opm-simulators/opm/autodiff/ParallelOverlappingILU0.hpp
2017-10-05 12:02:10 +02:00

437 lines
13 KiB
C++

/*
Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2015 Statoil AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_PARALLELOVERLAPPINGILU0_HEADER_INCLUDED
#define OPM_PARALLELOVERLAPPINGILU0_HEADER_INCLUDED
#include <opm/common/Exceptions.hpp>
#include <dune/istl/preconditioner.hh>
#include <dune/istl/paamg/smoother.hh>
#include <dune/istl/paamg/pinfo.hh>
namespace Opm
{
//template<class M, class X, class Y, class C>
//class ParallelOverlappingILU0;
template<class Matrix, class Domain, class Range, class ParallelInfo = Dune::Amg::SequentialInformation>
class ParallelOverlappingILU0;
} // end namespace Opm
namespace Dune
{
namespace Amg
{
/// \brief Tells AMG how to construct the Opm::ParallelOverlappingILU0 smoother
/// \tparam Matrix The type of the Matrix.
/// \tparam Domain The type of the Vector representing the domain.
/// \tparam Range The type of the Vector representing the range.
/// \tparam ParallelInfo The type of the parallel information object
/// used, e.g. Dune::OwnerOverlapCommunication
template<class Matrix, class Domain, class Range, class ParallelInfo>
struct ConstructionTraits<Opm::ParallelOverlappingILU0<Matrix,Domain,Range,ParallelInfo> >
{
typedef Dune::SeqILU0<Matrix,Domain,Range> T;
typedef DefaultParallelConstructionArgs<T,ParallelInfo> Arguments;
typedef ConstructionTraits<T> SeqConstructionTraits;
static inline Opm::ParallelOverlappingILU0<Matrix,Domain,Range,ParallelInfo>* construct(Arguments& args)
{
return new Opm::ParallelOverlappingILU0<Matrix,Domain,Range,ParallelInfo>(args.getMatrix(),
args.getComm(),
args.getArgs().relaxationFactor);
}
static inline void deconstruct(Opm::ParallelOverlappingILU0<Matrix,Domain,Range,ParallelInfo>* bp)
{
delete bp;
}
};
} // end namespace Amg
} // end namespace Dune
namespace Opm
{
namespace detail
{
//! compute ILU decomposition of A. A is overwritten by its decomposition
template<class M, class CRS, class InvVector>
void convertToCRS(const M& A, CRS& lower, CRS& upper, InvVector& inv )
{
typedef typename M :: size_type size_type;
lower.resize( A.N() );
upper.resize( A.N() );
inv.resize( A.N() );
lower.reserveAdditional( 2*A.N() );
// implement left looking variant with stored inverse
const auto endi = A.end();
size_type row = 0;
size_type colcount = 0;
lower.rows_[ 0 ] = colcount;
for (auto i=A.begin(); i!=endi; ++i, ++row)
{
const size_type iIndex = i.index();
lower.reserveAdditional( (*i).size() );
// eliminate entries left of diagonal; store L factor
for (auto j=(*i).begin(); j.index() < iIndex; ++j )
{
lower.push_back( (*j), j.index() );
++colcount;
}
lower.rows_[ iIndex+1 ] = colcount;
}
const auto rendi = A.beforeBegin();
row = 0;
colcount = 0;
upper.rows_[ 0 ] = colcount ;
upper.reserveAdditional( lower.nonZeros() + A.N() );
// NOTE: upper and inv store entries in reverse order, reverse here
// relative to ILU
for (auto i=A.beforeEnd(); i!=rendi; --i, ++ row )
{
const size_type iIndex = i.index();
upper.reserveAdditional( (*i).size() );
// store in reverse row order
// eliminate entries left of diagonal; store L factor
for (auto j=(*i).beforeEnd(); j.index()>=iIndex; --j )
{
const size_type jIndex = j.index();
if( j.index() == iIndex )
{
inv[ row ] = (*j);
break;
}
else if ( j.index() >= i.index() )
{
upper.push_back( (*j), jIndex );
++colcount ;
}
}
upper.rows_[ row+1 ] = colcount;
}
}
} // end namespace detail
/// \brief A two-step version of an overlapping Schwarz preconditioner using one step ILU0 as
///
/// This preconditioner differs from a ParallelRestrictedOverlappingSchwarz with
/// Dune:SeqILU0 in the follwing way:
/// During apply we make sure that the current residual is consistent (i.e.
/// each process knows the same value for each index. The we solve
/// Ly= d for y and make y consistent again. Last we solve Ux = y and
/// make sure that x is consistent.
/// In contrast for ParallelRestrictedOverlappingSchwarz we solve (LU)x = d for x
/// without forcing consistency between the two steps.
/// \tparam Matrix The type of the Matrix.
/// \tparam Domain The type of the Vector representing the domain.
/// \tparam Range The type of the Vector representing the range.
/// \tparam ParallelInfo The type of the parallel information object
/// used, e.g. Dune::OwnerOverlapCommunication
template<class Matrix, class Domain, class Range, class ParallelInfoT>
class ParallelOverlappingILU0
: public Dune::Preconditioner<Domain,Range>
{
typedef ParallelInfoT ParallelInfo;
public:
//! \brief The matrix type the preconditioner is for.
typedef typename std::remove_const<Matrix>::type matrix_type;
//! \brief The domain type of the preconditioner.
typedef Domain domain_type;
//! \brief The range type of the preconditioner.
typedef Range range_type;
//! \brief The field type of the preconditioner.
typedef typename Domain::field_type field_type;
typedef typename matrix_type::block_type block_type;
typedef typename matrix_type::size_type size_type;
protected:
struct CRS
{
CRS() : nRows_( 0 ) {}
size_type rows() const { return nRows_; }
size_type nonZeros() const
{
assert( rows_[ rows() ] != size_type(-1) );
return rows_[ rows() ];
}
void resize( const size_type nRows )
{
if( nRows_ != nRows )
{
nRows_ = nRows ;
rows_.resize( nRows_+1, size_type(-1) );
}
}
void reserveAdditional( const size_type nonZeros )
{
const size_type needed = values_.size() + nonZeros ;
if( values_.capacity() < needed )
{
const size_type estimate = needed * 1.1;
values_.reserve( estimate );
cols_.reserve( estimate );
}
}
void push_back( const block_type& value, const size_type index )
{
values_.push_back( value );
cols_.push_back( index );
}
std::vector< size_type > rows_;
std::vector< block_type > values_;
std::vector< size_type > cols_;
size_type nRows_;
};
public:
// define the category
enum {
//! \brief The category the preconditioner is part of.
category = std::is_same<ParallelInfoT, Dune::Amg::SequentialInformation>::value ?
Dune::SolverCategory::sequential : Dune::SolverCategory::overlapping
};
/*! \brief Constructor.
Constructor gets all parameters to operate the prec.
\param A The matrix to operate on.
\param n ILU fill in level (for testing). This does not work in parallel.
\param w The relaxation factor.
*/
template<class BlockType, class Alloc>
ParallelOverlappingILU0 (const Dune::BCRSMatrix<BlockType,Alloc>& A,
const int n, const field_type w )
: lower_(),
upper_(),
inv_(),
comm_(nullptr), w_(w),
relaxation_( std::abs( w - 1.0 ) > 1e-15 )
{
// BlockMatrix is a Subclass of FieldMatrix that just adds
// methods. Therefore this cast should be safe.
init( reinterpret_cast<const Matrix&>(A), n );
}
/*! \brief Constructor.
Constructor gets all parameters to operate the prec.
\param A The matrix to operate on.
\param w The relaxation factor.
*/
template<class BlockType, class Alloc>
ParallelOverlappingILU0 (const Dune::BCRSMatrix<BlockType,Alloc>& A,
const field_type w)
: ParallelOverlappingILU0( A, 0, w )
{
}
/*! \brief Constructor.
Constructor gets all parameters to operate the prec.
\param A The matrix to operate on.
\param comm communication object, e.g. Dune::OwnerOverlapCopyCommunication
\param w The relaxation factor.
*/
template<class BlockType, class Alloc>
ParallelOverlappingILU0 (const Dune::BCRSMatrix<BlockType,Alloc>& A,
const ParallelInfo& comm, const field_type w)
: lower_(),
upper_(),
inv_(),
comm_(&comm), w_(w),
relaxation_( std::abs( w - 1.0 ) > 1e-15 )
{
// BlockMatrix is a Subclass of FieldMatrix that just adds
// methods. Therefore this cast should be safe.
init( reinterpret_cast<const Matrix&>(A), 0 );
}
/*!
\brief Prepare the preconditioner.
\copydoc Preconditioner::pre(X&,Y&)
*/
virtual void pre (Domain& x, Range& b)
{
DUNE_UNUSED_PARAMETER(x);
DUNE_UNUSED_PARAMETER(b);
}
/*!
\brief Apply the preconditoner.
\copydoc Preconditioner::apply(X&,const Y&)
*/
virtual void apply (Domain& v, const Range& d)
{
Range& md = const_cast<Range&>(d);
copyOwnerToAll( md );
// iterator types
typedef typename Range ::block_type dblock;
typedef typename Domain::block_type vblock;
const size_type iEnd = lower_.rows();
const size_type lastRow = iEnd - 1;
if( iEnd != upper_.rows() )
{
std::abort();
// OPM_THROW(std::logic_error,"ILU: lower and upper rows must be the same");
}
// lower triangular solve
for( size_type i=0; i<iEnd; ++ i )
{
dblock rhs( d[ i ] );
const size_type rowI = lower_.rows_[ i ];
const size_type rowINext = lower_.rows_[ i+1 ];
for( size_type col = rowI; col < rowINext; ++ col )
{
lower_.values_[ col ].mmv( v[ lower_.cols_[ col ] ], rhs );
}
v[ i ] = rhs; // Lii = I
}
copyOwnerToAll( v );
for( size_type i=0; i<iEnd; ++ i )
{
vblock& vBlock = v[ lastRow - i ];
vblock rhs ( vBlock );
const size_type rowI = upper_.rows_[ i ];
const size_type rowINext = upper_.rows_[ i+1 ];
for( size_type col = rowI; col < rowINext; ++ col )
{
upper_.values_[ col ].mmv( v[ upper_.cols_[ col ] ], rhs );
}
// apply inverse and store result
inv_[ i ].mv( rhs, vBlock);
}
copyOwnerToAll( v );
if( relaxation_ ) {
v *= w_;
}
}
template <class V>
void copyOwnerToAll( V& v ) const
{
if( comm_ ) {
comm_->copyOwnerToAll(v, v);
}
}
/*!
\brief Clean up.
\copydoc Preconditioner::post(X&)
*/
virtual void post (Range& x)
{
DUNE_UNUSED_PARAMETER(x);
}
protected:
void init( const Matrix& A, const int iluIteration )
{
int ilu_setup_successful = 1;
std::string message;
const int rank = ( comm_ ) ? comm_->communicator().rank() : 0;
std::unique_ptr< Matrix > ILU;
try
{
if( iluIteration == 0 ) {
// create ILU-0 decomposition
ILU.reset( new Matrix( A ) );
bilu0_decomposition( *ILU );
}
else {
// create ILU-n decomposition
ILU.reset( new Matrix( A.N(), A.M(), Matrix::row_wise) );
bilu_decomposition( A, iluIteration, *ILU );
}
}
catch ( Dune::MatrixBlockError error )
{
message = error.what();
std::cerr<<"Exception occured on process " << rank << " during " <<
"setup of ILU0 preconditioner with message: " <<
message<<std::endl;
ilu_setup_successful = 0;
}
// Check whether there was a problem on some process
if ( comm_ && comm_->communicator().min(ilu_setup_successful) == 0 )
{
throw Dune::MatrixBlockError();
}
// store ILU in simple CRS format
detail::convertToCRS( *ILU, lower_, upper_, inv_ );
}
protected:
//! \brief The ILU0 decomposition of the matrix.
CRS lower_;
CRS upper_;
std::vector< block_type > inv_;
const ParallelInfo* comm_;
//! \brief The relaxation factor to use.
const field_type w_;
const bool relaxation_;
};
} // end namespace Opm
#endif