv A_12
|
|
// = A_22 - A_21 D_11_inv A_12
|
|
auto D_22 = A[2][2] - A[2][1] * D_11_inv * A[1][2];
|
|
auto D_22_inv = D_22;
|
|
D_22_inv.invert();
|
|
|
|
// define: z = M^-1(b - Ax)
|
|
// where: M = (D + L_A) A^-1 (D + U_A)
|
|
// lower triangular solve: (E + L) y = b - Ax
|
|
|
|
Vector y(3);
|
|
// y_0 = D_00_inv*[b_0 - (A_00*x_0 + A_01*x_1)]
|
|
// = D_00_inv*[b_0 - A_00*x_0]
|
|
auto rhs = b[0];
|
|
A[0][0].mmv(x[0], rhs);
|
|
D_00_inv.mv(rhs, y[0]);
|
|
|
|
// y_1 = D_11_inv*(b_1 - (A_10*x_0 + A_11*x_1 + A_12*x_2) - A_10*y_0)
|
|
// = D_11_inv*(b_1 - A_11*x_1)
|
|
rhs = b[1];
|
|
A[1][1].mmv(x[1], rhs);
|
|
A[1][2].mmv(x[2], rhs);
|
|
D_11_inv.mv(rhs, y[1]);
|
|
|
|
// y_2 = D_22_inv*(b_2 - (A_20*x_0 + A_21*x_1 + A_22*x_2) - (A_20*y_0 + A_21*y_1))
|
|
// = D_22_inv*(b_2 - (A_21*x_1 + A_22*x_2) - (A_21*y_1))
|
|
rhs = b[2];
|
|
A[2][1].mmv(x[1], rhs);
|
|
A[2][2].mmv(x[2], rhs);
|
|
A[2][1].mmv(y[1], rhs);
|
|
D_22_inv.mv(rhs, y[2]);
|
|
|
|
|
|
// upper triangular solve: (E + U) z = Ey
|
|
Vector z(3);
|
|
// z_2 = y_2
|
|
z[2] = y[2];
|
|
|
|
// z_1 = y_1 - D_11_inv*A_12*z_2
|
|
z[1] = y[1];
|
|
auto temp = D_11_inv * A[1][2];
|
|
temp.mmv(z[2], z[1]);
|
|
|
|
// z_0 = y_0 - D_00_inv(A_01*z_1 + A_02*z_2)
|
|
// z_0 = y_0
|
|
z[0] = y[0];
|
|
|
|
// x_k+1 = x_k + z
|
|
Vector new_x = x;
|
|
new_x += z;
|
|
|
|
Dune::MultithreadDILU<Matrix, Vector, Vector> seqdilu(A);
|
|
seqdilu.apply(x, b);
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
BOOST_CHECK_CLOSE(x[i][j], new_x[i][j], 1e-7);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
BOOST_AUTO_TEST_CASE_TEMPLATE(SeqDILUApplyIsEqualToDuneSeqILUApply, T, NumericTypes)
|
|
{
|
|
/*
|
|
Tests that applying the DILU preconditioner is equivalent to applying a ILU preconditioner
|
|
for a block diagonal matrix.
|
|
|
|
A x = b
|
|
| | 3 1| | 0 0| | | |1| | | |2| |
|
|
| | 2 1| | 0 0| | | |2| | | |1| |
|
|
| | x | | = | |
|
|
| | 0 0| |-1 0| | | |1| | | |3| |
|
|
| | 0 0| | 0 -1| | | |1| | | |4| |
|
|
*/
|
|
|
|
const int N = 2;
|
|
constexpr int bz = 2;
|
|
const int nonZeroes = 2;
|
|
using Matrix = Dune::BCRSMatrix<Dune::FieldMatrix<double, bz, bz>>;
|
|
using Vector = Dune::BlockVector<Dune::FieldVector<double, bz>>;
|
|
|
|
Matrix A(N, N, nonZeroes, Matrix::row_wise);
|
|
for (auto row = A.createbegin(); row != A.createend(); ++row) {
|
|
row.insert(row.index());
|
|
}
|
|
|
|
A[0][0][0][0] = 3.0;
|
|
A[0][0][0][1] = 1.0;
|
|
A[0][0][1][0] = 2.0;
|
|
A[0][0][1][1] = 1.0;
|
|
|
|
A[1][1][0][0] = -1.0;
|
|
A[1][1][1][1] = -1.0;
|
|
|
|
|
|
Dune::MultithreadDILU<Matrix, Vector, Vector> seqdilu(A);
|
|
Dune::SeqILU<Matrix, Vector, Vector> seqilu(A, 1.0);
|
|
|
|
Vector dilu_x(2);
|
|
dilu_x[0][0] = 1.0;
|
|
dilu_x[0][1] = 2.0;
|
|
dilu_x[1][0] = 1.0;
|
|
dilu_x[1][1] = 1.0;
|
|
|
|
Vector dilu_b(2);
|
|
dilu_b[0][0] = 2.0;
|
|
dilu_b[0][1] = 1.0;
|
|
dilu_b[1][0] = 3.0;
|
|
dilu_b[1][1] = 4.0;
|
|
|
|
Vector ilu_x(2);
|
|
ilu_x[0][0] = 1.0;
|
|
ilu_x[0][1] = 2.0;
|
|
ilu_x[1][0] = 1.0;
|
|
ilu_x[1][1] = 1.0;
|
|
|
|
Vector ilu_b(2);
|
|
ilu_b[0][0] = 2.0;
|
|
ilu_b[0][1] = 1.0;
|
|
ilu_b[1][0] = 3.0;
|
|
ilu_b[1][1] = 4.0;
|
|
|
|
seqdilu.apply(dilu_x, dilu_b);
|
|
seqilu.apply(ilu_x, ilu_b);
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 2; ++j) {
|
|
BOOST_CHECK_CLOSE(dilu_x[i][j], ilu_x[i][j], 1e-7);
|
|
}
|
|
}
|
|
}
|