so far, the actual specializations of the simulator were compiled into the `libopmsimulators` library and the build of the glue code (`flow.cpp`) thus needed to be deferred until the library was fully built. Since the compilation of the glue code requires a full property hierarchy for handling command line parameters, this arrangement significantly increases the build time for systems with a sufficient number of parallel build processes. ("sufficient" here means 8 or more threads, i.e., a quadcore system with hyperthreading is sufficient provided that it has enough main memory.) the new approach is not to include these objects in `libopmsimulators`, but to directly deal with them in the `flow` binary. this allows all of them and the glue code to be compiled in parallel. compilation time on my machine before this change: ``` > touch ../opm/autodiff/BlackoilModelEbos.hpp; time make -j32 flow 2> /dev/null Scanning dependencies of target opmsimulators [ 2%] Building CXX object CMakeFiles/opmsimulators.dir/opm/simulators/flow_ebos_gasoil.cpp.o [ 2%] Building CXX object CMakeFiles/opmsimulators.dir/opm/simulators/flow_ebos_oilwater.cpp.o [ 2%] Building CXX object CMakeFiles/opmsimulators.dir/opm/simulators/flow_ebos_blackoil.cpp.o [ 2%] Building CXX object CMakeFiles/opmsimulators.dir/opm/simulators/flow_ebos_solvent.cpp.o [ 4%] Building CXX object CMakeFiles/opmsimulators.dir/opm/simulators/flow_ebos_polymer.cpp.o [ 6%] Building CXX object CMakeFiles/opmsimulators.dir/opm/simulators/flow_ebos_energy.cpp.o [ 6%] Building CXX object CMakeFiles/opmsimulators.dir/opm/simulators/flow_ebos_oilwater_polymer.cpp.o [ 6%] Linking CXX static library lib/libopmsimulators.a [ 97%] Built target opmsimulators Scanning dependencies of target flow [100%] Building CXX object CMakeFiles/flow.dir/examples/flow.cpp.o [100%] Linking CXX executable bin/flow [100%] Built target flow real 1m45.692s user 8m47.195s sys 0m11.533s ``` after: ``` > touch ../opm/autodiff/BlackoilModelEbos.hpp; time make -j32 flow 2> /dev/null [ 91%] Built target opmsimulators Scanning dependencies of target flow [ 93%] Building CXX object CMakeFiles/flow.dir/flow/flow.cpp.o [ 95%] Building CXX object CMakeFiles/flow.dir/flow/flow_ebos_gasoil.cpp.o [ 97%] Building CXX object CMakeFiles/flow.dir/flow/flow_ebos_oilwater_polymer.cpp.o [100%] Building CXX object CMakeFiles/flow.dir/flow/flow_ebos_polymer.cpp.o [100%] Building CXX object CMakeFiles/flow.dir/flow/flow_ebos_oilwater.cpp.o [100%] Building CXX object CMakeFiles/flow.dir/flow/flow_ebos_solvent.cpp.o [100%] Building CXX object CMakeFiles/flow.dir/flow/flow_ebos_blackoil.cpp.o [100%] Building CXX object CMakeFiles/flow.dir/flow/flow_ebos_energy.cpp.o [100%] Linking CXX executable bin/flow [100%] Built target flow real 1m21.597s user 8m49.476s sys 0m10.973s ``` (this corresponds to a ~20% reduction of the time spend on waiting for the compiler.) |
||
---|---|---|
debian | ||
doc/doxygen | ||
examples | ||
flow | ||
jenkins | ||
opm | ||
redhat | ||
tests | ||
tutorials | ||
.gitignore | ||
CHANGELOG.md | ||
CMakeLists_files.cmake | ||
CMakeLists.txt | ||
compareECLFiles.cmake | ||
CTestConfig.cmake | ||
dune.module | ||
opm-simulators-prereqs.cmake | ||
README.md |
Open Porous Media Simulators and Automatic Differentiation Library
CONTENT
opm-simulators contains simulator programs for porous media flow. It also contains a small library for automatic differentiation built on the Eigen linear algebra package which is used by many of the simulators to handle the building of Jacobians. The most important (and tested) part is the Flow reservoir simulator, which is a fully implicit black-oil simulator that also supports solvent and polymer options. It is built using automatic differentiation, using the local AD class Evaluation from opm-material.
LICENSE
The library is distributed under the GNU General Public License, version 3 or later (GPLv3+).
PLATFORMS
The opm-simulators module is designed to run on Linux platforms. It is also regularly run on Mac OS X. No efforts have been made to ensure that the code will compile and run on windows platforms.
REQUIREMENTS
opm-simulators requires several other OPM modules, see http://opm-project.org/?page_id=274. In addition, opm-simulators requires the Dune module dune-istl and Eigen, version 3.1 (has not been tested with later versions).
DOWNLOADING
For a read-only download: git clone git://github.com/OPM/opm-simulators.git
If you want to contribute, fork OPM/opm-simulators on github.
BUILDING
See build instructions at http://opm-project.org/?page_id=36
DOCUMENTATION
Efforts have been made to document the code with Doxygen. In order to build the documentation, enter the command
make doc
in the topmost directory. The class AutoDiffBlock is the most important and most well-documented.
REPORTING ISSUES
Issues can be reported in the Git issue tracker online at:
https://github.com/OPM/opm-simulators/issues
To help diagnose build errors, please provide a link to a build log together with the issue description.
You can capture such a log from the build using the `script' utility, e.g.:
LOGFILE=$(date +%Y%m%d-%H%M-)build.log ;
cmake -E cmake_echo_color --cyan --bold "Log file: $LOGFILE" ;
script -q $LOGFILE -c 'cmake ../opm-core -DCMAKE_BUILD_TYPE=Debug' &&
script -q $LOGFILE -a -c 'ionice nice make -j 4 -l 3' ||
cat CMakeCache.txt CMakeFiles/CMake*.log >> $LOGFILE
The resulting file can be uploaded to for instance gist.github.com.