mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-11 08:51:55 -06:00
410 lines
15 KiB
C++
410 lines
15 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
* \copydoc Opm::VtkMultiPhaseModule
|
|
*/
|
|
#ifndef OPM_VTK_MULTI_PHASE_MODULE_HPP
|
|
#define OPM_VTK_MULTI_PHASE_MODULE_HPP
|
|
|
|
#include <dune/common/fvector.hh>
|
|
|
|
#include <opm/material/common/MathToolbox.hpp>
|
|
#include <opm/material/common/Valgrind.hpp>
|
|
|
|
#include <opm/models/discretization/common/fvbaseparameters.hh>
|
|
|
|
#include <opm/models/io/baseoutputmodule.hh>
|
|
#include <opm/models/io/vtkmultiphaseparams.hpp>
|
|
#include <opm/models/io/vtkmultiwriter.hh>
|
|
|
|
#include <opm/models/utils/parametersystem.hpp>
|
|
#include <opm/models/utils/propertysystem.hh>
|
|
|
|
#include <cstdio>
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup Vtk
|
|
*
|
|
* \brief VTK output module for quantities which make sense for all
|
|
* models which deal with multiple fluid phases in porous media
|
|
* that don't use flashy concepts like interfacial area.
|
|
*
|
|
* This module deals with the following quantities:
|
|
* - Pressures of all fluid phases
|
|
* - Densities of all fluid phases
|
|
* - Saturations of all fluid phases
|
|
* - Mobilities of all fluid phases
|
|
* - Relative permeabilities of all fluid phases
|
|
* - Viscosities of all fluid phases
|
|
* - Average molar masses of all fluid phases
|
|
* - Porosity of the medium
|
|
* - Norm of the intrinsic permeability of the medium
|
|
*/
|
|
template<class TypeTag>
|
|
class VtkMultiPhaseModule : public BaseOutputModule<TypeTag>
|
|
{
|
|
using ParentType = BaseOutputModule<TypeTag>;
|
|
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using DiscBaseOutputModule = GetPropType<TypeTag, Properties::DiscBaseOutputModule>;
|
|
|
|
static const int vtkFormat = getPropValue<TypeTag, Properties::VtkOutputFormat>();
|
|
using VtkMultiWriter = ::Opm::VtkMultiWriter<GridView, vtkFormat>;
|
|
|
|
enum { dimWorld = GridView::dimensionworld };
|
|
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
|
|
|
|
using ScalarBuffer = typename ParentType::ScalarBuffer;
|
|
using VectorBuffer = typename ParentType::VectorBuffer;
|
|
using TensorBuffer = typename ParentType::TensorBuffer;
|
|
using PhaseBuffer = typename ParentType::PhaseBuffer;
|
|
|
|
using DimVector = Dune::FieldVector<Scalar, dimWorld>;
|
|
|
|
using PhaseVectorBuffer = std::array<VectorBuffer, numPhases>;
|
|
|
|
public:
|
|
VtkMultiPhaseModule(const Simulator& simulator)
|
|
: ParentType(simulator)
|
|
{
|
|
params_.read();
|
|
}
|
|
|
|
/*!
|
|
* \brief Register all run-time parameters for the multi-phase VTK output module.
|
|
*/
|
|
static void registerParameters()
|
|
{
|
|
VtkMultiPhaseParams::registerParameters();
|
|
}
|
|
|
|
/*!
|
|
* \brief Allocate memory for the scalar fields we would like to
|
|
* write to the VTK file.
|
|
*/
|
|
void allocBuffers()
|
|
{
|
|
if (params_.extrusionFactorOutput_) {
|
|
this->resizeScalarBuffer_(extrusionFactor_);
|
|
}
|
|
if (params_.pressureOutput_) {
|
|
this->resizePhaseBuffer_(pressure_);
|
|
}
|
|
if (params_.densityOutput_) {
|
|
this->resizePhaseBuffer_(density_);
|
|
}
|
|
if (params_.saturationOutput_) {
|
|
this->resizePhaseBuffer_(saturation_);
|
|
}
|
|
if (params_.mobilityOutput_) {
|
|
this->resizePhaseBuffer_(mobility_);
|
|
}
|
|
if (params_.relativePermeabilityOutput_) {
|
|
this->resizePhaseBuffer_(relativePermeability_);
|
|
}
|
|
if (params_.viscosityOutput_) {
|
|
this->resizePhaseBuffer_(viscosity_);
|
|
}
|
|
if (params_.averageMolarMassOutput_) {
|
|
this->resizePhaseBuffer_(averageMolarMass_);
|
|
}
|
|
|
|
if (params_.porosityOutput_) {
|
|
this->resizeScalarBuffer_(porosity_);
|
|
}
|
|
if (params_.intrinsicPermeabilityOutput_) {
|
|
this->resizeTensorBuffer_(intrinsicPermeability_);
|
|
}
|
|
|
|
if (params_.velocityOutput_) {
|
|
size_t nDof = this->simulator_.model().numGridDof();
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
|
velocity_[phaseIdx].resize(nDof);
|
|
for (unsigned dofIdx = 0; dofIdx < nDof; ++ dofIdx) {
|
|
velocity_[phaseIdx][dofIdx].resize(dimWorld);
|
|
velocity_[phaseIdx][dofIdx] = 0.0;
|
|
}
|
|
}
|
|
this->resizePhaseBuffer_(velocityWeight_);
|
|
}
|
|
|
|
if (params_.potentialGradientOutput_) {
|
|
size_t nDof = this->simulator_.model().numGridDof();
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
|
potentialGradient_[phaseIdx].resize(nDof);
|
|
for (unsigned dofIdx = 0; dofIdx < nDof; ++ dofIdx) {
|
|
potentialGradient_[phaseIdx][dofIdx].resize(dimWorld);
|
|
potentialGradient_[phaseIdx][dofIdx] = 0.0;
|
|
}
|
|
}
|
|
|
|
this->resizePhaseBuffer_(potentialWeight_);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Modify the internal buffers according to the intensive quantities seen on
|
|
* an element
|
|
*/
|
|
void processElement(const ElementContext& elemCtx)
|
|
{
|
|
if (!Parameters::Get<Parameters::EnableVtkOutput>()) {
|
|
return;
|
|
}
|
|
|
|
const auto& problem = elemCtx.problem();
|
|
for (unsigned i = 0; i < elemCtx.numPrimaryDof(/*timeIdx=*/0); ++i) {
|
|
unsigned I = elemCtx.globalSpaceIndex(i, /*timeIdx=*/0);
|
|
const auto& intQuants = elemCtx.intensiveQuantities(i, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
if (params_.extrusionFactorOutput_) {
|
|
extrusionFactor_[I] = intQuants.extrusionFactor();
|
|
}
|
|
if (params_.porosityOutput_) {
|
|
porosity_[I] = getValue(intQuants.porosity());
|
|
}
|
|
|
|
if (params_.intrinsicPermeabilityOutput_) {
|
|
const auto& K = problem.intrinsicPermeability(elemCtx, i, /*timeIdx=*/0);
|
|
for (unsigned rowIdx = 0; rowIdx < K.rows; ++rowIdx) {
|
|
for (unsigned colIdx = 0; colIdx < K.cols; ++colIdx) {
|
|
intrinsicPermeability_[I][rowIdx][colIdx] = K[rowIdx][colIdx];
|
|
}
|
|
}
|
|
}
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
if (params_.pressureOutput_) {
|
|
pressure_[phaseIdx][I] = getValue(fs.pressure(phaseIdx));
|
|
}
|
|
if (params_.densityOutput_) {
|
|
density_[phaseIdx][I] = getValue(fs.density(phaseIdx));
|
|
}
|
|
if (params_.saturationOutput_) {
|
|
saturation_[phaseIdx][I] = getValue(fs.saturation(phaseIdx));
|
|
}
|
|
if (params_.mobilityOutput_) {
|
|
mobility_[phaseIdx][I] = getValue(intQuants.mobility(phaseIdx));
|
|
}
|
|
if (params_.relativePermeabilityOutput_) {
|
|
relativePermeability_[phaseIdx][I] = getValue(intQuants.relativePermeability(phaseIdx));
|
|
}
|
|
if (params_.viscosityOutput_) {
|
|
viscosity_[phaseIdx][I] = getValue(fs.viscosity(phaseIdx));
|
|
}
|
|
if (params_.averageMolarMassOutput_) {
|
|
averageMolarMass_[phaseIdx][I] = getValue(fs.averageMolarMass(phaseIdx));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (params_.potentialGradientOutput_) {
|
|
// calculate velocities if requested
|
|
for (unsigned faceIdx = 0; faceIdx < elemCtx.numInteriorFaces(/*timeIdx=*/0); ++ faceIdx) {
|
|
const auto& extQuants = elemCtx.extensiveQuantities(faceIdx, /*timeIdx=*/0);
|
|
|
|
unsigned i = extQuants.interiorIndex();
|
|
unsigned I = elemCtx.globalSpaceIndex(i, /*timeIdx=*/0);
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
Scalar weight = extQuants.extrusionFactor();
|
|
|
|
potentialWeight_[phaseIdx][I] += weight;
|
|
|
|
const auto& inputPGrad = extQuants.potentialGrad(phaseIdx);
|
|
DimVector pGrad;
|
|
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx) {
|
|
pGrad[dimIdx] = getValue(inputPGrad[dimIdx])*weight;
|
|
}
|
|
potentialGradient_[phaseIdx][I] += pGrad;
|
|
} // end for all phases
|
|
} // end for all faces
|
|
}
|
|
|
|
if (params_.velocityOutput_) {
|
|
// calculate velocities if requested
|
|
for (unsigned faceIdx = 0; faceIdx < elemCtx.numInteriorFaces(/*timeIdx=*/0); ++ faceIdx) {
|
|
const auto& extQuants = elemCtx.extensiveQuantities(faceIdx, /*timeIdx=*/0);
|
|
|
|
unsigned i = extQuants.interiorIndex();
|
|
unsigned I = elemCtx.globalSpaceIndex(i, /*timeIdx=*/0);
|
|
|
|
unsigned j = extQuants.exteriorIndex();
|
|
unsigned J = elemCtx.globalSpaceIndex(j, /*timeIdx=*/0);
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
Scalar weight = std::max<Scalar>(1e-16,
|
|
std::abs(getValue(extQuants.volumeFlux(phaseIdx))));
|
|
Valgrind::CheckDefined(extQuants.extrusionFactor());
|
|
assert(extQuants.extrusionFactor() > 0);
|
|
weight *= extQuants.extrusionFactor();
|
|
|
|
const auto& inputV = extQuants.filterVelocity(phaseIdx);
|
|
DimVector v;
|
|
for (unsigned k = 0; k < dimWorld; ++k) {
|
|
v[k] = getValue(inputV[k]);
|
|
}
|
|
if (v.two_norm() > 1e-20) {
|
|
weight /= v.two_norm();
|
|
}
|
|
v *= weight;
|
|
|
|
velocity_[phaseIdx][I] += v;
|
|
velocity_[phaseIdx][J] += v;
|
|
|
|
velocityWeight_[phaseIdx][I] += weight;
|
|
velocityWeight_[phaseIdx][J] += weight;
|
|
} // end for all phases
|
|
} // end for all faces
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Add all buffers to the VTK output writer.
|
|
*/
|
|
void commitBuffers(BaseOutputWriter& baseWriter)
|
|
{
|
|
VtkMultiWriter* vtkWriter = dynamic_cast<VtkMultiWriter*>(&baseWriter);
|
|
if (!vtkWriter) {
|
|
return;
|
|
}
|
|
|
|
if (params_.extrusionFactorOutput_) {
|
|
this->commitScalarBuffer_(baseWriter, "extrusionFactor", extrusionFactor_);
|
|
}
|
|
if (params_.pressureOutput_) {
|
|
this->commitPhaseBuffer_(baseWriter, "pressure_%s", pressure_);
|
|
}
|
|
if (params_.densityOutput_) {
|
|
this->commitPhaseBuffer_(baseWriter, "density_%s", density_);
|
|
}
|
|
if (params_.saturationOutput_) {
|
|
this->commitPhaseBuffer_(baseWriter, "saturation_%s", saturation_);
|
|
}
|
|
if (params_.mobilityOutput_) {
|
|
this->commitPhaseBuffer_(baseWriter, "mobility_%s", mobility_);
|
|
}
|
|
if (params_.relativePermeabilityOutput_) {
|
|
this->commitPhaseBuffer_(baseWriter, "relativePerm_%s", relativePermeability_);
|
|
}
|
|
if (params_.viscosityOutput_) {
|
|
this->commitPhaseBuffer_(baseWriter, "viscosity_%s", viscosity_);
|
|
}
|
|
if (params_.averageMolarMassOutput_) {
|
|
this->commitPhaseBuffer_(baseWriter, "averageMolarMass_%s", averageMolarMass_);
|
|
}
|
|
|
|
if (params_.porosityOutput_) {
|
|
this->commitScalarBuffer_(baseWriter, "porosity", porosity_);
|
|
}
|
|
if (params_.intrinsicPermeabilityOutput_) {
|
|
this->commitTensorBuffer_(baseWriter, "intrinsicPerm", intrinsicPermeability_);
|
|
}
|
|
|
|
if (params_.velocityOutput_) {
|
|
size_t numDof = this->simulator_.model().numGridDof();
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
// first, divide the velocity field by the
|
|
// respective finite volume's surface area
|
|
for (unsigned i = 0; i < numDof; ++i) {
|
|
velocity_[phaseIdx][i] /= velocityWeight_[phaseIdx][i];
|
|
}
|
|
// commit the phase velocity
|
|
char name[512];
|
|
snprintf(name, 512, "filterVelocity_%s", FluidSystem::phaseName(phaseIdx).data());
|
|
|
|
DiscBaseOutputModule::attachVectorDofData_(baseWriter, velocity_[phaseIdx], name);
|
|
}
|
|
}
|
|
|
|
if (params_.potentialGradientOutput_) {
|
|
size_t numDof = this->simulator_.model().numGridDof();
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
// first, divide the velocity field by the
|
|
// respective finite volume's surface area
|
|
for (unsigned i = 0; i < numDof; ++i) {
|
|
potentialGradient_[phaseIdx][i] /= potentialWeight_[phaseIdx][i];
|
|
}
|
|
// commit the phase velocity
|
|
char name[512];
|
|
snprintf(name, 512, "gradP_%s", FluidSystem::phaseName(phaseIdx).data());
|
|
|
|
DiscBaseOutputModule::attachVectorDofData_(baseWriter,
|
|
potentialGradient_[phaseIdx],
|
|
name);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns true iff the module needs to access the extensive quantities of a
|
|
* context to do its job.
|
|
*
|
|
* For example, this happens if velocities or gradients should be written. Always
|
|
* returning true here does not do any harm from the correctness perspective, but it
|
|
* slows down writing the output fields.
|
|
*/
|
|
bool needExtensiveQuantities() const final
|
|
{
|
|
return params_.velocityOutput_ || params_.potentialGradientOutput_;
|
|
}
|
|
|
|
private:
|
|
VtkMultiPhaseParams params_{};
|
|
ScalarBuffer extrusionFactor_{};
|
|
PhaseBuffer pressure_{};
|
|
PhaseBuffer density_{};
|
|
PhaseBuffer saturation_{};
|
|
PhaseBuffer mobility_{};
|
|
PhaseBuffer relativePermeability_{};
|
|
PhaseBuffer viscosity_{};
|
|
PhaseBuffer averageMolarMass_{};
|
|
|
|
ScalarBuffer porosity_{};
|
|
TensorBuffer intrinsicPermeability_{};
|
|
|
|
PhaseVectorBuffer velocity_{};
|
|
PhaseBuffer velocityWeight_{};
|
|
|
|
PhaseVectorBuffer potentialGradient_{};
|
|
PhaseBuffer potentialWeight_{};
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif // OPM_VTK_MULTI_PHASE_MODULE_HPP
|