opm-simulators/ebos/ecltransmissibility.hh
Andreas Lauser 5067ce2f27 ebos: use the transmissibilities as edge weights for load balancing
this makes creating the grid a bit slower because the
transmissibilities need to be calculated twice: once for the
sequential grid and once for the distributed one. while corresponds to
the way `flow_legacy` does the load balancing and it should allow
better results, this does not seem to be the case for the Norne deck
if ZOLTAN is not available:

After loadbalancing process 3 has 4413 cells.
After loadbalancing process 2 has 12390 cells.
After loadbalancing process 0 has 13629 cells.
After loadbalancing process 1 has 21253 cells.

i.e., process 1 is responsible for almost 5 as many cells as process
3.
2016-12-07 20:24:48 +01:00

409 lines
16 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Ewoms::EclTransmissibility
*/
#ifndef EWOMS_ECL_TRANSMISSIBILITY_HH
#define EWOMS_ECL_TRANSMISSIBILITY_HH
#include <ewoms/common/propertysystem.hh>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/Grid/GridProperties.hpp>
#include <opm/parser/eclipse/EclipseState/Grid/FaceDir.hpp>
#include <opm/parser/eclipse/EclipseState/Grid/TransMult.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/common/Exceptions.hpp>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <array>
#include <vector>
#include <unordered_map>
namespace Ewoms {
namespace Properties {
NEW_PROP_TAG(GridView);
NEW_PROP_TAG(Scalar);
NEW_PROP_TAG(GridManager);
NEW_PROP_TAG(ElementMapper);
}
/*!
* \ingroup EclBlackOilSimulator
*
* \brief This class calculates the transmissibilites for grid faces according to the
* Eclipse Technical Description.
*/
template <class TypeTag>
class EclTransmissibility
{
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, GridManager) GridManager;
typedef typename GET_PROP_TYPE(TypeTag, ElementMapper) ElementMapper;
typedef typename GridView::Intersection Intersection;
// Grid and world dimension
enum { dimWorld = GridView::dimensionworld };
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
public:
EclTransmissibility(const GridManager& gridManager)
: gridManager_(gridManager)
{}
/*!
* \brief Actually compute the transmissibilty over a face as a pre-compute step.
*
* This code actually uses the direction specific "centroids" of
* each element. These "centroids" are _not_ the identical
* barycenter of the element, but the middle of the centers of the
* faces of the logical Cartesian cells, i.e., the centers of the
* faces of the reference elements. We do things this way because
* the barycenter of the element can be located outside of the
* element for sufficiently "ugly" (i.e., thin and "non-flat")
* elements which in turn leads to quite wrong
* permeabilities. This approach is probably not always correct
* either but at least it seems to be much better.
*/
void finishInit()
{ update(); }
void update()
{
const auto& gridView = gridManager_.gridView();
const auto& cartMapper = gridManager_.cartesianIndexMapper();
const auto& eclState = gridManager_.eclState();
const auto& eclGrid = eclState.getInputGrid();
auto& transMult = eclState.getTransMult();
ElementMapper elemMapper(gridView);
const std::vector<double>& ntg =
eclState.get3DProperties().getDoubleGridProperty("NTG").getData();
unsigned numElements = elemMapper.size();
extractPermeability_(eclState);
// calculate the axis specific centroids of all elements
std::array<std::vector<DimVector>, dimWorld> axisCentroids;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
axisCentroids[dimIdx].resize(numElements);
auto elemIt = gridView.template begin</*codim=*/ 0>();
const auto& elemEndIt = gridView.template end</*codim=*/ 0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2,4)
unsigned elemIdx = elemMapper.index(elem);
#else
unsigned elemIdx = elemMapper.map(elem);
#endif
// compute the axis specific "centroids" used for the transmissibilities. for
// consistency with the flow simulator, we use the element centers as
// computed by opm-parser's Opm::EclipseGrid class for all axes.
unsigned cartesianCellIdx = cartMapper.cartesianIndex(elemIdx);
const auto& centroid = eclGrid.getCellCenter(cartesianCellIdx);
for (unsigned axisIdx = 0; axisIdx < dimWorld; ++axisIdx)
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
axisCentroids[axisIdx][elemIdx][dimIdx] = centroid[dimIdx];
}
// reserving some space in the hashmap upfront saves quite a bit of time because
// resizes are costly for hashmaps and there would be quite a few of them if we
// would not have a rough idea of how large the final map will be (the rough idea
// is a conforming Cartesian grid).
trans_.clear();
trans_.reserve(numElements*3*1.05);
// compute the transmissibilities for all intersections
elemIt = gridView.template begin</*codim=*/ 0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
auto isIt = gridView.ibegin(elem);
const auto& isEndIt = gridView.iend(elem);
for (; isIt != isEndIt; ++ isIt) {
// store intersection, this might be costly
const auto& intersection = *isIt;
// ignore boundary intersections for now (TODO?)
// continue if no neighbor is present
if ( ! intersection.neighbor() )
continue;
const auto& inside = intersection.inside();
const auto& outside = intersection.outside();
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2,4)
unsigned insideElemIdx = elemMapper.index(inside);
unsigned outsideElemIdx = elemMapper.index(outside);
#else
unsigned insideElemIdx = elemMapper.map(*inside);
unsigned outsideElemIdx = elemMapper.map(*outside);
#endif
// we only need to calculate a face's transmissibility
// once...
if (insideElemIdx > outsideElemIdx)
continue;
unsigned insideCartElemIdx = cartMapper.cartesianIndex(insideElemIdx);
unsigned outsideCartElemIdx = cartMapper.cartesianIndex(outsideElemIdx);
// local indices of the faces of the inside and
// outside elements which contain the intersection
unsigned insideFaceIdx = intersection.indexInInside();
unsigned outsideFaceIdx = intersection.indexInOutside();
Scalar halfTrans1;
Scalar halfTrans2;
computeHalfTrans_(halfTrans1,
intersection,
insideFaceIdx,
distanceVector_(intersection,
intersection.indexInInside(),
insideElemIdx,
axisCentroids),
permeability_[insideElemIdx]);
computeHalfTrans_(halfTrans2,
intersection,
outsideFaceIdx,
distanceVector_(intersection,
intersection.indexInOutside(),
outsideElemIdx,
axisCentroids),
permeability_[outsideElemIdx]);
applyNtg_(halfTrans1, insideFaceIdx, insideCartElemIdx, ntg);
applyNtg_(halfTrans2, outsideFaceIdx, outsideCartElemIdx, ntg);
// convert half transmissibilities to full face
// transmissibilities using the harmonic mean
Scalar trans;
if (std::abs(halfTrans1) < 1e-30 || std::abs(halfTrans2) < 1e-30)
// avoid division by zero
trans = 0.0;
else
trans = 1.0 / (1.0/halfTrans1 + 1.0/halfTrans2);
// apply the full face transmissibility multipliers
// for the inside ...
applyMultipliers_(trans, insideFaceIdx, insideCartElemIdx, transMult);
// ... and outside elements
applyMultipliers_(trans, outsideFaceIdx, outsideCartElemIdx, transMult);
// apply the region multipliers (cf. the MULTREGT keyword)
Opm::FaceDir::DirEnum faceDir;
switch (insideFaceIdx) {
case 0:
case 1:
faceDir = Opm::FaceDir::XPlus;
break;
case 2:
case 3:
faceDir = Opm::FaceDir::YPlus;
break;
case 4:
case 5:
faceDir = Opm::FaceDir::ZPlus;
break;
default:
OPM_THROW(std::logic_error, "Could not determine a face direction");
}
trans *= transMult.getRegionMultiplier(insideCartElemIdx,
outsideCartElemIdx,
faceDir);
trans_[isId_(insideElemIdx, outsideElemIdx)] = trans;
}
}
}
const DimMatrix& permeability(unsigned elemIdx) const
{ return permeability_[elemIdx]; }
Scalar transmissibility(unsigned elemIdx1, unsigned elemIdx2) const
{ return trans_.at(isId_(elemIdx1, elemIdx2)); }
private:
void extractPermeability_(const Opm::EclipseState& eclState)
{
const auto& props = gridManager_.eclState().get3DProperties();
unsigned numElem = gridManager_.gridView().size(/*codim=*/0);
permeability_.resize(numElem);
// read the intrinsic permeabilities from the eclState. Note that all arrays
// provided by eclState are one-per-cell of "uncompressed" grid, whereas the
// simulation grid might remove a few elements. (e.g. because it is distributed
// over several processes.)
if (props.hasDeckDoubleGridProperty("PERMX")) {
const std::vector<double>& permxData =
props.getDoubleGridProperty("PERMX").getData();
std::vector<double> permyData(permxData);
if (props.hasDeckDoubleGridProperty("PERMY"))
permyData = props.getDoubleGridProperty("PERMY").getData();
std::vector<double> permzData(permxData);
if (props.hasDeckDoubleGridProperty("PERMZ"))
permzData = props.getDoubleGridProperty("PERMZ").getData();
for (size_t dofIdx = 0; dofIdx < numElem; ++ dofIdx) {
unsigned cartesianElemIdx = gridManager_.cartesianIndex(dofIdx);
permeability_[dofIdx] = 0.0;
permeability_[dofIdx][0][0] = permxData[cartesianElemIdx];
permeability_[dofIdx][1][1] = permyData[cartesianElemIdx];
permeability_[dofIdx][2][2] = permzData[cartesianElemIdx];
}
// for now we don't care about non-diagonal entries
}
else
OPM_THROW(std::logic_error,
"Can't read the intrinsic permeability from the ecl state. "
"(The PERM{X,Y,Z} keywords are missing)");
}
std::uint64_t isId_(unsigned elemIdx1, unsigned elemIdx2) const
{
static const unsigned elemIdxShift = 32; // bits
unsigned elemAIdx = std::min(elemIdx1, elemIdx2);
std::uint64_t elemBIdx = std::max(elemIdx1, elemIdx2);
return (elemBIdx<<elemIdxShift) + elemAIdx;
}
void computeHalfTrans_(Scalar& halfTrans,
const Intersection& is,
unsigned faceIdx, // in the reference element that contains the intersection
const DimVector& distance,
const DimMatrix& perm) const
{
Scalar isArea = is.geometry().volume();
DimVector n = is.centerUnitOuterNormal();
n *= isArea;
unsigned dimIdx = faceIdx/2;
assert(dimIdx < dimWorld);
halfTrans = perm[dimIdx][dimIdx];
//halfTrans *= isArea;
Scalar val = 0;
for (unsigned i = 0; i < n.size(); ++i)
val += n[i]*distance[i];
halfTrans *= std::abs<Scalar>(val);
halfTrans /= distance.two_norm2();
}
DimVector distanceVector_(const Intersection& is,
unsigned faceIdx, // in the reference element that contains the intersection
unsigned elemIdx,
const std::array<std::vector<DimVector>, dimWorld>& axisCentroids) const
{
unsigned dimIdx = faceIdx/2;
assert(dimIdx < dimWorld);
DimVector x = is.geometry().center();
x -= axisCentroids[dimIdx][elemIdx];
return x;
}
void applyMultipliers_(Scalar& trans, unsigned faceIdx, unsigned cartElemIdx,
const Opm::TransMult& transMult) const
{
// apply multiplyer for the transmissibility of the face. (the
// face index is the index of the reference-element face which
// contains the intersection of interest.)
switch (faceIdx) {
case 0: // left
trans *= transMult.getMultiplier(cartElemIdx, Opm::FaceDir::XMinus);
break;
case 1: // right
trans *= transMult.getMultiplier(cartElemIdx, Opm::FaceDir::XPlus);
break;
case 2: // front
trans *= transMult.getMultiplier(cartElemIdx, Opm::FaceDir::YMinus);
break;
case 3: // back
trans *= transMult.getMultiplier(cartElemIdx, Opm::FaceDir::YPlus);
break;
case 4: // bottom
trans *= transMult.getMultiplier(cartElemIdx, Opm::FaceDir::ZMinus);
break;
case 5: // top
trans *= transMult.getMultiplier(cartElemIdx, Opm::FaceDir::ZPlus);
break;
}
}
void applyNtg_(Scalar& trans, unsigned faceIdx, unsigned cartElemIdx,
const std::vector<double>& ntg) const
{
// apply multiplyer for the transmissibility of the face. (the
// face index is the index of the reference-element face which
// contains the intersection of interest.)
switch (faceIdx) {
case 0: // left
trans *= ntg[cartElemIdx];
break;
case 1: // right
trans *= ntg[cartElemIdx];
break;
case 2: // front
trans *= ntg[cartElemIdx];
break;
case 3: // back
trans *= ntg[cartElemIdx];
break;
// NTG does not apply to top and bottom faces
}
}
const GridManager& gridManager_;
std::vector<DimMatrix> permeability_;
std::unordered_map<std::uint64_t, Scalar> trans_;
};
} // namespace Ewoms
#endif