mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-27 03:30:17 -06:00
46071d5e82
this is done by simply making these variables const references. these were overlooked in the big opm-parser pointer-to-references-spree...
304 lines
13 KiB
C++
304 lines
13 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/**
|
|
* \file
|
|
*
|
|
* \copydoc Ewoms::EclEquilInitializer
|
|
*/
|
|
#ifndef EWOMS_ECL_EQUIL_INITIALIZER_HH
|
|
#define EWOMS_ECL_EQUIL_INITIALIZER_HH
|
|
|
|
#include <ewoms/common/propertysystem.hh>
|
|
|
|
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
|
|
|
// the ordering of these includes matters. do not touch it if you're not prepared to deal
|
|
// with some trouble!
|
|
#include <dune/grid/cpgrid/GridHelpers.hpp>
|
|
#include <opm/core/props/BlackoilPropertiesFromDeck.hpp>
|
|
#include <opm/core/simulator/initStateEquil.hpp>
|
|
#include <opm/core/simulator/BlackoilState.hpp>
|
|
|
|
#include <vector>
|
|
|
|
namespace Ewoms {
|
|
namespace Properties {
|
|
NEW_PROP_TAG(Simulator);
|
|
NEW_PROP_TAG(FluidSystem);
|
|
NEW_PROP_TAG(GridView);
|
|
NEW_PROP_TAG(Scalar);
|
|
NEW_PROP_TAG(MaterialLaw);
|
|
NEW_PROP_TAG(EnableSwatinit);
|
|
}
|
|
|
|
/*!
|
|
* \ingroup EclBlackOilSimulator
|
|
*
|
|
* \brief Computes the initial condition based on the EQUIL keyword from ECL.
|
|
*
|
|
* So far, it uses the "initStateEquil()" function from opm-core. Since this method is
|
|
* very much glued into the opm-core data structures, it should be reimplemented in the
|
|
* medium to long term for some significant memory savings and less significant
|
|
* performance improvements.
|
|
*/
|
|
template <class TypeTag>
|
|
class EclEquilInitializer
|
|
{
|
|
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
|
|
|
typedef Opm::CompositionalFluidState<Scalar, FluidSystem> ScalarFluidState;
|
|
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
|
|
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
|
|
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
|
|
|
|
enum { numComponents = FluidSystem::numComponents };
|
|
enum { oilCompIdx = FluidSystem::oilCompIdx };
|
|
enum { gasCompIdx = FluidSystem::gasCompIdx };
|
|
enum { waterCompIdx = FluidSystem::waterCompIdx };
|
|
|
|
enum { dimWorld = GridView::dimensionworld };
|
|
|
|
public:
|
|
template <class MaterialLawManager>
|
|
EclEquilInitializer(const Simulator& simulator,
|
|
std::shared_ptr<MaterialLawManager> materialLawManager)
|
|
: simulator_(simulator)
|
|
{
|
|
const auto& gridManager = simulator.gridManager();
|
|
const auto& deck = gridManager.deck();
|
|
const auto& eclState = gridManager.eclState();
|
|
const auto& equilGrid = gridManager.equilGrid();
|
|
|
|
unsigned numElems = gridManager.grid().size(0);
|
|
unsigned numEquilElems = gridManager.equilGrid().size(0);
|
|
unsigned numCartesianElems = gridManager.cartesianSize();
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef Opm::ThreePhaseMaterialTraits<double,
|
|
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
|
|
/*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
|
|
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx> EquilTraits;
|
|
|
|
// create a separate instance of the material law manager just because opm-core
|
|
// only supports double as the type for scalars (but ebos may use float or quad)
|
|
std::vector<int> compressedToCartesianEquilElemIdx(numEquilElems);
|
|
std::vector<int> equilCartesianToCompressed( gridManager.equilCartesianSize(), -1 );
|
|
|
|
for (unsigned equilElemIdx = 0; equilElemIdx < numEquilElems; ++equilElemIdx)
|
|
{
|
|
unsigned int equilCartesianIdx = gridManager.equilCartesianIndex(equilElemIdx);
|
|
compressedToCartesianEquilElemIdx[equilElemIdx] = equilCartesianIdx;
|
|
equilCartesianToCompressed[ equilCartesianIdx ] = equilElemIdx;
|
|
}
|
|
|
|
auto equilMaterialLawManager =
|
|
std::make_shared<Opm::EclMaterialLawManager<EquilTraits> >();
|
|
equilMaterialLawManager->initFromDeck(deck, eclState, compressedToCartesianEquilElemIdx);
|
|
|
|
// create the data structures which are used by initStateEquil()
|
|
Opm::parameter::ParameterGroup tmpParam;
|
|
Opm::BlackoilPropertiesFromDeck opmBlackoilProps(
|
|
gridManager.deck(),
|
|
gridManager.eclState(),
|
|
equilMaterialLawManager,
|
|
Opm::UgGridHelpers::numCells(equilGrid),
|
|
Opm::UgGridHelpers::globalCell(equilGrid),
|
|
Opm::UgGridHelpers::cartDims(equilGrid),
|
|
tmpParam);
|
|
|
|
// initialize the boiler plate of opm-core the state structure.
|
|
const auto opmPhaseUsage = opmBlackoilProps.phaseUsage();
|
|
Opm::BlackoilState opmBlackoilState(numEquilElems,
|
|
/*numFaces=*/0, // we don't care here
|
|
opmPhaseUsage.num_phases);
|
|
|
|
// do the actual computation.
|
|
Opm::initStateEquil(equilGrid,
|
|
opmBlackoilProps,
|
|
gridManager.deck(),
|
|
gridManager.eclState(),
|
|
simulator.problem().gravity()[dimWorld - 1],
|
|
opmBlackoilState);
|
|
|
|
std::vector<int> localToEquilIndex( numElems, -1 );
|
|
for( unsigned int elemIdx = 0; elemIdx < numElems; ++elemIdx )
|
|
{
|
|
const int cartesianIndex = gridManager.cartesianIndex( elemIdx );
|
|
assert( equilCartesianToCompressed[ cartesianIndex ] >= 0 );
|
|
localToEquilIndex[ elemIdx ] = equilCartesianToCompressed[ cartesianIndex ];
|
|
}
|
|
|
|
// copy the result into the array of initial fluid states
|
|
initialFluidStates_.resize(numCartesianElems);
|
|
for (unsigned int elemIdx = 0; elemIdx < numElems; ++elemIdx) {
|
|
unsigned cartesianElemIdx = gridManager.cartesianIndex(elemIdx);
|
|
auto& fluidState = initialFluidStates_[cartesianElemIdx];
|
|
|
|
const unsigned int equilElemIdx = localToEquilIndex[ elemIdx ];
|
|
|
|
// get the PVT region index of the current element
|
|
unsigned regionIdx = simulator_.problem().pvtRegionIndex(elemIdx);
|
|
|
|
// set the phase saturations
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
Scalar S;
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
S = 0.0;
|
|
else {
|
|
unsigned opmPhasePos = 10000;
|
|
switch (phaseIdx) {
|
|
case oilPhaseIdx:
|
|
opmPhasePos = opmPhaseUsage.phase_pos[Opm::BlackoilPhases::Liquid];
|
|
break;
|
|
|
|
case gasPhaseIdx:
|
|
opmPhasePos = opmPhaseUsage.phase_pos[Opm::BlackoilPhases::Vapour];
|
|
break;
|
|
|
|
case waterPhaseIdx:
|
|
opmPhasePos = opmPhaseUsage.phase_pos[Opm::BlackoilPhases::Aqua];
|
|
break;
|
|
}
|
|
S = opmBlackoilState.saturation()[equilElemIdx*opmPhaseUsage.num_phases
|
|
+ opmPhasePos];
|
|
}
|
|
fluidState.setSaturation(phaseIdx, S);
|
|
}
|
|
|
|
// set the temperature
|
|
const auto& temperatureVector = opmBlackoilState.temperature();
|
|
Scalar T = FluidSystem::surfaceTemperature;
|
|
if (!temperatureVector.empty())
|
|
T = temperatureVector[equilElemIdx];
|
|
fluidState.setTemperature(T);
|
|
|
|
// set the phase pressures. the Opm::BlackoilState only provides the oil
|
|
// phase pressure, so we need to calculate the other phases' pressures
|
|
// ourselfs.
|
|
Dune::FieldVector< Scalar, numPhases > pC( 0 );
|
|
const auto& matParams = simulator.problem().materialLawParams(elemIdx);
|
|
MaterialLaw::capillaryPressures(pC, matParams, fluidState);
|
|
Scalar po = opmBlackoilState.pressure()[equilElemIdx];
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
fluidState.setPressure(phaseIdx, po + (pC[phaseIdx] - pC[oilPhaseIdx]));
|
|
|
|
// reset the phase compositions
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
|
|
fluidState.setMoleFraction(phaseIdx, compIdx, 0.0);
|
|
|
|
// the composition of the water phase is simple: it only consists of the
|
|
// water component.
|
|
fluidState.setMoleFraction(waterPhaseIdx, waterCompIdx, 1.0);
|
|
|
|
if (FluidSystem::enableDissolvedGas()) {
|
|
// for gas and oil we have to translate surface volumes to mole fractions
|
|
// before we can set the composition in the fluid state
|
|
Scalar Rs = opmBlackoilState.gasoilratio()[equilElemIdx];
|
|
Scalar RsSat = FluidSystem::saturatedDissolutionFactor(fluidState, oilPhaseIdx, regionIdx);
|
|
|
|
if (Rs > RsSat)
|
|
Rs = RsSat;
|
|
|
|
// convert the Rs factor to mole fraction dissolved gas in oil
|
|
Scalar XoG = FluidSystem::convertRsToXoG(Rs, regionIdx);
|
|
Scalar xoG = FluidSystem::convertXoGToxoG(XoG, regionIdx);
|
|
|
|
fluidState.setMoleFraction(oilPhaseIdx, oilCompIdx, 1 - xoG);
|
|
fluidState.setMoleFraction(oilPhaseIdx, gasCompIdx, xoG);
|
|
}
|
|
|
|
// retrieve the surface volume of vaporized gas
|
|
if (FluidSystem::enableVaporizedOil()) {
|
|
Scalar Rv = opmBlackoilState.rv()[equilElemIdx];
|
|
Scalar RvSat = FluidSystem::saturatedDissolutionFactor(fluidState, gasPhaseIdx, regionIdx);
|
|
|
|
if (Rv > RvSat)
|
|
Rv = RvSat;
|
|
|
|
// convert the Rs factor to mole fraction dissolved gas in oil
|
|
Scalar XgO = FluidSystem::convertRvToXgO(Rv, regionIdx);
|
|
Scalar xgO = FluidSystem::convertXgOToxgO(XgO, regionIdx);
|
|
|
|
fluidState.setMoleFraction(gasPhaseIdx, oilCompIdx, xgO);
|
|
fluidState.setMoleFraction(gasPhaseIdx, gasCompIdx, 1 - xgO);
|
|
}
|
|
}
|
|
|
|
// deal with the capillary pressure modification due to SWATINIT. this is
|
|
// only necessary because, the fine equilibration code from opm-core requires
|
|
// its own grid and its own material law manager...
|
|
if (GET_PROP_VALUE(TypeTag, EnableSwatinit)) {
|
|
std::vector<int> cartesianToCompressedElemIdx(numCartesianElems, -1);
|
|
for (unsigned elemIdx = 0; elemIdx < numElems; ++elemIdx) {
|
|
int cartElemIdx = gridManager.cartesianIndex(elemIdx);
|
|
cartesianToCompressedElemIdx[cartElemIdx] = elemIdx;
|
|
}
|
|
|
|
for (unsigned equilElemIdx = 0; equilElemIdx < numEquilElems; ++equilElemIdx) {
|
|
int cartElemIdx = gridManager.equilCartesianIndex(equilElemIdx);
|
|
assert(cartElemIdx >= 0);
|
|
int elemIdx = cartesianToCompressedElemIdx[cartElemIdx];
|
|
if (elemIdx < 0)
|
|
// the element is present in the grid for used for equilibration but
|
|
// it isn't present in the one used for the simulation. the most
|
|
// probable reason for this is that the simulation grid was load
|
|
// balanced.
|
|
continue;
|
|
|
|
auto& scalingPoints = materialLawManager->oilWaterScaledEpsPointsDrainage(elemIdx);
|
|
const auto& equilScalingPoints = equilMaterialLawManager->oilWaterScaledEpsPointsDrainage(equilElemIdx);
|
|
|
|
scalingPoints.setMaxPcnw(equilScalingPoints.maxPcnw());
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Return the initial thermodynamic state which should be used as the initial
|
|
* condition.
|
|
*
|
|
* This is supposed to correspond to hydrostatic conditions.
|
|
*/
|
|
const ScalarFluidState& initialFluidState(unsigned elemIdx) const
|
|
{
|
|
const auto& gridManager = simulator_.gridManager();
|
|
|
|
unsigned cartesianElemIdx = gridManager.cartesianIndex(elemIdx);
|
|
return initialFluidStates_[cartesianElemIdx];
|
|
}
|
|
|
|
protected:
|
|
const Simulator& simulator_;
|
|
|
|
std::vector<ScalarFluidState> initialFluidStates_;
|
|
};
|
|
} // namespace Ewoms
|
|
|
|
#endif
|