mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-01 12:06:54 -06:00
422 lines
16 KiB
C++
422 lines
16 KiB
C++
/*
|
|
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
|
Copyright 2017 Statoil ASA.
|
|
Copyright 2017 IRIS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_AQUIFERANALYTICAL_HEADER_INCLUDED
|
|
#define OPM_AQUIFERANALYTICAL_HEADER_INCLUDED
|
|
|
|
#include <opm/simulators/aquifers/AquiferInterface.hpp>
|
|
|
|
#include <opm/common/utility/numeric/linearInterpolation.hpp>
|
|
#include <opm/input/eclipse/EclipseState/Aquifer/Aquancon.hpp>
|
|
|
|
#include <opm/output/data/Aquifer.hpp>
|
|
|
|
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
|
|
|
|
#include <opm/material/common/MathToolbox.hpp>
|
|
#include <opm/material/densead/Evaluation.hpp>
|
|
#include <opm/material/densead/Math.hpp>
|
|
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <limits>
|
|
#include <numeric>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
namespace Opm
|
|
{
|
|
template <typename TypeTag>
|
|
class AquiferAnalytical : public AquiferInterface<TypeTag>
|
|
{
|
|
public:
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using BlackoilIndices = GetPropType<TypeTag, Properties::Indices>;
|
|
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
|
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
|
|
using ElementMapper = GetPropType<TypeTag, Properties::ElementMapper>;
|
|
|
|
enum { enableTemperature = getPropValue<TypeTag, Properties::EnableTemperature>() };
|
|
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
|
|
enum { enableBrine = getPropValue<TypeTag, Properties::EnableBrine>() };
|
|
enum { enableEvaporation = getPropValue<TypeTag, Properties::EnableEvaporation>() };
|
|
enum { enableSaltPrecipitation = getPropValue<TypeTag, Properties::EnableSaltPrecipitation>() };
|
|
|
|
static constexpr int numEq = BlackoilIndices::numEq;
|
|
using Scalar = double;
|
|
|
|
using Eval = DenseAd::Evaluation<double, /*size=*/numEq>;
|
|
|
|
using FluidState = BlackOilFluidState<Eval,
|
|
FluidSystem,
|
|
enableTemperature,
|
|
enableEnergy,
|
|
BlackoilIndices::gasEnabled,
|
|
enableEvaporation,
|
|
enableBrine,
|
|
enableSaltPrecipitation,
|
|
BlackoilIndices::numPhases>;
|
|
|
|
// Constructor
|
|
AquiferAnalytical(int aqID,
|
|
const std::vector<Aquancon::AquancCell>& connections,
|
|
const Simulator& ebosSimulator)
|
|
: AquiferInterface<TypeTag>(aqID, ebosSimulator)
|
|
, connections_(connections)
|
|
{
|
|
}
|
|
|
|
// Destructor
|
|
virtual ~AquiferAnalytical()
|
|
{
|
|
}
|
|
|
|
void initFromRestart(const data::Aquifers& aquiferSoln) override
|
|
{
|
|
auto xaqPos = aquiferSoln.find(this->aquiferID());
|
|
if (xaqPos == aquiferSoln.end())
|
|
return;
|
|
|
|
this->assignRestartData(xaqPos->second);
|
|
|
|
this->W_flux_ = xaqPos->second.volume;
|
|
this->pa0_ = xaqPos->second.initPressure;
|
|
this->solution_set_from_restart_ = true;
|
|
}
|
|
|
|
void initialSolutionApplied() override
|
|
{
|
|
initQuantities();
|
|
}
|
|
|
|
void beginTimeStep() override
|
|
{
|
|
ElementContext elemCtx(this->ebos_simulator_);
|
|
OPM_BEGIN_PARALLEL_TRY_CATCH();
|
|
|
|
for (const auto& elem : elements(this->ebos_simulator_.gridView())) {
|
|
elemCtx.updatePrimaryStencil(elem);
|
|
|
|
const int cellIdx = elemCtx.globalSpaceIndex(0, 0);
|
|
const int idx = cellToConnectionIdx_[cellIdx];
|
|
if (idx < 0)
|
|
continue;
|
|
|
|
elemCtx.updateIntensiveQuantities(0);
|
|
const auto& iq = elemCtx.intensiveQuantities(0, 0);
|
|
pressure_previous_[idx] = getValue(iq.fluidState().pressure(this->phaseIdx_()));
|
|
}
|
|
|
|
OPM_END_PARALLEL_TRY_CATCH("AquiferAnalytical::beginTimeStep() failed: ",
|
|
this->ebos_simulator_.vanguard().grid().comm());
|
|
}
|
|
|
|
void addToSource(RateVector& rates,
|
|
const unsigned cellIdx,
|
|
const unsigned timeIdx) override
|
|
{
|
|
const auto& model = this->ebos_simulator_.model();
|
|
|
|
const int idx = this->cellToConnectionIdx_[cellIdx];
|
|
if (idx < 0)
|
|
return;
|
|
|
|
const auto* intQuantsPtr = model.cachedIntensiveQuantities(cellIdx, timeIdx);
|
|
if (intQuantsPtr == nullptr) {
|
|
throw std::logic_error("Invalid intensive quantities cache detected in AquiferAnalytical::addToSource()");
|
|
}
|
|
|
|
// This is the pressure at td + dt
|
|
this->updateCellPressure(this->pressure_current_, idx, *intQuantsPtr);
|
|
this->calculateInflowRate(idx, this->ebos_simulator_);
|
|
|
|
rates[BlackoilIndices::conti0EqIdx + compIdx_()]
|
|
+= this->Qai_[idx] / model.dofTotalVolume(cellIdx);
|
|
|
|
if constexpr (enableEnergy) {
|
|
auto fs = intQuantsPtr->fluidState();
|
|
if (this->Ta0_.has_value() && this->Qai_[idx] > 0)
|
|
{
|
|
fs.setTemperature(this->Ta0_.value());
|
|
typedef typename std::decay<decltype(fs)>::type::Scalar FsScalar;
|
|
typename FluidSystem::template ParameterCache<FsScalar> paramCache;
|
|
const unsigned pvtRegionIdx = intQuantsPtr->pvtRegionIndex();
|
|
paramCache.setRegionIndex(pvtRegionIdx);
|
|
paramCache.setMaxOilSat(this->ebos_simulator_.problem().maxOilSaturation(cellIdx));
|
|
paramCache.updatePhase(fs, this->phaseIdx_());
|
|
const auto& h = FluidSystem::enthalpy(fs, paramCache, this->phaseIdx_());
|
|
fs.setEnthalpy(this->phaseIdx_(), h);
|
|
}
|
|
rates[BlackoilIndices::contiEnergyEqIdx]
|
|
+= this->Qai_[idx] *fs.enthalpy(this->phaseIdx_()) * FluidSystem::referenceDensity( this->phaseIdx_(), intQuantsPtr->pvtRegionIndex()) / model.dofTotalVolume(cellIdx);
|
|
|
|
}
|
|
}
|
|
|
|
std::size_t size() const
|
|
{
|
|
return this->connections_.size();
|
|
}
|
|
|
|
protected:
|
|
virtual void assignRestartData(const data::AquiferData& xaq) = 0;
|
|
virtual void calculateInflowRate(int idx, const Simulator& simulator) = 0;
|
|
virtual void calculateAquiferCondition() = 0;
|
|
virtual void calculateAquiferConstants() = 0;
|
|
virtual Scalar aquiferDepth() const = 0;
|
|
|
|
Scalar gravity_() const
|
|
{
|
|
return this->ebos_simulator_.problem().gravity()[2];
|
|
}
|
|
|
|
int compIdx_() const
|
|
{
|
|
if (this->co2store_())
|
|
return FluidSystem::oilCompIdx;
|
|
|
|
return FluidSystem::waterCompIdx;
|
|
}
|
|
|
|
|
|
void initQuantities()
|
|
{
|
|
// We reset the cumulative flux at the start of any simulation, so, W_flux = 0
|
|
if (!this->solution_set_from_restart_) {
|
|
W_flux_ = Scalar{0};
|
|
}
|
|
|
|
// We next get our connections to the aquifer and initialize these quantities using the initialize_connections
|
|
// function
|
|
initializeConnections();
|
|
calculateAquiferCondition();
|
|
calculateAquiferConstants();
|
|
|
|
pressure_previous_.resize(this->connections_.size(), Scalar{0});
|
|
pressure_current_.resize(this->connections_.size(), Scalar{0});
|
|
Qai_.resize(this->connections_.size(), Scalar{0});
|
|
}
|
|
|
|
void updateCellPressure(std::vector<Eval>& pressure_water,
|
|
const int idx,
|
|
const IntensiveQuantities& intQuants)
|
|
{
|
|
const auto& fs = intQuants.fluidState();
|
|
pressure_water.at(idx) = fs.pressure(this->phaseIdx_());
|
|
}
|
|
|
|
void updateCellPressure(std::vector<Scalar>& pressure_water,
|
|
const int idx,
|
|
const IntensiveQuantities& intQuants)
|
|
{
|
|
const auto& fs = intQuants.fluidState();
|
|
pressure_water.at(idx) = fs.pressure(this->phaseIdx_()).value();
|
|
}
|
|
|
|
void initializeConnections()
|
|
{
|
|
this->cell_depth_.resize(this->size(), this->aquiferDepth());
|
|
this->alphai_.resize(this->size(), 1.0);
|
|
this->faceArea_connected_.resize(this->size(), Scalar{0});
|
|
|
|
// Translate the C face tag into the enum used by opm-parser's TransMult class
|
|
FaceDir::DirEnum faceDirection;
|
|
|
|
bool has_active_connection_on_proc = false;
|
|
|
|
// denom_face_areas is the sum of the areas connected to an aquifer
|
|
Scalar denom_face_areas{0};
|
|
this->cellToConnectionIdx_.resize(this->ebos_simulator_.gridView().size(/*codim=*/0), -1);
|
|
const auto& gridView = this->ebos_simulator_.vanguard().gridView();
|
|
for (std::size_t idx = 0; idx < this->size(); ++idx) {
|
|
const auto global_index = this->connections_[idx].global_index;
|
|
const int cell_index = this->ebos_simulator_.vanguard().compressedIndex(global_index);
|
|
auto elemIt = gridView.template begin</*codim=*/ 0>();
|
|
if (cell_index > 0)
|
|
std::advance(elemIt, cell_index);
|
|
|
|
//the global_index is not part of this grid
|
|
if ( cell_index < 0 || elemIt->partitionType() != Dune::InteriorEntity)
|
|
continue;
|
|
|
|
has_active_connection_on_proc = true;
|
|
|
|
this->cellToConnectionIdx_[cell_index] = idx;
|
|
this->cell_depth_.at(idx) = this->ebos_simulator_.vanguard().cellCenterDepth(cell_index);
|
|
}
|
|
// get areas for all connections
|
|
ElementMapper elemMapper(gridView, Dune::mcmgElementLayout());
|
|
for (const auto& elem : elements(gridView)) {
|
|
unsigned cell_index = elemMapper.index(elem);
|
|
int idx = this->cellToConnectionIdx_[cell_index];
|
|
|
|
// only deal with connections given by the aquifer
|
|
if( idx < 0)
|
|
continue;
|
|
|
|
for (const auto& intersection : intersections(gridView, elem)) {
|
|
// only deal with grid boundaries
|
|
if (!intersection.boundary())
|
|
continue;
|
|
|
|
int insideFaceIdx = intersection.indexInInside();
|
|
switch (insideFaceIdx) {
|
|
case 0:
|
|
faceDirection = FaceDir::XMinus;
|
|
break;
|
|
case 1:
|
|
faceDirection = FaceDir::XPlus;
|
|
break;
|
|
case 2:
|
|
faceDirection = FaceDir::YMinus;
|
|
break;
|
|
case 3:
|
|
faceDirection = FaceDir::YPlus;
|
|
break;
|
|
case 4:
|
|
faceDirection = FaceDir::ZMinus;
|
|
break;
|
|
case 5:
|
|
faceDirection = FaceDir::ZPlus;
|
|
break;
|
|
default:
|
|
OPM_THROW(std::logic_error,
|
|
"Internal error in initialization of aquifer.");
|
|
}
|
|
|
|
|
|
if (faceDirection == this->connections_[idx].face_dir) {
|
|
this->faceArea_connected_[idx] = this->connections_[idx].influx_coeff;
|
|
break;
|
|
}
|
|
}
|
|
denom_face_areas += this->faceArea_connected_.at(idx);
|
|
}
|
|
|
|
const auto& comm = this->ebos_simulator_.vanguard().grid().comm();
|
|
comm.sum(&denom_face_areas, 1);
|
|
const double eps_sqrt = std::sqrt(std::numeric_limits<double>::epsilon());
|
|
for (std::size_t idx = 0; idx < this->size(); ++idx) {
|
|
// Protect against division by zero NaNs.
|
|
this->alphai_.at(idx) = (denom_face_areas < eps_sqrt)
|
|
? Scalar{0}
|
|
: this->faceArea_connected_.at(idx) / denom_face_areas;
|
|
}
|
|
|
|
if (this->solution_set_from_restart_) {
|
|
this->rescaleProducedVolume(has_active_connection_on_proc);
|
|
}
|
|
}
|
|
|
|
void rescaleProducedVolume(const bool has_active_connection_on_proc)
|
|
{
|
|
// Needed in parallel restart to approximate influence of aquifer
|
|
// being "owned" by a subset of the parallel processes. If the
|
|
// aquifer is fully owned by a single process--i.e., if all cells
|
|
// connecting to the aquifer are on a single process--then this_area
|
|
// is tot_area on that process and zero elsewhere.
|
|
|
|
const auto this_area = has_active_connection_on_proc
|
|
? std::accumulate(this->alphai_.begin(),
|
|
this->alphai_.end(),
|
|
Scalar{0})
|
|
: Scalar{0};
|
|
|
|
const auto tot_area = this->ebos_simulator_.vanguard()
|
|
.grid().comm().sum(this_area);
|
|
|
|
this->W_flux_ *= this_area / tot_area;
|
|
}
|
|
|
|
// This function is for calculating the aquifer properties from equilibrium state with the reservoir
|
|
Scalar calculateReservoirEquilibrium()
|
|
{
|
|
// Since the global_indices are the reservoir index, we just need to extract the fluidstate at those indices
|
|
std::vector<Scalar> pw_aquifer;
|
|
Scalar water_pressure_reservoir;
|
|
|
|
ElementContext elemCtx(this->ebos_simulator_);
|
|
const auto& gridView = this->ebos_simulator_.gridView();
|
|
for (const auto& elem : elements(gridView)) {
|
|
elemCtx.updatePrimaryStencil(elem);
|
|
|
|
const auto cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto idx = this->cellToConnectionIdx_[cellIdx];
|
|
if (idx < 0)
|
|
continue;
|
|
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& fs = iq0.fluidState();
|
|
|
|
water_pressure_reservoir = fs.pressure(this->phaseIdx_()).value();
|
|
const auto water_density = fs.density(this->phaseIdx_());
|
|
|
|
const auto gdz =
|
|
this->gravity_() * (this->cell_depth_[idx] - this->aquiferDepth());
|
|
|
|
pw_aquifer.push_back(this->alphai_[idx] *
|
|
(water_pressure_reservoir - water_density.value()*gdz));
|
|
}
|
|
|
|
// We take the average of the calculated equilibrium pressures.
|
|
const auto& comm = this->ebos_simulator_.vanguard().grid().comm();
|
|
|
|
Scalar vals[2];
|
|
vals[0] = std::accumulate(this->alphai_.begin(), this->alphai_.end(), Scalar{0});
|
|
vals[1] = std::accumulate(pw_aquifer.begin(), pw_aquifer.end(), Scalar{0});
|
|
|
|
comm.sum(vals, 2);
|
|
|
|
return vals[1] / vals[0];
|
|
}
|
|
|
|
const std::vector<Aquancon::AquancCell> connections_;
|
|
|
|
// Grid variables
|
|
std::vector<Scalar> faceArea_connected_;
|
|
std::vector<int> cellToConnectionIdx_;
|
|
|
|
// Quantities at each grid id
|
|
std::vector<Scalar> cell_depth_;
|
|
std::vector<Scalar> pressure_previous_;
|
|
std::vector<Eval> pressure_current_;
|
|
std::vector<Eval> Qai_;
|
|
std::vector<Scalar> alphai_;
|
|
|
|
Scalar Tc_{}; // Time constant
|
|
Scalar pa0_{}; // initial aquifer pressure
|
|
std::optional<Scalar> Ta0_{}; // initial aquifer temperature
|
|
Scalar rhow_{};
|
|
|
|
Eval W_flux_;
|
|
|
|
bool solution_set_from_restart_ {false};
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|