opm-simulators/opm/simulators/wells/WellInterfaceFluidSystem.cpp
2022-10-31 13:14:51 +01:00

431 lines
17 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2018 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/WellInterfaceFluidSystem.hpp>
#include <opm/grid/utility/RegionMapping.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/simulators/utils/DeferredLogger.hpp>
#include <opm/simulators/wells/GroupState.hpp>
#include <opm/simulators/wells/ParallelWellInfo.hpp>
#include <opm/simulators/wells/RateConverter.hpp>
#include <opm/simulators/wells/SingleWellState.hpp>
#include <opm/simulators/wells/TargetCalculator.hpp>
#include <opm/simulators/wells/WellGroupConstraints.hpp>
#include <opm/simulators/wells/WellGroupControls.hpp>
#include <opm/simulators/wells/WellGroupHelpers.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <cassert>
#include <cmath>
namespace Opm
{
template<class FluidSystem>
WellInterfaceFluidSystem<FluidSystem>::
WellInterfaceFluidSystem(const Well& well,
const ParallelWellInfo& parallel_well_info,
const int time_step,
const RateConverterType& rate_converter,
const int pvtRegionIdx,
const int num_components,
const int num_phases,
const int index_of_well,
const std::vector<PerforationData>& perf_data)
: WellInterfaceGeneric(well, parallel_well_info, time_step,
pvtRegionIdx, num_components, num_phases,
index_of_well, perf_data)
, rateConverter_(rate_converter)
{
}
template<typename FluidSystem>
void
WellInterfaceFluidSystem<FluidSystem>::
calculateReservoirRates(SingleWellState& ws) const
{
const int fipreg = 0; // not considering the region for now
const int np = number_of_phases_;
std::vector<double> surface_rates(np, 0.0);
for (int p = 0; p < np; ++p) {
surface_rates[p] = ws.surface_rates[p];
}
std::vector<double> voidage_rates(np, 0.0);
rateConverter_.calcReservoirVoidageRates(fipreg, pvtRegionIdx_, surface_rates, voidage_rates);
ws.reservoir_rates = voidage_rates;
}
template <typename FluidSystem>
Well::ProducerCMode
WellInterfaceFluidSystem<FluidSystem>::
activeProductionConstraint(const SingleWellState& ws,
const SummaryState& summaryState,
DeferredLogger& deferred_logger) const
{
const PhaseUsage& pu = this->phaseUsage();
const auto controls = this->well_ecl_.productionControls(summaryState);
const auto currentControl = ws.production_cmode;
if (controls.hasControl(Well::ProducerCMode::BHP) && currentControl != Well::ProducerCMode::BHP) {
const double bhp_limit = controls.bhp_limit;
double current_bhp = ws.bhp;
if (bhp_limit > current_bhp)
return Well::ProducerCMode::BHP;
}
if (controls.hasControl(Well::ProducerCMode::ORAT) && currentControl != Well::ProducerCMode::ORAT) {
double current_rate = -ws.surface_rates[pu.phase_pos[BlackoilPhases::Liquid]];
if (controls.oil_rate < current_rate)
return Well::ProducerCMode::ORAT;
}
if (controls.hasControl(Well::ProducerCMode::WRAT) && currentControl != Well::ProducerCMode::WRAT) {
double current_rate = -ws.surface_rates[pu.phase_pos[BlackoilPhases::Aqua]];
if (controls.water_rate < current_rate)
return Well::ProducerCMode::WRAT;
}
if (controls.hasControl(Well::ProducerCMode::GRAT) && currentControl != Well::ProducerCMode::GRAT) {
double current_rate = -ws.surface_rates[pu.phase_pos[BlackoilPhases::Vapour]];
if (controls.gas_rate < current_rate)
return Well::ProducerCMode::GRAT;
}
if (controls.hasControl(Well::ProducerCMode::LRAT) && currentControl != Well::ProducerCMode::LRAT) {
double current_rate = -ws.surface_rates[pu.phase_pos[BlackoilPhases::Liquid]];
current_rate -= ws.surface_rates[pu.phase_pos[BlackoilPhases::Aqua]];
bool skip = false;
if (controls.liquid_rate == controls.oil_rate) {
const double current_water_rate = ws.surface_rates[pu.phase_pos[BlackoilPhases::Aqua]];
if (std::abs(current_water_rate) < 1e-12) {
skip = true;
deferred_logger.debug("LRAT_ORAT_WELL", "Well " + this->name() + " The LRAT target is equal the ORAT target and the water rate is zero, skip checking LRAT");
}
}
if (!skip && controls.liquid_rate < current_rate)
return Well::ProducerCMode::LRAT;
}
if (controls.hasControl(Well::ProducerCMode::RESV) && currentControl != Well::ProducerCMode::RESV) {
double current_rate = 0.0;
if (pu.phase_used[BlackoilPhases::Aqua])
current_rate -= ws.reservoir_rates[pu.phase_pos[BlackoilPhases::Aqua]];
if (pu.phase_used[BlackoilPhases::Liquid])
current_rate -= ws.reservoir_rates[pu.phase_pos[BlackoilPhases::Liquid]];
if (pu.phase_used[BlackoilPhases::Vapour])
current_rate -= ws.reservoir_rates[pu.phase_pos[BlackoilPhases::Vapour]];
if (controls.prediction_mode && controls.resv_rate < current_rate)
return Well::ProducerCMode::RESV;
if (!controls.prediction_mode) {
const int fipreg = 0; // not considering the region for now
const int np = number_of_phases_;
std::vector<double> surface_rates(np, 0.0);
if (pu.phase_used[BlackoilPhases::Aqua])
surface_rates[pu.phase_pos[BlackoilPhases::Aqua]] = controls.water_rate;
if (pu.phase_used[BlackoilPhases::Liquid])
surface_rates[pu.phase_pos[BlackoilPhases::Liquid]] = controls.oil_rate;
if (pu.phase_used[BlackoilPhases::Vapour])
surface_rates[pu.phase_pos[BlackoilPhases::Vapour]] = controls.gas_rate;
std::vector<double> voidage_rates(np, 0.0);
rateConverter_.calcReservoirVoidageRates(fipreg, pvtRegionIdx_, surface_rates, voidage_rates);
double resv_rate = 0.0;
for (int p = 0; p < np; ++p)
resv_rate += voidage_rates[p];
if (resv_rate < current_rate)
return Well::ProducerCMode::RESV;
}
}
if (controls.hasControl(Well::ProducerCMode::THP) && currentControl != Well::ProducerCMode::THP) {
const auto& thp = getTHPConstraint(summaryState);
double current_thp = ws.thp;
if (thp > current_thp && !ws.trivial_target) {
// If WVFPEXP item 4 is set to YES1 or YES2
// switching to THP is prevented if the well will
// produce at a higher rate with THP control
const auto& wvfpexp = this->well_ecl_.getWVFPEXP();
bool rate_less_than_potential = true;
if (wvfpexp.prevent()) {
for (int p = 0; p < number_of_phases_; ++p) {
// Currently we use the well potentials here computed before the iterations.
// We may need to recompute the well potentials to get a more
// accurate check here.
rate_less_than_potential = rate_less_than_potential && (-ws.surface_rates[p]) <= ws.well_potentials[p];
}
}
if(!wvfpexp.prevent() || !rate_less_than_potential) {
this->operability_status_.thp_limit_violated_but_not_switched = false;
return Well::ProducerCMode::THP;
} else {
this->operability_status_.thp_limit_violated_but_not_switched = true;
deferred_logger.info("NOT_SWITCHING_TO_THP",
"The THP limit is violated for producer " +
this->name() +
". But the rate will increase if switched to THP. " +
"The well is therefore kept at " + Well::ProducerCMode2String(currentControl));
}
}
}
return currentControl;
}
template <typename FluidSystem>
Well::InjectorCMode
WellInterfaceFluidSystem<FluidSystem>::
activeInjectionConstraint(const SingleWellState& ws,
const SummaryState& summaryState,
DeferredLogger& deferred_logger) const
{
const PhaseUsage& pu = this->phaseUsage();
const auto controls = this->well_ecl_.injectionControls(summaryState);
const auto currentControl = ws.injection_cmode;
if (controls.hasControl(Well::InjectorCMode::BHP) && currentControl != Well::InjectorCMode::BHP)
{
const auto& bhp = controls.bhp_limit;
double current_bhp = ws.bhp;
if (bhp < current_bhp)
return Well::InjectorCMode::BHP;
}
if (controls.hasControl(Well::InjectorCMode::RATE) && currentControl != Well::InjectorCMode::RATE)
{
InjectorType injectorType = controls.injector_type;
double current_rate = 0.0;
switch (injectorType) {
case InjectorType::WATER:
{
current_rate = ws.surface_rates[ pu.phase_pos[BlackoilPhases::Aqua] ];
break;
}
case InjectorType::OIL:
{
current_rate = ws.surface_rates[ pu.phase_pos[BlackoilPhases::Liquid] ];
break;
}
case InjectorType::GAS:
{
current_rate = ws.surface_rates[ pu.phase_pos[BlackoilPhases::Vapour] ];
break;
}
default:
throw("Expected WATER, OIL or GAS as type for injectors " + this->well_ecl_.name());
}
if (controls.surface_rate < current_rate)
return Well::InjectorCMode::RATE;
}
if (controls.hasControl(Well::InjectorCMode::RESV) && currentControl != Well::InjectorCMode::RESV)
{
double current_rate = 0.0;
if( pu.phase_used[BlackoilPhases::Aqua] )
current_rate += ws.reservoir_rates[ pu.phase_pos[BlackoilPhases::Aqua] ];
if( pu.phase_used[BlackoilPhases::Liquid] )
current_rate += ws.reservoir_rates[ pu.phase_pos[BlackoilPhases::Liquid] ];
if( pu.phase_used[BlackoilPhases::Vapour] )
current_rate += ws.reservoir_rates[ pu.phase_pos[BlackoilPhases::Vapour] ];
if (controls.reservoir_rate < current_rate)
return Well::InjectorCMode::RESV;
}
if (controls.hasControl(Well::InjectorCMode::THP) && currentControl != Well::InjectorCMode::THP)
{
const auto& thp = getTHPConstraint(summaryState);
double current_thp = ws.thp;
if (thp < current_thp) {
bool rate_less_than_potential = true;
for (int p = 0; p < number_of_phases_; ++p) {
// Currently we use the well potentials here computed before the iterations.
// We may need to recompute the well potentials to get a more
// accurate check here.
rate_less_than_potential = rate_less_than_potential && (ws.surface_rates[p]) <= ws.well_potentials[p];
}
if(!rate_less_than_potential) {
this->operability_status_.thp_limit_violated_but_not_switched = false;
return Well::InjectorCMode::THP;
} else {
this->operability_status_.thp_limit_violated_but_not_switched = true;
deferred_logger.debug("NOT_SWITCHING_TO_THP",
"The THP limit is violated for injector " +
this->name() +
". But the rate will increase if switched to THP. " +
"The well is therefore kept at " + Well::InjectorCMode2String(currentControl));
}
}
}
return currentControl;
}
template <typename FluidSystem>
bool
WellInterfaceFluidSystem<FluidSystem>::
checkIndividualConstraints(SingleWellState& ws,
const SummaryState& summaryState,
DeferredLogger& deferred_logger) const
{
if (this->well_ecl_.isProducer()) {
auto new_cmode = this->activeProductionConstraint(ws, summaryState, deferred_logger);
if (new_cmode != ws.production_cmode) {
ws.production_cmode = new_cmode;
return true;
}
}
if (this->well_ecl_.isInjector()) {
auto new_cmode = this->activeInjectionConstraint(ws, summaryState, deferred_logger);
if (new_cmode != ws.injection_cmode) {
ws.injection_cmode = new_cmode;
return true;
}
}
return false;
}
template <typename FluidSystem>
bool
WellInterfaceFluidSystem<FluidSystem>::
checkGroupConstraints(WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
DeferredLogger& deferred_logger) const
{
auto rCoeff = [this](const int id, const int region, std::vector<double>& coeff)
{
this->rateConverter().calcCoeff(id, region, coeff);
};
return WellGroupConstraints(*this).checkGroupConstraints(well_state, group_state,
schedule, summaryState,
rCoeff, deferred_logger);
}
template <typename FluidSystem>
bool
WellInterfaceFluidSystem<FluidSystem>::
checkConstraints(WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
DeferredLogger& deferred_logger) const
{
const bool ind_broken = checkIndividualConstraints(well_state.well(this->index_of_well_), summaryState, deferred_logger);
if (ind_broken) {
return true;
} else {
return checkGroupConstraints(well_state, group_state, schedule, summaryState, deferred_logger);
}
}
template<typename FluidSystem>
int
WellInterfaceFluidSystem<FluidSystem>::
flowPhaseToEbosPhaseIdx(const int phaseIdx) const
{
const auto& pu = this->phaseUsage();
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && pu.phase_pos[Water] == phaseIdx)
return FluidSystem::waterPhaseIdx;
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && pu.phase_pos[Oil] == phaseIdx)
return FluidSystem::oilPhaseIdx;
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && pu.phase_pos[Gas] == phaseIdx)
return FluidSystem::gasPhaseIdx;
// for other phases return the index
return phaseIdx;
}
template<typename FluidSystem>
std::optional<double>
WellInterfaceFluidSystem<FluidSystem>::
getGroupInjectionTargetRate(const Group& group,
const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const InjectorType& injectorType,
double efficiencyFactor,
DeferredLogger& deferred_logger) const
{
auto rCoeff = [this](const int id, const int region, std::vector<double>& coeff)
{
this->rateConverter().calcCoeff(id, region, coeff);
};
return WellGroupControls(*this).getGroupInjectionTargetRate(group, well_state,
group_state, schedule,
summaryState, injectorType,
rCoeff, efficiencyFactor,
deferred_logger);
}
template<typename FluidSystem>
double
WellInterfaceFluidSystem<FluidSystem>::
getGroupProductionTargetRate(const Group& group,
const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
double efficiencyFactor) const
{
auto rCoeff = [this](const int id, const int region, std::vector<double>& coeff)
{
this->rateConverter().calcCoeff(id, region, coeff);
};
return WellGroupControls(*this).getGroupProductionTargetRate(group, well_state,
group_state, schedule,
summaryState,
rCoeff, efficiencyFactor);
}
template class WellInterfaceFluidSystem<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>>;
} // namespace Opm