mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-27 09:40:59 -06:00
ca2288ac37
inconsistent and unnecessary. this is purely a cosmetic change, the only exception was a function with the generic name 'split', which was renamed to splitParam to avoid confusion.
788 lines
33 KiB
C++
788 lines
33 KiB
C++
/*
|
|
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include <opm/core/props/BlackoilPropertiesFromDeck.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
|
|
#include <opm/core/props/phaseUsageFromDeck.hpp>
|
|
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
|
#include <opm/core/utility/compressedToCartesian.hpp>
|
|
#include <opm/core/utility/extractPvtTableIndex.hpp>
|
|
#include <vector>
|
|
#include <numeric>
|
|
|
|
namespace Opm
|
|
{
|
|
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const Opm::Deck& deck,
|
|
const Opm::EclipseState& eclState,
|
|
const UnstructuredGrid& grid,
|
|
bool init_rock)
|
|
{
|
|
std::vector<int> compressedToCartesianIdx
|
|
= compressedToCartesian(grid.number_of_cells, grid.global_cell);
|
|
|
|
auto materialLawManager = std::make_shared<MaterialLawManager>();
|
|
materialLawManager->initFromDeck(deck, eclState, compressedToCartesianIdx);
|
|
|
|
init(deck, eclState, materialLawManager, grid.number_of_cells, grid.global_cell, grid.cartdims,
|
|
init_rock);
|
|
}
|
|
|
|
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const Opm::Deck& deck,
|
|
const Opm::EclipseState& eclState,
|
|
const UnstructuredGrid& grid,
|
|
const ParameterGroup& param,
|
|
bool init_rock)
|
|
{
|
|
std::vector<int> compressedToCartesianIdx
|
|
= compressedToCartesian(grid.number_of_cells, grid.global_cell);
|
|
|
|
auto materialLawManager = std::make_shared<MaterialLawManager>();
|
|
materialLawManager->initFromDeck(deck, eclState, compressedToCartesianIdx);
|
|
|
|
init(deck, eclState, materialLawManager, grid.number_of_cells, grid.global_cell, grid.cartdims, param, init_rock);
|
|
}
|
|
|
|
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const Opm::Deck& deck,
|
|
const Opm::EclipseState& eclState,
|
|
int number_of_cells,
|
|
const int* global_cell,
|
|
const int* cart_dims,
|
|
bool init_rock)
|
|
{
|
|
std::vector<int> compressedToCartesianIdx
|
|
= compressedToCartesian(number_of_cells, global_cell);
|
|
|
|
auto materialLawManager = std::make_shared<MaterialLawManager>();
|
|
materialLawManager->initFromDeck(deck, eclState, compressedToCartesianIdx);
|
|
|
|
init(deck, eclState, materialLawManager, number_of_cells, global_cell, cart_dims,
|
|
init_rock);
|
|
}
|
|
|
|
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const Opm::Deck& deck,
|
|
const Opm::EclipseState& eclState,
|
|
int number_of_cells,
|
|
const int* global_cell,
|
|
const int* cart_dims,
|
|
const ParameterGroup& param,
|
|
bool init_rock)
|
|
{
|
|
std::vector<int> compressedToCartesianIdx
|
|
= compressedToCartesian(number_of_cells, global_cell);
|
|
|
|
auto materialLawManager = std::make_shared<MaterialLawManager>();
|
|
materialLawManager->initFromDeck(deck, eclState, compressedToCartesianIdx);
|
|
|
|
init(deck,
|
|
eclState,
|
|
materialLawManager,
|
|
number_of_cells,
|
|
global_cell,
|
|
cart_dims,
|
|
param,
|
|
init_rock);
|
|
}
|
|
|
|
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const Opm::Deck& deck,
|
|
const Opm::EclipseState& eclState,
|
|
std::shared_ptr<MaterialLawManager> materialLawManager,
|
|
int number_of_cells,
|
|
const int* global_cell,
|
|
const int* cart_dims,
|
|
const ParameterGroup& param,
|
|
bool init_rock)
|
|
{
|
|
init(deck,
|
|
eclState,
|
|
materialLawManager,
|
|
number_of_cells,
|
|
global_cell,
|
|
cart_dims,
|
|
param,
|
|
init_rock);
|
|
}
|
|
|
|
inline void BlackoilPropertiesFromDeck::init(const Opm::Deck& deck,
|
|
const Opm::EclipseState& eclState,
|
|
std::shared_ptr<MaterialLawManager> materialLawManager,
|
|
int number_of_cells,
|
|
const int* global_cell,
|
|
const int* cart_dims,
|
|
bool init_rock)
|
|
{
|
|
// retrieve the cell specific PVT table index from the deck
|
|
// and using the grid...
|
|
extractPvtTableIndex(cellPvtRegionIdx_, eclState, number_of_cells, global_cell);
|
|
|
|
if (init_rock){
|
|
rock_.init(eclState, number_of_cells, global_cell, cart_dims);
|
|
}
|
|
phaseUsage_ = phaseUsageFromDeck(deck);
|
|
initSurfaceDensities_(deck);
|
|
oilPvt_.initFromDeck(deck, eclState);
|
|
gasPvt_.initFromDeck(deck, eclState);
|
|
waterPvt_.initFromDeck(deck, eclState);
|
|
SaturationPropsFromDeck* ptr
|
|
= new SaturationPropsFromDeck();
|
|
ptr->init(phaseUsageFromDeck(deck), materialLawManager);
|
|
satprops_.reset(ptr);
|
|
}
|
|
|
|
inline void BlackoilPropertiesFromDeck::init(const Opm::Deck& deck,
|
|
const Opm::EclipseState& eclState,
|
|
std::shared_ptr<MaterialLawManager> materialLawManager,
|
|
int number_of_cells,
|
|
const int* global_cell,
|
|
const int* cart_dims,
|
|
const ParameterGroup& param,
|
|
bool init_rock)
|
|
{
|
|
// retrieve the cell specific PVT table index from the deck
|
|
// and using the grid...
|
|
extractPvtTableIndex(cellPvtRegionIdx_, eclState, number_of_cells, global_cell);
|
|
|
|
if(init_rock){
|
|
rock_.init(eclState, number_of_cells, global_cell, cart_dims);
|
|
}
|
|
|
|
phaseUsage_ = phaseUsageFromDeck(deck);
|
|
initSurfaceDensities_(deck);
|
|
oilPvt_.initFromDeck(deck, eclState);
|
|
gasPvt_.initFromDeck(deck, eclState);
|
|
waterPvt_.initFromDeck(deck, eclState);
|
|
|
|
// Unfortunate lack of pointer smartness here...
|
|
std::string threephase_model = param.getDefault<std::string>("threephase_model", "gwseg");
|
|
if (deck.hasKeyword("ENDSCALE") && threephase_model != "gwseg") {
|
|
OPM_THROW(std::runtime_error, "Sorry, end point scaling currently available for the 'gwseg' model only.");
|
|
}
|
|
|
|
SaturationPropsFromDeck* ptr
|
|
= new SaturationPropsFromDeck();
|
|
ptr->init(phaseUsageFromDeck(deck), materialLawManager);
|
|
satprops_.reset(ptr);
|
|
}
|
|
|
|
BlackoilPropertiesFromDeck::~BlackoilPropertiesFromDeck()
|
|
{
|
|
}
|
|
|
|
/// \return D, the number of spatial dimensions.
|
|
int BlackoilPropertiesFromDeck::numDimensions() const
|
|
{
|
|
return rock_.numDimensions();
|
|
}
|
|
|
|
/// \return N, the number of cells.
|
|
int BlackoilPropertiesFromDeck::numCells() const
|
|
{
|
|
return rock_.numCells();
|
|
}
|
|
|
|
/// \return Array of N porosity values.
|
|
const double* BlackoilPropertiesFromDeck::porosity() const
|
|
{
|
|
return rock_.porosity();
|
|
}
|
|
|
|
/// \return Array of ND^2 permeability values.
|
|
/// The D^2 permeability values for a cell are organized as a matrix,
|
|
/// which is symmetric (so ordering does not matter).
|
|
const double* BlackoilPropertiesFromDeck::permeability() const
|
|
{
|
|
return rock_.permeability();
|
|
}
|
|
|
|
|
|
// ---- Fluid interface ----
|
|
|
|
/// \return P, the number of phases (also the number of components).
|
|
int BlackoilPropertiesFromDeck::numPhases() const
|
|
{
|
|
return phaseUsage_.num_phases;
|
|
}
|
|
|
|
/// \return Object describing the active phases.
|
|
PhaseUsage BlackoilPropertiesFromDeck::phaseUsage() const
|
|
{
|
|
return phaseUsage_;
|
|
}
|
|
|
|
/// \param[in] n Number of data points.
|
|
/// \param[in] p Array of n pressure values.
|
|
/// \param[in] T Array of n temperature values.
|
|
/// \param[in] z Array of nP surface volume values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the p and z values.
|
|
/// \param[out] mu Array of nP viscosity values, array must be valid before calling.
|
|
/// \param[out] dmudp If non-null: array of nP viscosity derivative values,
|
|
/// array must be valid before calling.
|
|
void BlackoilPropertiesFromDeck::viscosity(const int n,
|
|
const double* p,
|
|
const double* T,
|
|
const double* z,
|
|
const int* cells,
|
|
double* mu,
|
|
double* dmudp) const
|
|
{
|
|
const auto& pu = phaseUsage();
|
|
const int np = numPhases();
|
|
|
|
typedef Opm::DenseAd::Evaluation<double, /*size=*/1> Eval;
|
|
|
|
Eval pEval = 0.0;
|
|
Eval TEval = 0.0;
|
|
Eval RsEval = 0.0;
|
|
Eval RvEval = 0.0;
|
|
Eval muEval = 0.0;
|
|
|
|
pEval.setDerivative(0, 1.0);
|
|
|
|
R_.resize(n*np);
|
|
this->compute_R_(n, p, T, z, cells, &R_[0]);
|
|
|
|
for (int i = 0; i < n; ++ i) {
|
|
int cellIdx = cells[i];
|
|
int pvtRegionIdx = cellPvtRegionIdx_[cellIdx];
|
|
pEval.setValue(p[i]);
|
|
TEval.setValue(T[i]);
|
|
|
|
if (pu.phase_used[BlackoilPhases::Aqua]) {
|
|
muEval = waterPvt_.viscosity(pvtRegionIdx, TEval, pEval);
|
|
int offset = pu.num_phases*cellIdx + pu.phase_pos[BlackoilPhases::Aqua];
|
|
mu[offset] = muEval.value();
|
|
dmudp[offset] = muEval.derivative(0);
|
|
}
|
|
|
|
if (pu.phase_used[BlackoilPhases::Liquid]) {
|
|
RsEval.setValue(R_[i*np + pu.phase_pos[BlackoilPhases::Liquid]]);
|
|
muEval = oilPvt_.viscosity(pvtRegionIdx, TEval, pEval, RsEval);
|
|
int offset = pu.num_phases*cellIdx + pu.phase_pos[BlackoilPhases::Liquid];
|
|
mu[offset] = muEval.value();
|
|
dmudp[offset] = muEval.derivative(0);
|
|
}
|
|
|
|
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
|
RvEval.setValue(R_[i*np + pu.phase_pos[BlackoilPhases::Vapour]]);
|
|
muEval = gasPvt_.viscosity(pvtRegionIdx, TEval, pEval, RvEval);
|
|
int offset = pu.num_phases*cellIdx + pu.phase_pos[BlackoilPhases::Vapour];
|
|
mu[offset] = muEval.value();
|
|
dmudp[offset] = muEval.derivative(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \param[in] n Number of data points.
|
|
/// \param[in] p Array of n pressure values.
|
|
/// \param[in] T Array of n temperature values.
|
|
/// \param[in] z Array of nP surface volume values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the p and z values.
|
|
/// \param[out] A Array of nP^2 values, array must be valid before calling.
|
|
/// The P^2 values for a cell give the matrix A = RB^{-1} which
|
|
/// relates z to u by z = Au. The matrices are output in Fortran order.
|
|
/// \param[out] dAdp If non-null: array of nP^2 matrix derivative values,
|
|
/// array must be valid before calling. The matrices are output
|
|
/// in Fortran order.
|
|
void BlackoilPropertiesFromDeck::matrix(const int n,
|
|
const double* p,
|
|
const double* T,
|
|
const double* z,
|
|
const int* cells,
|
|
double* A,
|
|
double* dAdp) const
|
|
{
|
|
const int np = numPhases();
|
|
|
|
B_.resize(n*np);
|
|
R_.resize(n*np);
|
|
if (dAdp) {
|
|
dB_.resize(n*np);
|
|
dR_.resize(n*np);
|
|
|
|
this->compute_dBdp_(n, p, T, z, cells, &B_[0], &dB_[0]);
|
|
this->compute_dRdp_(n, p, T, z, cells, &R_[0], &dR_[0]);
|
|
} else {
|
|
this->compute_B_(n, p, T, z, cells, &B_[0]);
|
|
this->compute_R_(n, p, T, z, cells, &R_[0]);
|
|
}
|
|
const auto& pu = phaseUsage();
|
|
bool oil_and_gas = pu.phase_used[BlackoilPhases::Liquid] &&
|
|
pu.phase_used[BlackoilPhases::Vapour];
|
|
const int o = pu.phase_pos[BlackoilPhases::Liquid];
|
|
const int g = pu.phase_pos[BlackoilPhases::Vapour];
|
|
|
|
// Compute A matrix
|
|
// #pragma omp parallel for
|
|
for (int i = 0; i < n; ++i) {
|
|
double* m = A + i*np*np;
|
|
std::fill(m, m + np*np, 0.0);
|
|
// Diagonal entries.
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
m[phase + phase*np] = 1.0/B_[i*np + phase];
|
|
}
|
|
// Off-diagonal entries.
|
|
if (oil_and_gas) {
|
|
m[o + g*np] = R_[i*np + g]/B_[i*np + g];
|
|
m[g + o*np] = R_[i*np + o]/B_[i*np + o];
|
|
}
|
|
}
|
|
|
|
// Derivative of A matrix.
|
|
// A = R*inv(B) whence
|
|
//
|
|
// dA/dp = (dR/dp*inv(B) + R*d(inv(B))/dp)
|
|
// = (dR/dp*inv(B) - R*inv(B)*(dB/dp)*inv(B))
|
|
// = (dR/dp - A*(dB/dp)) * inv(B)
|
|
//
|
|
// The B matrix is diagonal and that fact is exploited in the
|
|
// following implementation.
|
|
if (dAdp) {
|
|
// #pragma omp parallel for
|
|
// (1): dA/dp <- A
|
|
std::copy(A, A + n*np*np, dAdp);
|
|
|
|
for (int i = 0; i < n; ++i) {
|
|
double* m = dAdp + i*np*np;
|
|
|
|
// (2): dA/dp <- -dA/dp*(dB/dp) == -A*(dB/dp)
|
|
const double* dB = & dB_[i * np];
|
|
for (int col = 0; col < np; ++col) {
|
|
for (int row = 0; row < np; ++row) {
|
|
m[col*np + row] *= - dB[ col ]; // Note sign.
|
|
}
|
|
}
|
|
|
|
if (oil_and_gas) {
|
|
// (2b): dA/dp += dR/dp (== dR/dp - A*(dB/dp))
|
|
const double* dR = & dR_[i * np];
|
|
|
|
m[o*np + g] += dR[ o ];
|
|
m[g*np + o] += dR[ g ];
|
|
}
|
|
|
|
// (3): dA/dp *= inv(B) (== final result)
|
|
const double* B = & B_[i * np];
|
|
for (int col = 0; col < np; ++col) {
|
|
for (int row = 0; row < np; ++row) {
|
|
m[col*np + row] /= B[ col ];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void BlackoilPropertiesFromDeck::compute_B_(const int n,
|
|
const double* p,
|
|
const double* T,
|
|
const double* z,
|
|
const int* cells,
|
|
double* B) const
|
|
{
|
|
const auto& pu = phaseUsage();
|
|
|
|
typedef double Eval;
|
|
|
|
Eval pEval = 0.0;
|
|
Eval TEval = 0.0;
|
|
Eval RsEval = 0.0;
|
|
Eval RvEval = 0.0;
|
|
|
|
for (int i = 0; i < n; ++ i) {
|
|
int cellIdx = cells[i];
|
|
int pvtRegionIdx = cellPvtRegionIdx_[cellIdx];
|
|
pEval = p[i];
|
|
TEval = T[i];
|
|
|
|
int oilOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Liquid];
|
|
int gasOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Vapour];
|
|
int waterOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Aqua];
|
|
|
|
if (pu.phase_used[BlackoilPhases::Aqua]) {
|
|
Eval BEval = 1.0/waterPvt_.inverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval);
|
|
|
|
B[waterOffset] = BEval;
|
|
}
|
|
|
|
if (pu.phase_used[BlackoilPhases::Liquid]) {
|
|
double currentRs = 0.0;
|
|
double maxRs = 0.0;
|
|
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
|
currentRs = (z[oilOffset] == 0.0) ? 0.0 : z[gasOffset]/z[oilOffset];
|
|
maxRs = oilPvt_.saturatedGasDissolutionFactor(pvtRegionIdx, TEval, pEval);
|
|
}
|
|
Eval BEval;
|
|
if (currentRs >= maxRs) {
|
|
BEval = 1.0/oilPvt_.saturatedInverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval);
|
|
}
|
|
else {
|
|
RsEval = currentRs;
|
|
BEval = 1.0/oilPvt_.inverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval, RsEval);
|
|
}
|
|
|
|
B[oilOffset] = BEval;
|
|
}
|
|
|
|
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
|
double currentRv = 0.0;
|
|
double maxRv = 0.0;
|
|
if (pu.phase_used[BlackoilPhases::Liquid]) {
|
|
currentRv = (z[gasOffset] == 0.0) ? 0.0 : z[oilOffset]/z[gasOffset];
|
|
maxRv = gasPvt_.saturatedOilVaporizationFactor(pvtRegionIdx, TEval, pEval);
|
|
}
|
|
Eval BEval;
|
|
if (currentRv >= maxRv) {
|
|
BEval = 1.0/gasPvt_.saturatedInverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval);
|
|
}
|
|
else {
|
|
RvEval = currentRv;
|
|
BEval = 1.0/gasPvt_.inverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval, RvEval);
|
|
}
|
|
|
|
B[gasOffset] = BEval;
|
|
}
|
|
}
|
|
}
|
|
|
|
void BlackoilPropertiesFromDeck::compute_dBdp_(const int n,
|
|
const double* p,
|
|
const double* T,
|
|
const double* z,
|
|
const int* cells,
|
|
double* B,
|
|
double* dBdp) const
|
|
{
|
|
const auto& pu = phaseUsage();
|
|
|
|
typedef Opm::DenseAd::Evaluation<double, /*size=*/1> Eval;
|
|
|
|
Eval pEval = 0.0;
|
|
Eval TEval = 0.0;
|
|
Eval RsEval = 0.0;
|
|
Eval RvEval = 0.0;
|
|
|
|
pEval.setDerivative(0, 1.0);
|
|
|
|
for (int i = 0; i < n; ++ i) {
|
|
int cellIdx = cells[i];
|
|
int pvtRegionIdx = cellPvtRegionIdx_[cellIdx];
|
|
pEval.setValue(p[i]);
|
|
TEval.setValue(T[i]);
|
|
|
|
int oilOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Liquid];
|
|
int gasOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Vapour];
|
|
int waterOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Aqua];
|
|
|
|
if (pu.phase_used[BlackoilPhases::Aqua]) {
|
|
Eval BEval = 1.0/waterPvt_.inverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval);
|
|
|
|
B[waterOffset] = BEval.value();
|
|
dBdp[waterOffset] = BEval.derivative(0);
|
|
}
|
|
|
|
if (pu.phase_used[BlackoilPhases::Liquid]) {
|
|
double currentRs = 0.0;
|
|
double maxRs = 0.0;
|
|
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
|
currentRs = (z[oilOffset] == 0.0) ? 0.0 : z[gasOffset]/z[oilOffset];
|
|
maxRs = oilPvt_.saturatedGasDissolutionFactor(pvtRegionIdx, TEval.value(), pEval.value());
|
|
}
|
|
Eval BEval;
|
|
if (currentRs >= maxRs) {
|
|
BEval = 1.0/oilPvt_.saturatedInverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval);
|
|
}
|
|
else {
|
|
RsEval.setValue(currentRs);
|
|
BEval = 1.0/oilPvt_.inverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval, RsEval);
|
|
}
|
|
|
|
B[oilOffset] = BEval.value();
|
|
dBdp[oilOffset] = BEval.derivative(0);
|
|
}
|
|
|
|
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
|
double currentRv = 0.0;
|
|
double maxRv = 0.0;
|
|
if (pu.phase_used[BlackoilPhases::Liquid]) {
|
|
currentRv = (z[gasOffset] == 0.0) ? 0.0 : z[oilOffset]/z[gasOffset];
|
|
maxRv = gasPvt_.saturatedOilVaporizationFactor(pvtRegionIdx, TEval.value(), pEval.value());
|
|
}
|
|
Eval BEval;
|
|
if (currentRv >= maxRv) {
|
|
BEval = 1.0/gasPvt_.saturatedInverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval);
|
|
}
|
|
else {
|
|
RvEval.setValue(currentRv);
|
|
BEval = 1.0/gasPvt_.inverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval, RvEval);
|
|
}
|
|
|
|
B[gasOffset] = BEval.value();
|
|
dBdp[gasOffset] = BEval.derivative(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
void BlackoilPropertiesFromDeck::compute_R_(const int n,
|
|
const double* p,
|
|
const double* T,
|
|
const double* z,
|
|
const int* cells,
|
|
double* R) const
|
|
{
|
|
const auto& pu = phaseUsage();
|
|
|
|
typedef double Eval;
|
|
|
|
Eval pEval = 0.0;
|
|
Eval TEval = 0.0;
|
|
|
|
for (int i = 0; i < n; ++ i) {
|
|
int cellIdx = cells[i];
|
|
int pvtRegionIdx = cellPvtRegionIdx_[cellIdx];
|
|
pEval = p[i];
|
|
TEval = T[i];
|
|
|
|
int oilOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Liquid];
|
|
int gasOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Vapour];
|
|
int waterOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Aqua];
|
|
|
|
if (pu.phase_used[BlackoilPhases::Aqua]) {
|
|
R[waterOffset] = 0.0; // water is always immiscible!
|
|
}
|
|
|
|
if (pu.phase_used[BlackoilPhases::Liquid]) {
|
|
Eval RsSatEval = oilPvt_.saturatedGasDissolutionFactor(pvtRegionIdx, TEval, pEval);
|
|
|
|
double currentRs = 0.0;
|
|
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
|
currentRs = (z[oilOffset] == 0.0) ? 0.0 : z[gasOffset]/z[oilOffset];
|
|
}
|
|
|
|
RsSatEval = std::min(RsSatEval, currentRs);
|
|
|
|
R[oilOffset] = RsSatEval;
|
|
}
|
|
|
|
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
|
Eval RvSatEval = gasPvt_.saturatedOilVaporizationFactor(pvtRegionIdx, TEval, pEval);
|
|
|
|
double currentRv = 0.0;
|
|
if (pu.phase_used[BlackoilPhases::Liquid]) {
|
|
currentRv = (z[gasOffset] == 0.0) ? 0.0 : z[oilOffset]/z[gasOffset];
|
|
}
|
|
|
|
RvSatEval = std::min(RvSatEval, currentRv);
|
|
|
|
R[gasOffset] = RvSatEval;
|
|
}
|
|
}
|
|
}
|
|
|
|
void BlackoilPropertiesFromDeck::compute_dRdp_(const int n,
|
|
const double* p,
|
|
const double* T,
|
|
const double* z,
|
|
const int* cells,
|
|
double* R,
|
|
double* dRdp) const
|
|
{
|
|
const auto& pu = phaseUsage();
|
|
|
|
typedef Opm::DenseAd::Evaluation<double, /*size=*/1> Eval;
|
|
typedef Opm::MathToolbox<Eval> Toolbox;
|
|
|
|
Eval pEval = 0.0;
|
|
Eval TEval = 0.0;
|
|
|
|
pEval.setDerivative(0, 1.0);
|
|
|
|
for (int i = 0; i < n; ++ i) {
|
|
int cellIdx = cells[i];
|
|
int pvtRegionIdx = cellPvtRegionIdx_[cellIdx];
|
|
pEval.setValue(p[i]);
|
|
TEval.setValue(T[i]);
|
|
|
|
int oilOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Liquid];
|
|
int gasOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Vapour];
|
|
int waterOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Aqua];
|
|
|
|
if (pu.phase_used[BlackoilPhases::Aqua]) {
|
|
R[waterOffset] = 0.0; // water is always immiscible!
|
|
}
|
|
|
|
if (pu.phase_used[BlackoilPhases::Liquid]) {
|
|
Eval RsSatEval = oilPvt_.saturatedGasDissolutionFactor(pvtRegionIdx, TEval, pEval);
|
|
|
|
Eval currentRs = 0.0;
|
|
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
|
currentRs = (z[oilOffset] == 0.0) ? 0.0 : z[gasOffset]/z[oilOffset];
|
|
}
|
|
|
|
RsSatEval = Toolbox::min(RsSatEval, currentRs);
|
|
|
|
R[oilOffset] = RsSatEval.value();
|
|
dRdp[oilOffset] = RsSatEval.derivative(0);
|
|
}
|
|
|
|
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
|
Eval RvSatEval = gasPvt_.saturatedOilVaporizationFactor(pvtRegionIdx, TEval, pEval);
|
|
|
|
Eval currentRv = 0.0;
|
|
if (pu.phase_used[BlackoilPhases::Liquid]) {
|
|
currentRv = (z[gasOffset] == 0.0) ? 0.0 : z[oilOffset]/z[gasOffset];
|
|
}
|
|
|
|
RvSatEval = Toolbox::min(RvSatEval, currentRv);
|
|
|
|
R[gasOffset] = RvSatEval.value();
|
|
dRdp[gasOffset] = RvSatEval.derivative(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \param[in] n Number of data points.
|
|
/// \param[in] A Array of nP^2 values, where the P^2 values for a cell give the
|
|
/// matrix A = RB^{-1} which relates z to u by z = Au. The matrices
|
|
/// are assumed to be in Fortran order, and are typically the result
|
|
/// of a call to the method matrix().
|
|
/// \param[in] cells The index of the grid cell of each data point.
|
|
/// \param[out] rho Array of nP density values, array must be valid before calling.
|
|
void BlackoilPropertiesFromDeck::density(const int n,
|
|
const double* A,
|
|
const int* cells,
|
|
double* rho) const
|
|
{
|
|
const int np = numPhases();
|
|
// #pragma omp parallel for
|
|
for (int i = 0; i < n; ++i) {
|
|
int cellIdx = cells?cells[i]:i;
|
|
const double *sdens = surfaceDensity(cellIdx);
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
rho[np*i + phase] = 0.0;
|
|
for (int comp = 0; comp < np; ++comp) {
|
|
rho[np*i + phase] += A[i*np*np + np*phase + comp]*sdens[comp];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Densities of stock components at surface conditions.
|
|
/// \return Array of P density values.
|
|
const double* BlackoilPropertiesFromDeck::surfaceDensity(int cellIdx) const
|
|
{
|
|
const auto& pu = phaseUsage();
|
|
int pvtRegionIdx = getTableIndex_(cellPvtRegionIndex(), cellIdx);
|
|
return &surfaceDensities_[pvtRegionIdx*pu.num_phases];
|
|
}
|
|
|
|
void BlackoilPropertiesFromDeck::initSurfaceDensities_(const Opm::Deck& deck)
|
|
{
|
|
const auto& pu = phaseUsage();
|
|
int np = pu.num_phases;
|
|
int numPvtRegions = 1;
|
|
if (deck.hasKeyword("TABDIMS")) {
|
|
const auto& tabdimsKeyword = deck.getKeyword("TABDIMS");
|
|
numPvtRegions = tabdimsKeyword.getRecord(0).getItem("NTPVT").template get<int>(0);
|
|
}
|
|
|
|
const auto& densityKeyword = deck.getKeyword("DENSITY");
|
|
|
|
surfaceDensities_.resize(np*numPvtRegions);
|
|
for (int pvtRegionIdx = 0; pvtRegionIdx < numPvtRegions; ++pvtRegionIdx) {
|
|
if (pu.phase_used[BlackoilPhases::Aqua])
|
|
surfaceDensities_[np*pvtRegionIdx + pu.phase_pos[BlackoilPhases::Aqua]] =
|
|
densityKeyword.getRecord(pvtRegionIdx).getItem("WATER").getSIDouble(0);
|
|
|
|
if (pu.phase_used[BlackoilPhases::Liquid])
|
|
surfaceDensities_[np*pvtRegionIdx + pu.phase_pos[BlackoilPhases::Liquid]] =
|
|
densityKeyword.getRecord(pvtRegionIdx).getItem("OIL").getSIDouble(0);
|
|
|
|
if (pu.phase_used[BlackoilPhases::Vapour])
|
|
surfaceDensities_[np*pvtRegionIdx + pu.phase_pos[BlackoilPhases::Vapour]] =
|
|
densityKeyword.getRecord(pvtRegionIdx).getItem("GAS").getSIDouble(0);
|
|
}
|
|
}
|
|
|
|
/// \param[in] n Number of data points.
|
|
/// \param[in] s Array of nP saturation values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the s values.
|
|
/// \param[out] kr Array of nP relperm values, array must be valid before calling.
|
|
/// \param[out] dkrds If non-null: array of nP^2 relperm derivative values,
|
|
/// array must be valid before calling.
|
|
/// The P^2 derivative matrix is
|
|
/// m_{ij} = \frac{dkr_i}{ds^j},
|
|
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
|
|
void BlackoilPropertiesFromDeck::relperm(const int n,
|
|
const double* s,
|
|
const int* cells,
|
|
double* kr,
|
|
double* dkrds) const
|
|
{
|
|
satprops_->relperm(n, s, cells, kr, dkrds);
|
|
}
|
|
|
|
|
|
/// \param[in] n Number of data points.
|
|
/// \param[in] s Array of nP saturation values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the s values.
|
|
/// \param[out] pc Array of nP capillary pressure values, array must be valid before calling.
|
|
/// \param[out] dpcds If non-null: array of nP^2 derivative values,
|
|
/// array must be valid before calling.
|
|
/// The P^2 derivative matrix is
|
|
/// m_{ij} = \frac{dpc_i}{ds^j},
|
|
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
|
|
void BlackoilPropertiesFromDeck::capPress(const int n,
|
|
const double* s,
|
|
const int* cells,
|
|
double* pc,
|
|
double* dpcds) const
|
|
{
|
|
satprops_->capPress(n, s, cells, pc, dpcds);
|
|
}
|
|
|
|
|
|
/// Obtain the range of allowable saturation values.
|
|
/// In cell cells[i], saturation of phase p is allowed to be
|
|
/// in the interval [smin[i*P + p], smax[i*P + p]].
|
|
/// \param[in] n Number of data points.
|
|
/// \param[in] cells Array of n cell indices.
|
|
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
|
|
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
|
|
void BlackoilPropertiesFromDeck::satRange(const int n,
|
|
const int* cells,
|
|
double* smin,
|
|
double* smax) const
|
|
{
|
|
satprops_->satRange(n, cells, smin, smax);
|
|
}
|
|
|
|
|
|
/// Update capillary pressure scaling according to pressure diff. and initial water saturation.
|
|
/// \param[in] cell Cell index.
|
|
/// \param[in] pcow P_oil - P_water.
|
|
/// \param[in/out] swat Water saturation. / Possibly modified Water saturation.
|
|
void BlackoilPropertiesFromDeck::swatInitScaling(const int cell,
|
|
const double pcow,
|
|
double & swat)
|
|
{
|
|
satprops_->swatInitScaling(cell, pcow, swat);
|
|
}
|
|
|
|
} // namespace Opm
|
|
|