opm-simulators/opm/autodiff/FullyImplicitBlackoilSolver.cpp
2013-06-02 08:19:21 +02:00

1092 lines
37 KiB
C++

/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/autodiff/FullyImplicitBlackoilSolver.hpp>
#include <opm/autodiff/AutoDiffBlock.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/autodiff/GeoProps.hpp>
#include <opm/core/grid.h>
#include <opm/core/linalg/LinearSolverInterface.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <cassert>
#include <cmath>
#include <iomanip>
#define DUMP(foo) std::cout << "==========================================\n" #foo ":\n" << collapseJacs(foo) << std::endl
typedef AutoDiff::ForwardBlock<double> ADB;
typedef ADB::V V;
typedef ADB::M M;
typedef Eigen::Array<double,
Eigen::Dynamic,
Eigen::Dynamic,
Eigen::RowMajor> DataBlock;
namespace {
std::vector<int>
buildAllCells(const int nc)
{
std::vector<int> all_cells(nc);
for (int c = 0; c < nc; ++c) { all_cells[c] = c; }
return all_cells;
}
template <class GeoProps>
AutoDiff::ForwardBlock<double>::M
gravityOperator(const UnstructuredGrid& grid,
const HelperOps& ops ,
const GeoProps& geo )
{
const int nc = grid.number_of_cells;
std::vector<int> f2hf(2 * grid.number_of_faces, -1);
for (int c = 0, i = 0; c < nc; ++c) {
for (; i < grid.cell_facepos[c + 1]; ++i) {
const int f = grid.cell_faces[ i ];
const int p = 0 + (grid.face_cells[2*f + 0] != c);
f2hf[2*f + p] = i;
}
}
typedef AutoDiff::ForwardBlock<double>::V V;
typedef AutoDiff::ForwardBlock<double>::M M;
const V& gpot = geo.gravityPotential();
const V& trans = geo.transmissibility();
const HelperOps::IFaces::Index ni = ops.internal_faces.size();
typedef Eigen::Triplet<double> Tri;
std::vector<Tri> grav; grav.reserve(2 * ni);
for (HelperOps::IFaces::Index i = 0; i < ni; ++i) {
const int f = ops.internal_faces[ i ];
const int c1 = grid.face_cells[2*f + 0];
const int c2 = grid.face_cells[2*f + 1];
assert ((c1 >= 0) && (c2 >= 0));
const double dG1 = gpot[ f2hf[2*f + 0] ];
const double dG2 = gpot[ f2hf[2*f + 1] ];
const double t = trans[ f ];
grav.push_back(Tri(i, c1, t * dG1));
grav.push_back(Tri(i, c2, - t * dG2));
}
M G(ni, nc); G.setFromTriplets(grav.begin(), grav.end());
return G;
}
V computePerfPress(const UnstructuredGrid& grid, const Wells& wells, const V& rho, const double grav)
{
const int nw = wells.number_of_wells;
const int nperf = wells.well_connpos[nw];
const int dim = grid.dimensions;
V wdp = V::Zero(nperf,1);
ASSERT(wdp.size() == rho.size());
// Main loop, iterate over all perforations,
// using the following formula:
// wdp(perf) = g*(perf_z - well_ref_z)*rho(perf)
// where the total density rho(perf) is taken to be
// sum_p (rho_p*saturation_p) in the perforation cell.
// [although this is computed on the outside of this function].
for (int w = 0; w < nw; ++w) {
const double ref_depth = wells.depth_ref[w];
for (int j = wells.well_connpos[w]; j < wells.well_connpos[w + 1]; ++j) {
const int cell = wells.well_cells[j];
const double cell_depth = grid.cell_centroids[dim * cell + dim - 1];
wdp[j] = rho[j]*grav*(cell_depth - ref_depth);
}
}
return wdp;
}
template <class PU>
std::vector<bool>
activePhases(const PU& pu)
{
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
std::vector<bool> active(maxnp, false);
for (int p = 0; p < pu.MaxNumPhases; ++p) {
active[ p ] = pu.phase_used[ p ] != 0;
}
return active;
}
template <class PU>
std::vector<int>
active2Canonical(const PU& pu)
{
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
std::vector<int> act2can(maxnp, -1);
for (int phase = 0; phase < maxnp; ++phase) {
if (pu.phase_used[ phase ]) {
act2can[ pu.phase_pos[ phase ] ] = phase;
}
}
return act2can;
}
} // Anonymous namespace
namespace Opm {
FullyImplicitBlackoilSolver::
FullyImplicitBlackoilSolver(const UnstructuredGrid& grid ,
const BlackoilPropsAdInterface& fluid,
const DerivedGeology& geo ,
const Wells& wells,
const LinearSolverInterface& linsolver)
: grid_ (grid)
, fluid_ (fluid)
, geo_ (geo)
, wells_ (wells)
, linsolver_ (linsolver)
, active_(activePhases(fluid.phaseUsage()))
, canph_ (active2Canonical(fluid.phaseUsage()))
, cells_ (buildAllCells(grid.number_of_cells))
, ops_ (grid)
, wops_ (wells)
, grav_ (gravityOperator(grid_, ops_, geo_))
, rq_ (fluid.numPhases())
, residual_ ( { std::vector<ADB>(fluid.numPhases(), ADB::null()),
ADB::null(),
std::vector<ADB>(fluid.numPhases(), ADB::null()),
ADB::null() } )
{
}
void
FullyImplicitBlackoilSolver::
step(const double dt,
BlackoilState& x ,
WellState& xw)
{
const V pvdt = geo_.poreVolume() / dt;
{
const SolutionState state = constantState(x, xw);
computeAccum(state, 0);
}
const double atol = 1.0e-12;
const double rtol = 5.0e-8;
const int maxit = 15;
assemble(pvdt, x, xw);
const double r0 = residualNorm();
int it = 0;
std::cout << "\nIteration Residual\n"
<< std::setw(9) << it << std::setprecision(9)
<< std::setw(18) << r0 << std::endl;
bool resTooLarge = r0 > atol;
while (resTooLarge && (it < maxit)) {
const V dx = solveJacobianSystem();
updateState(dx, x, xw);
assemble(pvdt, x, xw);
const double r = residualNorm();
resTooLarge = (r > atol) && (r > rtol*r0);
it += 1;
std::cout << std::setw(9) << it << std::setprecision(9)
<< std::setw(18) << r << std::endl;
}
if (resTooLarge) {
std::cerr << "Failed to compute converged solution in " << it << " iterations. Ignoring!\n";
// THROW("Failed to compute converged solution in " << it << " iterations.");
}
}
FullyImplicitBlackoilSolver::ReservoirResidualQuant::ReservoirResidualQuant()
: accum(2, ADB::null())
, mflux( ADB::null())
, b ( ADB::null())
, head ( ADB::null())
, mob ( ADB::null())
{
}
FullyImplicitBlackoilSolver::SolutionState::SolutionState(const int np)
: pressure ( ADB::null())
, saturation(np, ADB::null())
, rs ( ADB::null())
, bhp ( ADB::null())
{
}
FullyImplicitBlackoilSolver::
WellOps::WellOps(const Wells& wells)
: w2p(wells.well_connpos[ wells.number_of_wells ],
wells.number_of_wells)
, p2w(wells.number_of_wells,
wells.well_connpos[ wells.number_of_wells ])
{
const int nw = wells.number_of_wells;
const int* const wpos = wells.well_connpos;
typedef Eigen::Triplet<double> Tri;
std::vector<Tri> scatter, gather;
scatter.reserve(wpos[nw]);
gather .reserve(wpos[nw]);
for (int w = 0, i = 0; w < nw; ++w) {
for (; i < wpos[ w + 1 ]; ++i) {
scatter.push_back(Tri(i, w, 1.0));
gather .push_back(Tri(w, i, 1.0));
}
}
w2p.setFromTriplets(scatter.begin(), scatter.end());
p2w.setFromTriplets(gather .begin(), gather .end());
}
FullyImplicitBlackoilSolver::SolutionState
FullyImplicitBlackoilSolver::constantState(const BlackoilState& x,
const WellState& xw)
{
const int nc = grid_.number_of_cells;
const int np = x.numPhases();
// The block pattern assumes the following primary variables:
// pressure
// water saturation (if water present)
// gas saturation (if gas present)
// gas solution factor (if both gas and oil present)
// well bottom-hole pressure
// Note that oil is assumed to always be present, but is never
// a primary variable.
ASSERT(active_[ Oil ]);
std::vector<int> bpat(np, nc);
const bool gasandoil = (active_[ Oil ] && active_[ Gas ]);
if (gasandoil) {
bpat.push_back(nc);
}
bpat.push_back(xw.bhp().size());
SolutionState state(np);
// Pressure.
assert (not x.pressure().empty());
const V p = Eigen::Map<const V>(& x.pressure()[0], nc, 1);
state.pressure = ADB::constant(p, bpat);
// Saturation.
assert (not x.saturation().empty());
const DataBlock s = Eigen::Map<const DataBlock>(& x.saturation()[0], nc, np);
const Opm::PhaseUsage pu = fluid_.phaseUsage();
{
V so = V::Ones(nc, 1);
if (active_[ Water ]) {
const int pos = pu.phase_pos[ Water ];
const V sw = s.col(pos);
so -= sw;
state.saturation[pos] = ADB::constant(sw, bpat);
}
if (active_[ Gas ]) {
const int pos = pu.phase_pos[ Gas ];
const V sg = s.col(pos);
so -= sg;
state.saturation[pos] = ADB::constant(sg, bpat);
}
if (active_[ Oil ]) {
const int pos = pu.phase_pos[ Oil ];
state.saturation[pos] = ADB::constant(so, bpat);
}
}
// Gas-oil ratio (rs).
if (active_[ Oil ] && active_[ Gas ]) {
const V rs = Eigen::Map<const V>(& x.gasoilratio()[0], x.gasoilratio().size());
state.rs = ADB::constant(rs, bpat);
} else {
const V Rs = V::Zero(nc, 1);
state.rs = ADB::constant(Rs, bpat);
}
// Well bottom-hole pressure.
assert (not xw.bhp().empty());
const V bhp = Eigen::Map<const V>(& xw.bhp()[0], xw.bhp().size());
state.bhp = ADB::constant(bhp, bpat);
return state;
}
FullyImplicitBlackoilSolver::SolutionState
FullyImplicitBlackoilSolver::variableState(const BlackoilState& x,
const WellState& xw)
{
const int nc = grid_.number_of_cells;
const int np = x.numPhases();
std::vector<V> vars0;
vars0.reserve(active_[Oil] && active_[Gas] ? np + 2 : np + 1); // Rs is primary if oil and gas present.
// Initial pressure.
assert (not x.pressure().empty());
const V p = Eigen::Map<const V>(& x.pressure()[0], nc, 1);
vars0.push_back(p);
// Initial saturation.
assert (not x.saturation().empty());
const DataBlock s = Eigen::Map<const DataBlock>(& x.saturation()[0], nc, np);
const Opm::PhaseUsage pu = fluid_.phaseUsage();
// We do not handle a Water/Gas situation correctly, guard against it.
ASSERT (active_[ Oil]);
if (active_[ Water ]) {
const V sw = s.col(pu.phase_pos[ Water ]);
vars0.push_back(sw);
}
if (active_[ Gas ]) {
const V sg = s.col(pu.phase_pos[ Gas ]);
vars0.push_back(sg);
}
// Initial gas-oil ratio (Rs).
if (active_[ Oil ] && active_[ Gas ]) {
const V rs = Eigen::Map<const V>(& x.gasoilratio()[0], x.gasoilratio().size());
vars0.push_back(rs);
}
// Initial well bottom-hole pressure.
assert (not xw.bhp().empty());
const V bhp = Eigen::Map<const V>(& xw.bhp()[0], xw.bhp().size());
vars0.push_back(bhp);
std::vector<ADB> vars = ADB::variables(vars0);
SolutionState state(np);
// Pressure.
int nextvar = 0;
state.pressure = vars[ nextvar++ ];
// Saturation.
const std::vector<int>& bpat = vars[0].blockPattern();
{
ADB so = ADB::constant(V::Ones(nc, 1), bpat);
if (active_[ Water ]) {
ADB& sw = vars[ nextvar++ ];
state.saturation[ pu.phase_pos[ Water ] ] = sw;
so = so - sw;
}
if (active_[ Gas ]) {
ADB& sg = vars[ nextvar++ ];
state.saturation[ pu.phase_pos[ Gas ] ] = sg;
so = so - sg;
}
if (active_[ Oil ]) {
// Note that so is never a primary variable.
state.saturation[ pu.phase_pos[ Oil ] ] = so;
}
}
// Rs.
if (active_[ Oil ] && active_[ Gas ]) {
state.rs = vars[ nextvar++ ];
} else {
state.rs = ADB::constant(V::Zero(nc), bpat);
}
// Bhp.
state.bhp = vars[ nextvar ++];
ASSERT(nextvar == int(vars.size()));
return state;
}
void
FullyImplicitBlackoilSolver::computeAccum(const SolutionState& state,
const int aix )
{
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB& press = state.pressure;
const std::vector<ADB>& sat = state.saturation;
const ADB& rs = state.rs;
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
for (int phase = 0; phase < maxnp; ++phase) {
if (active_[ phase ]) {
const int pos = pu.phase_pos[ phase ];
rq_[pos].b = fluidReciprocFVF(phase, press, rs, cells_);
rq_[pos].accum[aix] = rq_[pos].b * sat[pos];
// DUMP(rq_[pos].b);
// DUMP(rq_[pos].accum[aix]);
}
}
if (active_[ Oil ] && active_[ Gas ]) {
// Account for gas dissolved in oil.
const int po = pu.phase_pos[ Oil ];
const int pg = pu.phase_pos[ Gas ];
rq_[pg].accum[aix] += state.rs * rq_[po].accum[aix];
// DUMP(rq_[pg].accum[aix]);
}
}
void
FullyImplicitBlackoilSolver::
assemble(const V& pvdt,
const BlackoilState& x ,
const WellState& xw )
{
// Create the primary variables.
const SolutionState state = variableState(x, xw);
// -------- Mass balance equations --------
// Compute b_p and the accumulation term b_p*s_p for each phase,
// except gas. For gas, we compute b_g*s_g + Rs*b_o*s_o.
// These quantities are stored in rq_[phase].accum[1].
// The corresponding accumulation terms from the start of
// the timestep (b^0_p*s^0_p etc.) were already computed
// in step() and stored in rq_[phase].accum[0].
computeAccum(state, 1);
// Set up the common parts of the mass balance equations
// for each active phase.
const V transi = subset(geo_.transmissibility(), ops_.internal_faces);
const std::vector<ADB> kr = computeRelPerm(state);
for (int phase = 0; phase < fluid_.numPhases(); ++phase) {
computeMassFlux(phase, transi, kr, state);
// std::cout << "===== kr[" << phase << "] = \n" << std::endl;
// std::cout << kr[phase];
// std::cout << "===== rq_[" << phase << "].mflux = \n" << std::endl;
// std::cout << rq_[phase].mflux;
residual_.mass_balance[ phase ] =
pvdt*(rq_[phase].accum[1] - rq_[phase].accum[0])
+ ops_.div*rq_[phase].mflux;
// DUMP(residual_.mass_balance[phase]);
}
// -------- Extra (optional) sg or rs equation, and rs contributions to the mass balance equations --------
// Add the extra (flux) terms to the gas mass balance equations
// from gas dissolved in the oil phase.
// The extra terms in the accumulation part of the equation are already handled.
if (active_[ Oil ] && active_[ Gas ]) {
const int po = fluid_.phaseUsage().phase_pos[ Oil ];
const UpwindSelector<double> upwind(grid_, ops_,
rq_[po].head.value());
const ADB rs_face = upwind.select(state.rs);
residual_.mass_balance[ Gas ] += ops_.div * (rs_face * rq_[po].mflux);
// DUMP(residual_.mass_balance[ Gas ]);
// Also, we have another equation: sg = 0 or rs = rsMax.
const int pg = fluid_.phaseUsage().phase_pos[ Gas ];
const ADB sg_eq = state.saturation[pg];
const ADB rs_max = fluidRsMax(state.pressure, cells_);
const ADB rs_eq = state.rs - rs_max;
Selector<double> use_rs_eq(rs_eq.value());
residual_.rs_or_sg_eq = use_rs_eq.select(rs_eq, sg_eq);
// DUMP(residual_.rs_or_sg_eq);
}
// -------- Well equation, and well contributions to the mass balance equations --------
// Contribution to mass balance will have to wait.
const int nc = grid_.number_of_cells;
const int np = wells_.number_of_phases;
const int nw = wells_.number_of_wells;
const int nperf = wells_.well_connpos[nw];
const std::vector<int> well_cells(wells_.well_cells, wells_.well_cells + nperf);
const V transw = Eigen::Map<const V>(wells_.WI, nperf);
const ADB& bhp = state.bhp;
const DataBlock well_s = wops_.w2p * Eigen::Map<const DataBlock>(wells_.comp_frac, nw, np).matrix();
// Extract variables for perforation cell pressures
// and corresponding perforation well pressures.
const ADB p_perfcell = subset(state.pressure, well_cells);
// Finally construct well perforation pressures and well flows.
// Compute well pressure differentials.
// Construct pressure difference vector for wells.
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const int dim = grid_.dimensions;
const double* g = geo_.gravity();
if (g) {
// Guard against gravity in anything but last dimension.
for (int dd = 0; dd < dim - 1; ++dd) {
ASSERT(g[dd] == 0.0);
}
}
ADB cell_rho_total = ADB::constant(V::Zero(nc), state.pressure.blockPattern());
for (int phase = 0; phase < 3; ++phase) {
if (active_[phase]) {
const int pos = pu.phase_pos[phase];
const ADB cell_rho = fluidDensity(phase, state.pressure, state.rs, cells_);
cell_rho_total += state.saturation[pos] * cell_rho;
}
}
ADB inj_rho_total = ADB::constant(V::Zero(nperf), state.pressure.blockPattern());
ASSERT(np == wells_.number_of_phases);
const DataBlock compi = Eigen::Map<const DataBlock>(wells_.comp_frac, nw, np);
for (int phase = 0; phase < 3; ++phase) {
if (active_[phase]) {
const int pos = pu.phase_pos[phase];
const ADB cell_rho = fluidDensity(phase, state.pressure, state.rs, cells_);
const V fraction = compi.col(pos);
inj_rho_total += (wops_.w2p * fraction.matrix()).array() * subset(cell_rho, well_cells);
}
}
const V rho_perf_cell = subset(cell_rho_total, well_cells).value();
const V rho_perf_well = inj_rho_total.value();
V prodperfs = V::Constant(nperf, -1.0);
for (int w = 0; w < nw; ++w) {
if (wells_.type[w] == PRODUCER) {
std::fill(prodperfs.data() + wells_.well_connpos[w],
prodperfs.data() + wells_.well_connpos[w+1], 1.0);
}
}
const Selector<double> producer(prodperfs);
const V rho_perf = producer.select(rho_perf_cell, rho_perf_well);
const V well_perf_dp = computePerfPress(grid_, wells_, rho_perf, g ? g[dim-1] : 0.0);
const ADB p_perfwell = wops_.w2p * bhp + well_perf_dp;
const ADB nkgradp_well = transw * (p_perfcell - p_perfwell);
// DUMP(nkgradp_well);
const Selector<double> cell_to_well_selector(nkgradp_well.value());
ADB qs = ADB::constant(V::Zero(nw*np), state.bhp.blockPattern());
// We can safely use a dummy rs here (for well calculations)
// as long as we do not inject oil.
const ADB rs_perfwell = ADB::constant(V::Zero(nperf), state.bhp.blockPattern());
const std::vector<ADB> well_kr = computeRelPermWells(state, well_s, well_cells);
ADB perf_total_mob = subset(rq_[0].mob, well_cells);
for (int phase = 1; phase < np; ++phase) {
perf_total_mob += subset(rq_[phase].mob, well_cells);
}
std::vector<ADB> well_contribs(np, ADB::null());
std::vector<ADB> well_perf_rates(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
const ADB& cell_b = rq_[phase].b;
const ADB perf_b = subset(cell_b, well_cells);
const ADB& cell_mob = rq_[phase].mob;
const V well_fraction = compi.col(phase);
// Using total mobilities for all phases for injection.
const ADB perf_mob_injector = (wops_.w2p * well_fraction.matrix()).array() * perf_total_mob;
const ADB perf_mob = producer.select(subset(cell_mob, well_cells),
perf_mob_injector);
const ADB perf_flux = perf_mob * (nkgradp_well); // No gravity term for perforations.
well_perf_rates[phase] = (perf_flux*perf_b);
const ADB well_rates = wops_.p2w * well_perf_rates[phase];
qs += superset(well_rates, Span(nw, 1, phase*nw), nw*np);
// const ADB well_contrib = superset(perf_flux*perf_b, well_cells, nc);
well_contribs[phase] = superset(perf_flux*perf_b, well_cells, nc);
// DUMP(well_contribs[phase]);
residual_.mass_balance[phase] += well_contribs[phase];
}
if (active_[Gas] && active_[Oil]) {
const int oilpos = pu.phase_pos[Oil];
const int gaspos = pu.phase_pos[Gas];
const ADB rs_perf = subset(state.rs, well_cells);
qs += superset(well_perf_rates[oilpos]*rs_perf, Span(nw, 1, gaspos*nw), nw*np);
// DUMP(well_contribs[gaspos] + well_contribs[oilpos]*state.rs);
residual_.mass_balance[gaspos] += well_contribs[oilpos]*state.rs;
}
// Handling BHP and SURFACE_RATE wells.
V bhp_targets(nw);
V rate_targets(nw);
M rate_distr(nw, np*nw);
for (int w = 0; w < nw; ++w) {
const WellControls* wc = wells_.ctrls[w];
if (wc->type[wc->current] == BHP) {
bhp_targets[w] = wc->target[wc->current];
rate_targets[w] = -1e100;
} else if (wc->type[wc->current] == SURFACE_RATE) {
bhp_targets[w] = -1e100;
rate_targets[w] = wc->target[wc->current];
for (int phase = 0; phase < np; ++phase) {
rate_distr.insert(w, phase*nw + w) = wc->distr[phase];
}
} else {
THROW("Can only handle BHP and SURFACE_RATE type controls.");
}
}
const ADB bhp_residual = bhp - bhp_targets;
const ADB rate_residual = rate_distr * qs - rate_targets;
// Choose bhp residual for positive bhp targets.
Selector<double> bhp_selector(bhp_targets);
residual_.well_eq = bhp_selector.select(bhp_residual, rate_residual);
DUMP(residual_.well_eq);
}
V FullyImplicitBlackoilSolver::solveJacobianSystem() const
{
const int np = fluid_.numPhases();
ADB mass_res = residual_.mass_balance[0];
for (int phase = 1; phase < np; ++phase) {
mass_res = vertcat(mass_res, residual_.mass_balance[phase]);
}
if (active_[Oil] && active_[Gas]) {
mass_res = vertcat(mass_res, residual_.rs_or_sg_eq);
}
const ADB total_residual = collapseJacs(vertcat(mass_res, residual_.well_eq));
DUMP(total_residual);
const Eigen::SparseMatrix<double, Eigen::RowMajor> matr = total_residual.derivative()[0];
V dx(V::Zero(total_residual.size()));
Opm::LinearSolverInterface::LinearSolverReport rep
= linsolver_.solve(matr.rows(), matr.nonZeros(),
matr.outerIndexPtr(), matr.innerIndexPtr(), matr.valuePtr(),
total_residual.value().data(), dx.data());
if (!rep.converged) {
THROW("ImpesTPFAAD::solve(): Linear solver convergence failure.");
}
return dx;
}
namespace {
struct Chop01 {
double operator()(double x) const { return std::max(std::min(x, 1.0), 0.0); }
};
}
void FullyImplicitBlackoilSolver::updateState(const V& dx,
BlackoilState& state,
WellState& well_state) const
{
const int np = fluid_.numPhases();
const int nc = grid_.number_of_cells;
const int nw = wells_.number_of_wells;
const V null;
ASSERT(null.size() == 0);
const V zero = V::Zero(nc);
const V one = V::Constant(nc, 1.0);
// Extract parts of dx corresponding to each part.
const V dp = subset(dx, Span(nc));
int varstart = nc;
const V dsw = active_[Water] ? subset(dx, Span(nc, 1, varstart)) : null;
varstart += dsw.size();
const V dsg = active_[Gas] ? subset(dx, Span(nc, 1, varstart)) : null;
varstart += dsg.size();
const V drs = (active_[Water] && active_[Gas]) ? subset(dx, Span(nc, 1, varstart)) : null;
varstart += drs.size();
const V dbhp = subset(dx, Span(nw, 1, varstart));
varstart += dbhp.size();
ASSERT(varstart == dx.size());
// Pressure update.
const double dpmaxrel = 0.8;
const V p_old = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
const V absdpmax = dpmaxrel*p_old.abs();
const V dpsign = dp/dp.abs();
const V dp_limited = dpsign * dp.abs().min(absdpmax);
const V p = (p_old - dp_limited).max(zero);
std::copy(&p[0], &p[0] + nc, state.pressure().begin());
// Rs update. Moved before the saturation update because it is
// needed there.
if (active_[Oil] && active_[Gas]) {
const double drsmaxrel = 0.8;
const V rs_old = Eigen::Map<const V>(&state.gasoilratio()[0], nc);
const V absdrsmax = drsmaxrel*rs_old.abs();
const V drssign = drs/drs.abs();
const V drs_limited = drssign * drs.abs().min(absdrsmax);
const V rs = rs_old - drs_limited;
std::copy(&rs[0], &rs[0] + nc, state.gasoilratio().begin());
}
// Saturation updates.
const double dsmax = 0.3;
const DataBlock s_old = Eigen::Map<const DataBlock>(& state.saturation()[0], nc, np);
V so = one;
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
if (active_[ Water ]) {
const int pos = pu.phase_pos[ Water ];
const V sw_old = s_old.col(pos);
const V dswsign = dsw/dsw.abs();
const V dsw_limited = dswsign * dsw.abs().min(dsmax);
const V sw = (sw_old - dsw_limited).unaryExpr(Chop01());
so -= sw;
for (int c = 0; c < nc; ++c) {
state.saturation()[c*np + pos] = sw[c];
}
}
if (active_[ Gas ]) {
const int pos = pu.phase_pos[ Gas ];
const V sg_old = s_old.col(pos);
const V dsgsign = dsg/dsg.abs();
const V dsg_limited = dsgsign * dsg.abs().min(dsmax);
V sg = sg_old - dsg_limited;
if (active_[ Oil ]) {
// Appleyard chop process.
const double epsilon = std::sqrt(std::numeric_limits<double>::epsilon());
const double above_epsilon = 2.0*epsilon;
const double rs_adjust = 1.0;
auto sat2usat = (sg_old > 0.0) && (sg <= 0.0);
Eigen::Map<V> rs(&state.gasoilratio()[0], nc);
const V rs_sat = fluidRsMax(rs, cells_);
auto over_saturated = ((sg > 0) || (rs > rs_sat*rs_adjust)) && (sat2usat == false);
auto usat2sat = (sg_old < epsilon) && over_saturated;
auto zerosg = (sat2usat && sg_old <= above_epsilon);
auto epssg = (sat2usat && sg_old > epsilon);
// With no simple support for Matlab-style statements below,
// we use an explicit for loop.
// sg(zerosg) = 0.0;
// sg(epssg) = epsilon;
// sg(usat2sat) = above_epsilon;
// rs(sg > 0) = rs_sat(sg > 0);
// rs(rs > rs_sat*rs_adjust) = rs_sat(rs > rs_sat*rs_adjust);
for (int c = 0; c < nc; ++c) {
if (zerosg[c]) {
sg[c] = 0.0;
}
if (epssg[c]) {
sg[c] = epsilon;
}
if (usat2sat[c]) {
sg[c] = above_epsilon;
}
if (sg[c] > 0.0) {
rs[c] = rs_sat[c];
}
if (rs[c] > rs_sat[c]*rs_adjust) {
rs[c] = rs_sat[c];
}
}
}
sg.unaryExpr(Chop01());
so -= sg;
for (int c = 0; c < nc; ++c) {
state.saturation()[c*np + pos] = sg[c];
}
}
if (active_[ Oil ]) {
const int pos = pu.phase_pos[ Oil ];
for (int c = 0; c < nc; ++c) {
state.saturation()[c*np + pos] = so[c];
}
}
// Bhp update.
const V bhp_old = Eigen::Map<const V>(&well_state.bhp()[0], nw, 1);
const V bhp = bhp_old - dbhp;
std::copy(&bhp[0], &bhp[0] + nw, well_state.bhp().begin());
}
std::vector<ADB>
FullyImplicitBlackoilSolver::computeRelPerm(const SolutionState& state) const
{
const int nc = grid_.number_of_cells;
const std::vector<int>& bpat = state.pressure.blockPattern();
const ADB null = ADB::constant(V::Zero(nc, 1), bpat);
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB sw = (active_[ Water ]
? state.saturation[ pu.phase_pos[ Water ] ]
: null);
const ADB so = (active_[ Oil ]
? state.saturation[ pu.phase_pos[ Oil ] ]
: null);
const ADB sg = (active_[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: null);
return fluid_.relperm(sw, so, sg, cells_);
}
std::vector<ADB>
FullyImplicitBlackoilSolver::computeRelPermWells(const SolutionState& state,
const DataBlock& well_s,
const std::vector<int>& well_cells) const
{
const int nw = wells_.number_of_wells;
const int nperf = wells_.well_connpos[nw];
const std::vector<int>& bpat = state.pressure.blockPattern();
const ADB null = ADB::constant(V::Zero(nperf), bpat);
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB sw = (active_[ Water ]
? ADB::constant(well_s.col(pu.phase_pos[ Water ]), bpat)
: null);
const ADB so = (active_[ Oil ]
? ADB::constant(well_s.col(pu.phase_pos[ Oil ]), bpat)
: null);
const ADB sg = (active_[ Gas ]
? ADB::constant(well_s.col(pu.phase_pos[ Gas ]), bpat)
: null);
return fluid_.relperm(sw, so, sg, well_cells);
}
void
FullyImplicitBlackoilSolver::computeMassFlux(const int actph ,
const V& transi,
const std::vector<ADB>& kr ,
const SolutionState& state )
{
const int phase = canph_[ actph ];
const ADB mu = fluidViscosity(phase, state.pressure, state.rs, cells_);
rq_[ actph ].mob = kr[ phase ] / mu;
const ADB rho = fluidDensity(phase, state.pressure, state.rs, cells_);
const ADB gflux = grav_ * rho;
ADB& head = rq_[ actph ].head;
head = transi*(ops_.ngrad * state.pressure) + gflux;
UpwindSelector<double> upwind(grid_, ops_, head.value());
const ADB& b = rq_[ actph ].b;
const ADB& mob = rq_[ actph ].mob;
rq_[ actph ].mflux = upwind.select(b * mob) * head;
// DUMP(rq_[ actph ].mob);
// DUMP(rq_[ actph ].mflux);
}
double
FullyImplicitBlackoilSolver::residualNorm() const
{
double r = 0;
for (std::vector<ADB>::const_iterator
b = residual_.mass_balance.begin(),
e = residual_.mass_balance.end();
b != e; ++b)
{
r = std::max(r, (*b).value().matrix().norm());
}
if (active_[Oil] && active_[Gas]) {
r = std::max(r, residual_.rs_or_sg_eq.value().matrix().norm());
}
for (std::vector<ADB>::const_iterator
b = residual_.well_flux_eq.begin(),
e = residual_.well_flux_eq.end();
b != e; ++b)
{
r = std::max(r, (*b).value().matrix().norm());
}
r = std::max(r, residual_.well_eq.value().matrix().norm());
return r;
}
ADB
FullyImplicitBlackoilSolver::fluidViscosity(const int phase,
const ADB& p ,
const ADB& rs ,
const std::vector<int>& cells) const
{
switch (phase) {
case Water:
return fluid_.muWat(p, cells);
case Oil: {
return fluid_.muOil(p, rs, cells);
}
case Gas:
return fluid_.muGas(p, cells);
default:
THROW("Unknown phase index " << phase);
}
}
ADB
FullyImplicitBlackoilSolver::fluidReciprocFVF(const int phase,
const ADB& p ,
const ADB& rs ,
const std::vector<int>& cells) const
{
switch (phase) {
case Water:
return fluid_.bWat(p, cells);
case Oil: {
return fluid_.bOil(p, rs, cells);
}
case Gas:
return fluid_.bGas(p, cells);
default:
THROW("Unknown phase index " << phase);
}
}
ADB
FullyImplicitBlackoilSolver::fluidDensity(const int phase,
const ADB& p ,
const ADB& rs ,
const std::vector<int>& cells) const
{
const double* rhos = fluid_.surfaceDensity();
ADB b = fluidReciprocFVF(phase, p, rs, cells);
ADB rho = V::Constant(p.size(), 1, rhos[phase]) * b;
if (phase == Oil && active_[Gas]) {
// It is correct to index into rhos with canonical phase indices.
rho += V::Constant(p.size(), 1, rhos[Gas]) * rs * b;
}
return rho;
}
V
FullyImplicitBlackoilSolver::fluidRsMax(const V& p,
const std::vector<int>& cells) const
{
return fluid_.rsMax(p, cells);
}
ADB
FullyImplicitBlackoilSolver::fluidRsMax(const ADB& p,
const std::vector<int>& cells) const
{
return fluid_.rsMax(p, cells);
}
} // namespace Opm