opm-simulators/opm/simulators/wells/WellState.hpp
2019-06-20 11:00:52 +02:00

321 lines
13 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_WELLSTATE_HEADER_INCLUDED
#define OPM_WELLSTATE_HEADER_INCLUDED
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/core/wells.h>
#include <opm/core/well_controls.h>
#include <opm/output/data/Wells.hpp>
#include <array>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include <cassert>
#include <cstddef>
namespace Opm
{
/// The state of a set of wells.
class WellState
{
public:
typedef std::array< int, 3 > mapentry_t;
typedef std::map< std::string, mapentry_t > WellMapType;
template <class State>
void init(const Wells* wells, const State& state)
{
init(wells, state.pressure());
}
/// Allocate and initialize if wells is non-null.
/// Also tries to give useful initial values to the bhp() and
/// wellRates() fields, depending on controls. The
/// perfRates() field is filled with zero, and perfPress()
/// with -1e100.
void init(const Wells* wells, const std::vector<double>& cellPressures)
{
// clear old name mapping
wellMap_.clear();
wells_.reset( clone_wells( wells ) );
if (wells) {
const int nw = wells->number_of_wells;
const int np = wells->number_of_phases;
bhp_.resize(nw);
thp_.resize(nw);
temperature_.resize(nw, 273.15 + 20); // standard temperature for now
wellrates_.resize(nw * np, 0.0);
for (int w = 0; w < nw; ++w) {
assert((wells->type[w] == INJECTOR) || (wells->type[w] == PRODUCER));
const WellControls* ctrl = wells->ctrls[w];
const int num_perf_this_well = wells->well_connpos[w + 1] - wells->well_connpos[w];
// setup wellname -> well index mapping
{
assert( wells->name[ w ] );
std::string name( wells->name[ w ] );
assert( name.size() > 0 );
mapentry_t& wellMapEntry = wellMap_[name];
wellMapEntry[ 0 ] = w;
wellMapEntry[ 1 ] = wells->well_connpos[w];
// also store the number of perforations in this well
wellMapEntry[ 2 ] = num_perf_this_well;
}
if ( num_perf_this_well == 0 )
{
// No perforations of the well. Initialize to zero.
for (int p = 0; p < np; ++p) {
wellrates_[np*w + p] = 0.0;
}
bhp_[w] = 0.;
thp_[w] = 0.;
continue;
}
if (well_controls_well_is_stopped(ctrl)) {
// Stopped well:
// 1. Rates: assign zero well rates.
for (int p = 0; p < np; ++p) {
wellrates_[np*w + p] = 0.0;
}
// 2. Bhp: assign bhp equal to bhp control, if
// applicable, otherwise assign equal to
// first perforation cell pressure.
if (well_controls_get_current_type(ctrl) == BHP) {
bhp_[w] = well_controls_get_current_target( ctrl );
} else {
const int first_cell = wells->well_cells[wells->well_connpos[w]];
bhp_[w] = cellPressures[first_cell];
}
} else {
// Open well:
// 1. Rates: initialize well rates to match controls
// if type is SURFACE_RATE. Otherwise, we
// cannot set the correct value here, so we
// assign a small rate with the correct
// sign so that any logic depending on that
// sign will work as expected.
if (well_controls_get_current_type(ctrl) == SURFACE_RATE) {
const double rate_target = well_controls_get_current_target(ctrl);
const double * distr = well_controls_get_current_distr( ctrl );
for (int p = 0; p < np; ++p) {
wellrates_[np*w + p] = rate_target * distr[p];
}
} else {
const double small_rate = 0.0; //1e-14;
const double sign = (wells->type[w] == INJECTOR) ? 1.0 : -1.0;
for (int p = 0; p < np; ++p) {
wellrates_[np*w + p] = small_rate * sign;
}
}
// 2. Bhp: initialize bhp to be target pressure if
// bhp-controlled well, otherwise set to a
// little above or below (depending on if
// the well is an injector or producer)
// pressure in first perforation cell.
if (well_controls_get_current_type(ctrl) == BHP) {
bhp_[w] = well_controls_get_current_target( ctrl );
} else {
const int first_cell = wells->well_cells[wells->well_connpos[w]];
const double safety_factor = (wells->type[w] == INJECTOR) ? 1.01 : 0.99;
bhp_[w] = safety_factor*cellPressures[first_cell];
}
}
// 3. Thp: assign thp equal to thp target/limit, if applicable,
// otherwise keep it zero. Basically, the value should not be used
// in the simulation at all.
const int nwc = well_controls_get_num(ctrl);
for (int ctrl_index = 0; ctrl_index < nwc; ++ctrl_index) {
if (well_controls_iget_type(ctrl, ctrl_index) == THP) {
thp_[w] = well_controls_iget_target(ctrl, ctrl_index);
break;
}
}
}
// The perforation rates and perforation pressures are
// not expected to be consistent with bhp_ and wellrates_
// after init().
perfrates_.resize(wells->well_connpos[nw], 0.0);
perfpress_.resize(wells->well_connpos[nw], -1e100);
}
}
/// One bhp pressure per well.
std::vector<double>& bhp() { return bhp_; }
const std::vector<double>& bhp() const { return bhp_; }
/// One thp pressure per well.
std::vector<double>& thp() { return thp_; }
const std::vector<double>& thp() const { return thp_; }
/// One temperature per well.
std::vector<double>& temperature() { return temperature_; }
const std::vector<double>& temperature() const { return temperature_; }
/// One rate per well and phase.
std::vector<double>& wellRates() { return wellrates_; }
const std::vector<double>& wellRates() const { return wellrates_; }
/// One rate per well connection.
std::vector<double>& perfRates() { return perfrates_; }
const std::vector<double>& perfRates() const { return perfrates_; }
/// One pressure per well connection.
std::vector<double>& perfPress() { return perfpress_; }
const std::vector<double>& perfPress() const { return perfpress_; }
size_t getRestartBhpOffset() const {
return 0;
}
size_t getRestartPerfPressOffset() const {
return bhp_.size();
}
size_t getRestartPerfRatesOffset() const {
return getRestartPerfPressOffset() + perfpress_.size();
}
size_t getRestartTemperatureOffset() const {
return getRestartPerfRatesOffset() + perfrates_.size();
}
size_t getRestartWellRatesOffset() const {
return getRestartTemperatureOffset() + temperature_.size();
}
const WellMapType& wellMap() const { return wellMap_; }
WellMapType& wellMap() { return wellMap_; }
/// The number of wells present.
int numWells() const
{
return bhp().size();
}
/// The number of phases present.
int numPhases() const
{
return wellRates().size() / numWells();
}
virtual data::Wells report(const PhaseUsage& pu, const int* globalCellIdxMap) const
{
using rt = data::Rates::opt;
data::Wells dw;
for( const auto& itr : this->wellMap_ ) {
const auto well_index = itr.second[ 0 ];
auto& well = dw[ itr.first ];
well.bhp = this->bhp().at( well_index );
well.thp = this->thp().at( well_index );
well.temperature = this->temperature().at( well_index );
const auto wellrate_index = well_index * pu.num_phases;
const auto& wv = this->wellRates();
if( pu.phase_used[BlackoilPhases::Aqua] ) {
well.rates.set( rt::wat, wv[ wellrate_index + pu.phase_pos[BlackoilPhases::Aqua] ] );
}
if( pu.phase_used[BlackoilPhases::Liquid] ) {
well.rates.set( rt::oil, wv[ wellrate_index + pu.phase_pos[BlackoilPhases::Liquid] ] );
}
if( pu.phase_used[BlackoilPhases::Vapour] ) {
well.rates.set( rt::gas, wv[ wellrate_index + pu.phase_pos[BlackoilPhases::Vapour] ] );
}
const int num_perf_well = this->wells_->well_connpos[ well_index + 1 ]
- this->wells_->well_connpos[ well_index ];
well.connections.resize(num_perf_well);
for( int i = 0; i < num_perf_well; ++i ) {
const auto wi = this->wells_->well_connpos[ well_index ] + i;
const auto active_index = this->wells_->well_cells[ wi ];
auto& connection = well.connections[ i ];
connection.index = globalCellIdxMap[active_index];
connection.pressure = this->perfPress()[ itr.second[1] + i ];
connection.reservoir_rate = this->perfRates()[ itr.second[1] + i ];
}
assert(num_perf_well == int(well.connections.size()));
}
return dw;
}
virtual ~WellState() {}
WellState() = default;
WellState( const WellState& rhs ) :
bhp_( rhs.bhp_ ),
thp_( rhs.thp_ ),
temperature_( rhs.temperature_ ),
wellrates_( rhs.wellrates_ ),
perfrates_( rhs.perfrates_ ),
perfpress_( rhs.perfpress_ ),
wellMap_( rhs.wellMap_ ),
wells_( clone_wells( rhs.wells_.get() ) )
{}
WellState& operator=( const WellState& rhs ) {
this->bhp_ = rhs.bhp_;
this->thp_ = rhs.thp_;
this->temperature_ = rhs.temperature_;
this->wellrates_ = rhs.wellrates_;
this->perfrates_ = rhs.perfrates_;
this->perfpress_ = rhs.perfpress_;
this->wellMap_ = rhs.wellMap_;
this->wells_.reset( clone_wells( rhs.wells_.get() ) );
return *this;
}
private:
std::vector<double> bhp_;
std::vector<double> thp_;
std::vector<double> temperature_;
std::vector<double> wellrates_;
std::vector<double> perfrates_;
std::vector<double> perfpress_;
WellMapType wellMap_;
protected:
struct wdel {
void operator()( Wells* w ) { destroy_wells( w ); }
};
std::unique_ptr< Wells, wdel > wells_;
};
} // namespace Opm
#endif // OPM_WELLSTATE_HEADER_INCLUDED