mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-05 05:54:58 -06:00
541 lines
20 KiB
C++
541 lines
20 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::co2ptflashproblem
|
|
*/
|
|
#ifndef OPM_CO2PTFLASH_PROBLEM_HH
|
|
#define OPM_CO2PTFLASH_PROBLEM_HH
|
|
|
|
#include <opm/common/Exceptions.hpp>
|
|
|
|
#include <opm/material/components/SimpleCO2.hpp>
|
|
#include <opm/material/components/C10.hpp>
|
|
#include <opm/material/components/C1.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/BrooksCorey.hpp>
|
|
#include <opm/material/constraintsolvers/PTFlash.hpp>
|
|
#include <opm/material/fluidsystems/GenericOilGasFluidSystem.hpp>
|
|
#include <opm/material/common/Valgrind.hpp>
|
|
#include <opm/models/immiscible/immisciblemodel.hh>
|
|
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
|
|
#include <opm/models/ptflash/flashmodel.hh>
|
|
#include <opm/models/io/structuredgridvanguard.hh>
|
|
#include <opm/models/utils/propertysystem.hh>
|
|
#include <opm/models/utils/start.hh>
|
|
#include <opm/simulators/linalg/parallelistlbackend.hh>
|
|
#include <opm/simulators/linalg/parallelbicgstabbackend.hh>
|
|
#include <dune/grid/yaspgrid.hh>
|
|
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
|
|
#include <dune/common/version.hh>
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
#include <sstream>
|
|
#include <string>
|
|
|
|
namespace Opm {
|
|
template <class TypeTag>
|
|
class CO2PTProblem;
|
|
} // namespace Opm */
|
|
|
|
namespace Opm::Properties {
|
|
|
|
namespace TTag {
|
|
struct CO2PTBaseProblem {};
|
|
} // end namespace TTag
|
|
|
|
template <class TypeTag, class MyTypeTag>
|
|
struct NumComp { using type = UndefinedProperty; };
|
|
|
|
template <class TypeTag>
|
|
struct NumComp<TypeTag, TTag::CO2PTBaseProblem> {
|
|
static constexpr int value = 3;
|
|
};
|
|
|
|
// Set the grid type: --->2D
|
|
template <class TypeTag>
|
|
struct Grid<TypeTag, TTag::CO2PTBaseProblem> { using type = Dune::YaspGrid</*dim=*/2>; };
|
|
|
|
// Set the problem property
|
|
template <class TypeTag>
|
|
struct Problem<TypeTag, TTag::CO2PTBaseProblem>
|
|
{ using type = Opm::CO2PTProblem<TypeTag>; };
|
|
|
|
// Set flash solver
|
|
template <class TypeTag>
|
|
struct FlashSolver<TypeTag, TTag::CO2PTBaseProblem> {
|
|
private:
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
|
|
public:
|
|
using type = Opm::PTFlash<Scalar, FluidSystem>;
|
|
};
|
|
|
|
// Set fluid configuration
|
|
template <class TypeTag>
|
|
struct FluidSystem<TypeTag, TTag::CO2PTBaseProblem>
|
|
{
|
|
private:
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
static constexpr int num_comp = getPropValue<TypeTag, Properties::NumComp>();
|
|
|
|
public:
|
|
using type = Opm::GenericOilGasFluidSystem<Scalar, num_comp>;
|
|
};
|
|
|
|
// Set the material Law
|
|
template <class TypeTag>
|
|
struct MaterialLaw<TypeTag, TTag::CO2PTBaseProblem> {
|
|
private:
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
|
|
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
|
|
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Traits = Opm::TwoPhaseMaterialTraits<Scalar,
|
|
// /*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx, // TODO
|
|
/*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
|
|
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx>;
|
|
|
|
// define the material law which is parameterized by effective saturation
|
|
using EffMaterialLaw = Opm::NullMaterial<Traits>;
|
|
//using EffMaterialLaw = Opm::BrooksCorey<Traits>;
|
|
|
|
public:
|
|
using type = EffMaterialLaw;
|
|
};
|
|
|
|
// mesh grid
|
|
template <class TypeTag>
|
|
struct Vanguard<TypeTag, TTag::CO2PTBaseProblem> {
|
|
using type = Opm::StructuredGridVanguard<TypeTag>;
|
|
};
|
|
|
|
template <class TypeTag>
|
|
struct EnableEnergy<TypeTag, TTag::CO2PTBaseProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
|
|
} // namespace Opm::Properties
|
|
|
|
namespace Opm::Parameters {
|
|
|
|
// this is kinds of telling the report step length
|
|
template<class Scalar>
|
|
struct EpisodeLength { static constexpr Scalar value = 0.1 * 60. * 60.; };
|
|
|
|
template<class Scalar>
|
|
struct Initialpressure { static constexpr Scalar value = 75e5; };
|
|
|
|
struct SimulationName { static constexpr auto value = "co2_ptflash"; };
|
|
|
|
// set the defaults for the problem specific properties
|
|
template<class Scalar>
|
|
struct Temperature { static constexpr Scalar value = 423.25; };
|
|
|
|
} // namespace Opm::Parameters
|
|
|
|
namespace Opm {
|
|
/*!
|
|
* \ingroup TestProblems
|
|
*
|
|
* \brief 3 component simple testproblem with ["CO2", "C1", "C10"]
|
|
*
|
|
*/
|
|
template <class TypeTag>
|
|
class CO2PTProblem : public GetPropType<TypeTag, Properties::BaseProblem>
|
|
{
|
|
using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;
|
|
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
enum { dim = GridView::dimension };
|
|
enum { dimWorld = GridView::dimensionworld };
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
|
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
|
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
|
|
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using Model = GetPropType<TypeTag, Properties::Model>;
|
|
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
|
|
|
|
using Toolbox = Opm::MathToolbox<Evaluation>;
|
|
using CoordScalar = typename GridView::ctype;
|
|
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
|
|
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
|
|
enum { conti0EqIdx = Indices::conti0EqIdx };
|
|
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
|
|
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
|
|
enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
|
|
|
|
using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
|
|
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
|
|
using DimVector = Dune::FieldVector<Scalar, dimWorld>;
|
|
using ComponentVector = Dune::FieldVector<Evaluation, numComponents>;
|
|
using FlashSolver = GetPropType<TypeTag, Properties::FlashSolver>;
|
|
|
|
public:
|
|
using FluidState = Opm::CompositionalFluidState<Evaluation, FluidSystem, enableEnergy>;
|
|
/*!
|
|
* \copydoc Doxygen::defaultProblemConstructor
|
|
*/
|
|
explicit CO2PTProblem(Simulator& simulator)
|
|
: ParentType(simulator)
|
|
{
|
|
const Scalar epi_len = Parameters::Get<Parameters::EpisodeLength<Scalar>>();
|
|
simulator.setEpisodeLength(epi_len);
|
|
FluidSystem::init();
|
|
using CompParm = typename FluidSystem::ComponentParam;
|
|
using CO2 = Opm::SimpleCO2<Scalar>;
|
|
using C1 = Opm::C1<Scalar>;
|
|
using C10 = Opm::C10<Scalar>;
|
|
FluidSystem::addComponent(CompParm {CO2::name(), CO2::molarMass(), CO2::criticalTemperature(),
|
|
CO2::criticalPressure(), CO2::criticalVolume(), CO2::acentricFactor()});
|
|
FluidSystem::addComponent(CompParm {C1::name(), C1::molarMass(), C1::criticalTemperature(),
|
|
C1::criticalPressure(), C1::criticalVolume(), C1::acentricFactor()});
|
|
FluidSystem::addComponent(CompParm{C10::name(), C10::molarMass(), C10::criticalTemperature(),
|
|
C10::criticalPressure(), C10::criticalVolume(), C10::acentricFactor()});
|
|
// FluidSystem::add
|
|
}
|
|
|
|
void initPetrophysics()
|
|
{
|
|
temperature_ = Parameters::Get<Parameters::Temperature<Scalar>>();
|
|
K_ = this->toDimMatrix_(9.869232667160131e-14);
|
|
|
|
porosity_ = 0.1;
|
|
}
|
|
|
|
template <class Context>
|
|
const DimVector&
|
|
gravity([[maybe_unused]]const Context& context,
|
|
[[maybe_unused]] unsigned spaceIdx,
|
|
[[maybe_unused]] unsigned timeIdx) const
|
|
{
|
|
return gravity();
|
|
}
|
|
|
|
const DimVector& gravity() const
|
|
{
|
|
return gravity_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::finishInit
|
|
*/
|
|
void finishInit()
|
|
{
|
|
ParentType::finishInit();
|
|
// initialize fixed parameters; temperature, permeability, porosity
|
|
initPetrophysics();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc co2ptflashproblem::registerParameters
|
|
*/
|
|
static void registerParameters()
|
|
{
|
|
ParentType::registerParameters();
|
|
|
|
Parameters::Register<Parameters::Temperature<Scalar>>
|
|
("The temperature [K] in the reservoir");
|
|
Parameters::Register<Parameters::Initialpressure<Scalar>>
|
|
("The initial pressure [Pa s] in the reservoir");
|
|
Parameters::Register<Parameters::SimulationName>
|
|
("The name of the simulation used for the output files");
|
|
Parameters::Register<Parameters::EpisodeLength<Scalar>>
|
|
("Time interval [s] for episode length");
|
|
|
|
Parameters::SetDefault<Parameters::CellsX>(30);
|
|
Parameters::SetDefault<Parameters::DomainSizeX<Scalar>>(300.0);
|
|
|
|
if constexpr (dim > 1) {
|
|
Parameters::SetDefault<Parameters::CellsY>(1);
|
|
Parameters::SetDefault<Parameters::DomainSizeY<Scalar>>(1.0);
|
|
}
|
|
if constexpr (dim == 3) {
|
|
Parameters::SetDefault<Parameters::CellsZ>(1);
|
|
Parameters::SetDefault<Parameters::DomainSizeZ<Scalar>>(1.0);
|
|
}
|
|
|
|
Parameters::SetDefault<Parameters::EndTime<Scalar>>(60. * 60.);
|
|
Parameters::SetDefault<Parameters::InitialTimeStepSize<Scalar>>(0.1 * 60. * 60.);
|
|
Parameters::SetDefault<Parameters::NewtonMaxIterations>(30);
|
|
Parameters::SetDefault<Parameters::NewtonTargetIterations>(6);
|
|
Parameters::SetDefault<Parameters::NewtonTolerance<Scalar>>(1e-3);
|
|
Parameters::SetDefault<Parameters::VtkWriteFilterVelocities>(true);
|
|
Parameters::SetDefault<Parameters::VtkWriteFugacityCoeffs>(true);
|
|
Parameters::SetDefault<Parameters::VtkWritePotentialGradients>(true);
|
|
Parameters::SetDefault<Parameters::VtkWriteTotalMassFractions>(true);
|
|
Parameters::SetDefault<Parameters::VtkWriteTotalMoleFractions>(true);
|
|
Parameters::SetDefault<Parameters::VtkWriteEquilibriumConstants>(true);
|
|
Parameters::SetDefault<Parameters::VtkWriteLiquidMoleFractions>(true);
|
|
|
|
Parameters::SetDefault<Parameters::LinearSolverAbsTolerance<Scalar>>(0.0);
|
|
Parameters::SetDefault<Parameters::LinearSolverTolerance<Scalar>>(1e-3);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::name
|
|
*/
|
|
std::string name() const
|
|
{
|
|
std::ostringstream oss;
|
|
oss << Parameters::Get<Parameters::SimulationName>();
|
|
return oss.str();
|
|
}
|
|
|
|
// This method must be overridden for the simulator to continue with
|
|
// a new episode. We just start a new episode with the same length as
|
|
// the old one.
|
|
void endEpisode()
|
|
{
|
|
Scalar epi_len = Parameters::Get<Parameters::EpisodeLength<Scalar>>();
|
|
this->simulator().startNextEpisode(epi_len);
|
|
}
|
|
|
|
// only write output when episodes change, aka. report steps, and
|
|
// include the initial timestep too
|
|
bool shouldWriteOutput()
|
|
{
|
|
return this->simulator().episodeWillBeOver() || (this->simulator().timeStepIndex() == -1);
|
|
}
|
|
|
|
// we don't care about doing restarts from every fifth timestep, it
|
|
// will just slow us down
|
|
bool shouldWriteRestartFile()
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::endTimeStep
|
|
*/
|
|
void endTimeStep()
|
|
{
|
|
Scalar tol = this->model().newtonMethod().tolerance() * 1e5;
|
|
this->model().checkConservativeness(tol);
|
|
|
|
// Calculate storage terms
|
|
PrimaryVariables storageO, storageW;
|
|
this->model().globalPhaseStorage(storageO, oilPhaseIdx);
|
|
|
|
// Calculate storage terms
|
|
PrimaryVariables storageL, storageG;
|
|
this->model().globalPhaseStorage(storageL, /*phaseIdx=*/0);
|
|
this->model().globalPhaseStorage(storageG, /*phaseIdx=*/1);
|
|
|
|
// Write mass balance information for rank 0
|
|
// if (this->gridView().comm().rank() == 0) {
|
|
// std::cout << "Storage: liquid=[" << storageL << "]"
|
|
// << " gas=[" << storageG << "]\n" << std::flush;
|
|
// }
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::initial
|
|
*/
|
|
template <class Context>
|
|
void initial(PrimaryVariables& values, const Context& context, unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
Opm::CompositionalFluidState<Evaluation, FluidSystem> fs;
|
|
initialFluidState(fs, context, spaceIdx, timeIdx);
|
|
values.assignNaive(fs);
|
|
}
|
|
|
|
// Constant temperature
|
|
template <class Context>
|
|
Scalar temperature([[maybe_unused]] const Context& context, [[maybe_unused]] unsigned spaceIdx, [[maybe_unused]] unsigned timeIdx) const
|
|
{
|
|
return temperature_;
|
|
}
|
|
|
|
|
|
// Constant permeability
|
|
template <class Context>
|
|
const DimMatrix& intrinsicPermeability([[maybe_unused]] const Context& context,
|
|
[[maybe_unused]] unsigned spaceIdx,
|
|
[[maybe_unused]] unsigned timeIdx) const
|
|
{
|
|
return K_;
|
|
}
|
|
|
|
// Constant porosity
|
|
template <class Context>
|
|
Scalar porosity([[maybe_unused]] const Context& context, [[maybe_unused]] unsigned spaceIdx, [[maybe_unused]] unsigned timeIdx) const
|
|
{
|
|
int spatialIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
|
int inj = 0;
|
|
int prod = Parameters::Get<Parameters::CellsX>() - 1;
|
|
if (spatialIdx == inj || spatialIdx == prod) {
|
|
return 1.0;
|
|
} else {
|
|
return porosity_;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
|
|
*/
|
|
template <class Context>
|
|
const MaterialLawParams& materialLawParams([[maybe_unused]] const Context& context,
|
|
[[maybe_unused]] unsigned spaceIdx,
|
|
[[maybe_unused]] unsigned timeIdx) const
|
|
{
|
|
return this->mat_;
|
|
}
|
|
|
|
|
|
// No flow (introduce fake wells instead)
|
|
template <class Context>
|
|
void boundary(BoundaryRateVector& values,
|
|
const Context& /*context*/,
|
|
unsigned /*spaceIdx*/,
|
|
unsigned /*timeIdx*/) const
|
|
{ values.setNoFlow(); }
|
|
|
|
// No source terms
|
|
template <class Context>
|
|
void source(RateVector& source_rate,
|
|
[[maybe_unused]] const Context& context,
|
|
[[maybe_unused]] unsigned spaceIdx,
|
|
[[maybe_unused]] unsigned timeIdx) const
|
|
{
|
|
source_rate = Scalar(0.0);
|
|
}
|
|
|
|
private:
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::initial
|
|
*/
|
|
template <class FluidState, class Context>
|
|
void initialFluidState(FluidState& fs, const Context& context, unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
// z0 = [0.5, 0.3, 0.2]
|
|
// zi = [0.99, 0.01-1e-3, 1e-3]
|
|
// p0 = 75e5
|
|
// T0 = 423.25
|
|
int inj = 0;
|
|
int prod = Parameters::Get<Parameters::CellsX>() - 1;
|
|
int spatialIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
|
ComponentVector comp;
|
|
comp[0] = Evaluation::createVariable(0.5, 1);
|
|
comp[1] = Evaluation::createVariable(0.3, 2);
|
|
comp[2] = 1. - comp[0] - comp[1];
|
|
if (spatialIdx == inj) {
|
|
comp[0] = Evaluation::createVariable(0.99, 1);
|
|
comp[1] = Evaluation::createVariable(0.01 - 1e-3, 2);
|
|
comp[2] = 1. - comp[0] - comp[1];
|
|
}
|
|
ComponentVector sat;
|
|
sat[0] = 1.0;
|
|
sat[1] = 1.0 - sat[0];
|
|
|
|
Scalar p0 = Parameters::Get<Parameters::Initialpressure<Scalar>>();
|
|
|
|
//\Note, for an AD variable, if we multiply it with 2, the derivative will also be scalced with 2,
|
|
//\Note, so we should not do it.
|
|
if (spatialIdx == inj) {
|
|
p0 *= 2.0;
|
|
}
|
|
if (spatialIdx == prod) {
|
|
p0 *= 0.5;
|
|
}
|
|
Evaluation p_init = Evaluation::createVariable(p0, 0);
|
|
|
|
fs.setPressure(FluidSystem::oilPhaseIdx, p_init);
|
|
fs.setPressure(FluidSystem::gasPhaseIdx, p_init);
|
|
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
|
fs.setMoleFraction(FluidSystem::oilPhaseIdx, compIdx, comp[compIdx]);
|
|
fs.setMoleFraction(FluidSystem::gasPhaseIdx, compIdx, comp[compIdx]);
|
|
}
|
|
|
|
// It is used here only for calculate the z
|
|
fs.setSaturation(FluidSystem::oilPhaseIdx, sat[0]);
|
|
fs.setSaturation(FluidSystem::gasPhaseIdx, sat[1]);
|
|
|
|
fs.setTemperature(temperature_);
|
|
|
|
// ParameterCache paramCache;
|
|
{
|
|
typename FluidSystem::template ParameterCache<Evaluation> paramCache;
|
|
paramCache.updatePhase(fs, FluidSystem::oilPhaseIdx);
|
|
paramCache.updatePhase(fs, FluidSystem::gasPhaseIdx);
|
|
fs.setDensity(FluidSystem::oilPhaseIdx, FluidSystem::density(fs, paramCache, FluidSystem::oilPhaseIdx));
|
|
fs.setDensity(FluidSystem::gasPhaseIdx, FluidSystem::density(fs, paramCache, FluidSystem::gasPhaseIdx));
|
|
fs.setViscosity(FluidSystem::oilPhaseIdx, FluidSystem::viscosity(fs, paramCache, FluidSystem::oilPhaseIdx));
|
|
fs.setViscosity(FluidSystem::gasPhaseIdx, FluidSystem::viscosity(fs, paramCache, FluidSystem::gasPhaseIdx));
|
|
}
|
|
|
|
// determine the component total fractions
|
|
// TODO: duplicated code here, while should be refactored out when we swithing
|
|
// to starting from total mole fractions
|
|
Dune::FieldVector<Scalar, numComponents> z(0.0);
|
|
Scalar sumMoles = 0.0;
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
const auto saturation = getValue(fs.saturation(phaseIdx));
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
|
Scalar tmp = getValue(fs.molarity(phaseIdx, compIdx)) * saturation;
|
|
tmp = max(tmp, 1.e-8);
|
|
z[compIdx] += tmp;
|
|
sumMoles += tmp;
|
|
}
|
|
}
|
|
z /= sumMoles;
|
|
|
|
for (unsigned compIdx = 0; compIdx < numComponents - 1; ++compIdx) {
|
|
fs.setMoleFraction(compIdx, z[compIdx]);
|
|
}
|
|
|
|
// Set initial K and L
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
|
const Evaluation Ktmp = fs.wilsonK_(compIdx);
|
|
fs.setKvalue(compIdx, Ktmp);
|
|
}
|
|
|
|
const Evaluation& Ltmp = -1.0;
|
|
fs.setLvalue(Ltmp);
|
|
}
|
|
|
|
DimMatrix K_;
|
|
Scalar porosity_;
|
|
Scalar temperature_;
|
|
MaterialLawParams mat_;
|
|
DimVector gravity_;
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|