mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-15 14:31:56 -06:00
527 lines
21 KiB
C++
527 lines
21 KiB
C++
/*
|
|
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2014, 2015 Statoil ASA.
|
|
Copyright 2014, 2015 Dr. Markus Blatt - HPC-Simulation-Software & Services
|
|
Copyright 2015 NTNU
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_BLACKOILMODELBASE_HEADER_INCLUDED
|
|
#define OPM_BLACKOILMODELBASE_HEADER_INCLUDED
|
|
|
|
#include <cassert>
|
|
|
|
#include <opm/autodiff/AutoDiffBlock.hpp>
|
|
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
|
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
|
|
#include <opm/autodiff/LinearisedBlackoilResidual.hpp>
|
|
#include <opm/autodiff/NewtonIterationBlackoilInterface.hpp>
|
|
#include <opm/autodiff/BlackoilModelEnums.hpp>
|
|
#include <opm/autodiff/VFPProperties.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Grid/NNC.hpp>
|
|
|
|
#include <array>
|
|
|
|
struct Wells;
|
|
|
|
namespace Opm {
|
|
|
|
namespace parameter { class ParameterGroup; }
|
|
class DerivedGeology;
|
|
class RockCompressibility;
|
|
class NewtonIterationBlackoilInterface;
|
|
class VFPProperties;
|
|
|
|
|
|
/// Struct for containing iteration variables.
|
|
struct DefaultBlackoilSolutionState
|
|
{
|
|
typedef AutoDiffBlock<double> ADB;
|
|
explicit DefaultBlackoilSolutionState(const int np)
|
|
: pressure ( ADB::null())
|
|
, temperature( ADB::null())
|
|
, saturation(np, ADB::null())
|
|
, rs ( ADB::null())
|
|
, rv ( ADB::null())
|
|
, qs ( ADB::null())
|
|
, bhp ( ADB::null())
|
|
, canonical_phase_pressures(3, ADB::null())
|
|
{
|
|
}
|
|
ADB pressure;
|
|
ADB temperature;
|
|
std::vector<ADB> saturation;
|
|
ADB rs;
|
|
ADB rv;
|
|
ADB qs;
|
|
ADB bhp;
|
|
// Below are quantities stored in the state for optimization purposes.
|
|
std::vector<ADB> canonical_phase_pressures; // Always has 3 elements, even if only 2 phases active.
|
|
};
|
|
|
|
|
|
|
|
|
|
/// Traits to encapsulate the types used by classes using or
|
|
/// extending this model. Forward declared here, must be
|
|
/// specialised for each concrete model class.
|
|
template <class ConcreteModel>
|
|
struct ModelTraits;
|
|
|
|
|
|
/// A model implementation for three-phase black oil.
|
|
///
|
|
/// The simulator is capable of handling three-phase problems
|
|
/// where gas can be dissolved in oil and vice versa. It
|
|
/// uses an industry-standard TPFA discretization with per-phase
|
|
/// upwind weighting of mobilities.
|
|
///
|
|
/// It uses automatic differentiation via the class AutoDiffBlock
|
|
/// to simplify assembly of the jacobian matrix.
|
|
/// \tparam Grid UnstructuredGrid or CpGrid.
|
|
/// \tparam Implementation Provides concrete state types.
|
|
template<class Grid, class Implementation>
|
|
class BlackoilModelBase
|
|
{
|
|
public:
|
|
// --------- Types and enums ---------
|
|
typedef AutoDiffBlock<double> ADB;
|
|
typedef ADB::V V;
|
|
typedef ADB::M M;
|
|
|
|
typedef typename ModelTraits<Implementation>::ReservoirState ReservoirState;
|
|
typedef typename ModelTraits<Implementation>::WellState WellState;
|
|
typedef typename ModelTraits<Implementation>::ModelParameters ModelParameters;
|
|
typedef typename ModelTraits<Implementation>::SolutionState SolutionState;
|
|
|
|
// --------- Public methods ---------
|
|
|
|
/// Construct the model. It will retain references to the
|
|
/// arguments of this functions, and they are expected to
|
|
/// remain in scope for the lifetime of the solver.
|
|
/// \param[in] param parameters
|
|
/// \param[in] grid grid data structure
|
|
/// \param[in] fluid fluid properties
|
|
/// \param[in] geo rock properties
|
|
/// \param[in] rock_comp_props if non-null, rock compressibility properties
|
|
/// \param[in] wells well structure
|
|
/// \param[in] vfp_properties Vertical flow performance tables
|
|
/// \param[in] linsolver linear solver
|
|
/// \param[in] eclState eclipse state
|
|
/// \param[in] has_disgas turn on dissolved gas
|
|
/// \param[in] has_vapoil turn on vaporized oil feature
|
|
/// \param[in] terminal_output request output to cout/cerr
|
|
BlackoilModelBase(const ModelParameters& param,
|
|
const Grid& grid ,
|
|
const BlackoilPropsAdInterface& fluid,
|
|
const DerivedGeology& geo ,
|
|
const RockCompressibility* rock_comp_props,
|
|
const Wells* wells,
|
|
const NewtonIterationBlackoilInterface& linsolver,
|
|
Opm::EclipseStateConstPtr eclState,
|
|
const bool has_disgas,
|
|
const bool has_vapoil,
|
|
const bool terminal_output);
|
|
|
|
/// \brief Set threshold pressures that prevent or reduce flow.
|
|
/// This prevents flow across faces if the potential
|
|
/// difference is less than the threshold. If the potential
|
|
/// difference is greater, the threshold value is subtracted
|
|
/// before calculating flow. This is treated symmetrically, so
|
|
/// flow is prevented or reduced in both directions equally.
|
|
/// \param[in] threshold_pressures_by_face array of size equal to the number of faces
|
|
/// of the grid passed in the constructor.
|
|
void setThresholdPressures(const std::vector<double>& threshold_pressures_by_face);
|
|
|
|
/// Called once before each time step.
|
|
/// \param[in] dt time step size
|
|
/// \param[in, out] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
void prepareStep(const double dt,
|
|
ReservoirState& reservoir_state,
|
|
WellState& well_state);
|
|
|
|
/// Called once after each time step.
|
|
/// In this class, this function does nothing.
|
|
/// \param[in] dt time step size
|
|
/// \param[in, out] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
void afterStep(const double dt,
|
|
ReservoirState& reservoir_state,
|
|
WellState& well_state);
|
|
|
|
/// Assemble the residual and Jacobian of the nonlinear system.
|
|
/// \param[in] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
/// \param[in] initial_assembly pass true if this is the first call to assemble() in this timestep
|
|
void assemble(const ReservoirState& reservoir_state,
|
|
WellState& well_state,
|
|
const bool initial_assembly);
|
|
|
|
/// \brief Compute the residual norms of the mass balance for each phase,
|
|
/// the well flux, and the well equation.
|
|
/// \return a vector that contains for each phase the norm of the mass balance
|
|
/// and afterwards the norm of the residual of the well flux and the well equation.
|
|
std::vector<double> computeResidualNorms() const;
|
|
|
|
/// The size (number of unknowns) of the nonlinear system of equations.
|
|
int sizeNonLinear() const;
|
|
|
|
/// Number of linear iterations used in last call to solveJacobianSystem().
|
|
int linearIterationsLastSolve() const;
|
|
|
|
/// Solve the Jacobian system Jx = r where J is the Jacobian and
|
|
/// r is the residual.
|
|
V solveJacobianSystem() const;
|
|
|
|
/// Apply an update to the primary variables, chopped if appropriate.
|
|
/// \param[in] dx updates to apply to primary variables
|
|
/// \param[in, out] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
void updateState(const V& dx,
|
|
ReservoirState& reservoir_state,
|
|
WellState& well_state);
|
|
|
|
/// Return true if output to cout is wanted.
|
|
bool terminalOutputEnabled() const;
|
|
|
|
/// Compute convergence based on total mass balance (tol_mb) and maximum
|
|
/// residual mass balance (tol_cnv).
|
|
/// \param[in] dt timestep length
|
|
/// \param[in] iteration current iteration number
|
|
bool getConvergence(const double dt, const int iteration);
|
|
|
|
/// The number of active fluid phases in the model.
|
|
int numPhases() const;
|
|
|
|
/// The number of active materials in the model.
|
|
/// This should be equal to the number of material balance
|
|
/// equations.
|
|
int numMaterials() const;
|
|
|
|
/// The name of an active material in the model.
|
|
/// It is required that material_index < numMaterials().
|
|
const std::string& materialName(int material_index) const;
|
|
|
|
/// Update the scaling factors for mass balance equations
|
|
void updateEquationsScaling();
|
|
|
|
protected:
|
|
|
|
// --------- Types and enums ---------
|
|
|
|
typedef Eigen::Array<double,
|
|
Eigen::Dynamic,
|
|
Eigen::Dynamic,
|
|
Eigen::RowMajor> DataBlock;
|
|
|
|
struct ReservoirResidualQuant {
|
|
ReservoirResidualQuant();
|
|
std::vector<ADB> accum; // Accumulations
|
|
ADB mflux; // Mass flux (surface conditions)
|
|
ADB b; // Reciprocal FVF
|
|
ADB dh; // Pressure drop across int. interfaces
|
|
ADB mob; // Phase mobility (per cell)
|
|
};
|
|
|
|
struct WellOps {
|
|
WellOps(const Wells* wells);
|
|
Eigen::SparseMatrix<double> w2p; // well -> perf (scatter)
|
|
Eigen::SparseMatrix<double> p2w; // perf -> well (gather)
|
|
};
|
|
|
|
// --------- Data members ---------
|
|
|
|
const Grid& grid_;
|
|
const BlackoilPropsAdInterface& fluid_;
|
|
const DerivedGeology& geo_;
|
|
const RockCompressibility* rock_comp_props_;
|
|
const Wells* wells_;
|
|
VFPProperties vfp_properties_;
|
|
const NewtonIterationBlackoilInterface& linsolver_;
|
|
// For each canonical phase -> true if active
|
|
const std::vector<bool> active_;
|
|
// Size = # active phases. Maps active -> canonical phase indices.
|
|
const std::vector<int> canph_;
|
|
const std::vector<int> cells_; // All grid cells
|
|
HelperOps ops_;
|
|
const WellOps wops_;
|
|
const bool has_disgas_;
|
|
const bool has_vapoil_;
|
|
|
|
ModelParameters param_;
|
|
bool use_threshold_pressure_;
|
|
bool wells_active_;
|
|
V threshold_pressures_by_interior_face_;
|
|
|
|
std::vector<ReservoirResidualQuant> rq_;
|
|
std::vector<PhasePresence> phaseCondition_;
|
|
V isRs_;
|
|
V isRv_;
|
|
V isSg_;
|
|
V well_perforation_densities_; //Density of each well perforation
|
|
V well_perforation_pressure_diffs_; // Diff to bhp for each well perforation.
|
|
|
|
LinearisedBlackoilResidual residual_;
|
|
|
|
/// \brief Whether we print something to std::cout
|
|
bool terminal_output_;
|
|
|
|
std::vector<int> primalVariable_;
|
|
V pvdt_;
|
|
std::vector<std::string> material_name_;
|
|
|
|
// --------- Protected methods ---------
|
|
|
|
/// Access the most-derived class used for
|
|
/// static polymorphism (CRTP).
|
|
Implementation& asImpl()
|
|
{
|
|
return static_cast<Implementation&>(*this);
|
|
}
|
|
|
|
/// Access the most-derived class used for
|
|
/// static polymorphism (CRTP).
|
|
const Implementation& asImpl() const
|
|
{
|
|
return static_cast<const Implementation&>(*this);
|
|
}
|
|
|
|
// return true if wells are available in the reservoir
|
|
bool wellsActive() const { return wells_active_; }
|
|
// return true if wells are available on this process
|
|
bool localWellsActive() const { return wells_ ? (wells_->number_of_wells > 0 ) : false; }
|
|
// return wells object
|
|
const Wells& wells () const { assert( bool(wells_ != 0) ); return *wells_; }
|
|
|
|
void
|
|
makeConstantState(SolutionState& state) const;
|
|
|
|
SolutionState
|
|
variableState(const ReservoirState& x,
|
|
const WellState& xw) const;
|
|
|
|
std::vector<V>
|
|
variableStateInitials(const ReservoirState& x,
|
|
const WellState& xw) const;
|
|
void
|
|
variableReservoirStateInitials(const ReservoirState& x,
|
|
std::vector<V>& vars0) const;
|
|
void
|
|
variableWellStateInitials(const WellState& xw,
|
|
std::vector<V>& vars0) const;
|
|
|
|
std::vector<int>
|
|
variableStateIndices() const;
|
|
|
|
std::vector<int>
|
|
variableWellStateIndices() const;
|
|
|
|
SolutionState
|
|
variableStateExtractVars(const ReservoirState& x,
|
|
const std::vector<int>& indices,
|
|
std::vector<ADB>& vars) const;
|
|
|
|
void
|
|
variableStateExtractWellsVars(const std::vector<int>& indices,
|
|
std::vector<ADB>& vars,
|
|
SolutionState& state) const;
|
|
|
|
void
|
|
computeAccum(const SolutionState& state,
|
|
const int aix );
|
|
|
|
void computeWellConnectionPressures(const SolutionState& state,
|
|
const WellState& xw);
|
|
|
|
void
|
|
assembleMassBalanceEq(const SolutionState& state);
|
|
|
|
void
|
|
solveWellEq(const std::vector<ADB>& mob_perfcells,
|
|
const std::vector<ADB>& b_perfcells,
|
|
SolutionState& state,
|
|
WellState& well_state);
|
|
|
|
void
|
|
computeWellFlux(const SolutionState& state,
|
|
const std::vector<ADB>& mob_perfcells,
|
|
const std::vector<ADB>& b_perfcells,
|
|
V& aliveWells,
|
|
std::vector<ADB>& cq_s);
|
|
|
|
void
|
|
updatePerfPhaseRatesAndPressures(const std::vector<ADB>& cq_s,
|
|
const SolutionState& state,
|
|
WellState& xw);
|
|
|
|
void
|
|
addWellFluxEq(const std::vector<ADB>& cq_s,
|
|
const SolutionState& state);
|
|
|
|
void
|
|
addWellContributionToMassBalanceEq(const std::vector<ADB>& cq_s,
|
|
const SolutionState& state,
|
|
const WellState& xw);
|
|
|
|
void
|
|
addWellControlEq(const SolutionState& state,
|
|
const WellState& xw,
|
|
const V& aliveWells);
|
|
|
|
void updateWellControls(WellState& xw) const;
|
|
|
|
void updateWellState(const V& dwells,
|
|
WellState& well_state);
|
|
|
|
bool getWellConvergence(const int iteration);
|
|
|
|
bool isVFPActive() const;
|
|
|
|
std::vector<ADB>
|
|
computePressures(const ADB& po,
|
|
const ADB& sw,
|
|
const ADB& so,
|
|
const ADB& sg) const;
|
|
|
|
V
|
|
computeGasPressure(const V& po,
|
|
const V& sw,
|
|
const V& so,
|
|
const V& sg) const;
|
|
|
|
std::vector<ADB>
|
|
computeRelPerm(const SolutionState& state) const;
|
|
|
|
void
|
|
computeMassFlux(const int actph ,
|
|
const V& transi,
|
|
const ADB& kr ,
|
|
const ADB& p ,
|
|
const SolutionState& state );
|
|
|
|
void applyThresholdPressures(ADB& dp);
|
|
|
|
ADB
|
|
fluidViscosity(const int phase,
|
|
const ADB& p ,
|
|
const ADB& temp ,
|
|
const ADB& rs ,
|
|
const ADB& rv ,
|
|
const std::vector<PhasePresence>& cond) const;
|
|
|
|
ADB
|
|
fluidReciprocFVF(const int phase,
|
|
const ADB& p ,
|
|
const ADB& temp ,
|
|
const ADB& rs ,
|
|
const ADB& rv ,
|
|
const std::vector<PhasePresence>& cond) const;
|
|
|
|
ADB
|
|
fluidDensity(const int phase,
|
|
const ADB& b,
|
|
const ADB& rs,
|
|
const ADB& rv) const;
|
|
|
|
V
|
|
fluidRsSat(const V& p,
|
|
const V& so,
|
|
const std::vector<int>& cells) const;
|
|
|
|
ADB
|
|
fluidRsSat(const ADB& p,
|
|
const ADB& so,
|
|
const std::vector<int>& cells) const;
|
|
|
|
V
|
|
fluidRvSat(const V& p,
|
|
const V& so,
|
|
const std::vector<int>& cells) const;
|
|
|
|
ADB
|
|
fluidRvSat(const ADB& p,
|
|
const ADB& so,
|
|
const std::vector<int>& cells) const;
|
|
|
|
ADB
|
|
poroMult(const ADB& p) const;
|
|
|
|
ADB
|
|
transMult(const ADB& p) const;
|
|
|
|
const std::vector<PhasePresence>
|
|
phaseCondition() const {return phaseCondition_;}
|
|
|
|
void
|
|
classifyCondition(const ReservoirState& state);
|
|
|
|
|
|
/// update the primal variable for Sg, Rv or Rs. The Gas phase must
|
|
/// be active to call this method.
|
|
void
|
|
updatePrimalVariableFromState(const ReservoirState& state);
|
|
|
|
/// Update the phaseCondition_ member based on the primalVariable_ member.
|
|
/// Also updates isRs_, isRv_ and isSg_;
|
|
void
|
|
updatePhaseCondFromPrimalVariable();
|
|
|
|
/// \brief Compute the reduction within the convergence check.
|
|
/// \param[in] B A matrix with MaxNumPhases columns and the same number rows
|
|
/// as the number of cells of the grid. B.col(i) contains the values
|
|
/// for phase i.
|
|
/// \param[in] tempV A matrix with MaxNumPhases columns and the same number rows
|
|
/// as the number of cells of the grid. tempV.col(i) contains the
|
|
/// values
|
|
/// for phase i.
|
|
/// \param[in] R A matrix with MaxNumPhases columns and the same number rows
|
|
/// as the number of cells of the grid. B.col(i) contains the values
|
|
/// for phase i.
|
|
/// \param[out] R_sum An array of size MaxNumPhases where entry i contains the sum
|
|
/// of R for the phase i.
|
|
/// \param[out] maxCoeff An array of size MaxNumPhases where entry i contains the
|
|
/// maximum of tempV for the phase i.
|
|
/// \param[out] B_avg An array of size MaxNumPhases where entry i contains the average
|
|
/// of B for the phase i.
|
|
/// \param[out] maxNormWell The maximum of the well equations for each phase.
|
|
/// \param[in] nc The number of cells of the local grid.
|
|
/// \param[in] nw The number of wells on the local grid.
|
|
/// \return The total pore volume over all cells.
|
|
double
|
|
convergenceReduction(const Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic>& B,
|
|
const Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic>& tempV,
|
|
const Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic>& R,
|
|
std::vector<double>& R_sum,
|
|
std::vector<double>& maxCoeff,
|
|
std::vector<double>& B_avg,
|
|
std::vector<double>& maxNormWell,
|
|
int nc,
|
|
int nw) const;
|
|
|
|
double dpMaxRel() const { return param_.dp_max_rel_; }
|
|
double dsMax() const { return param_.ds_max_; }
|
|
double drMaxRel() const { return param_.dr_max_rel_; }
|
|
double maxResidualAllowed() const { return param_.max_residual_allowed_; }
|
|
|
|
};
|
|
} // namespace Opm
|
|
|
|
#include "BlackoilModelBase_impl.hpp"
|
|
|
|
#endif // OPM_BLACKOILMODELBASE_HEADER_INCLUDED
|