opm-simulators/opm/models/pvs/pvsintensivequantities.hh
2019-09-19 11:07:52 +02:00

298 lines
12 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::PvsIntensiveQuantities
*/
#ifndef EWOMS_PVS_INTENSIVE_QUANTITIES_HH
#define EWOMS_PVS_INTENSIVE_QUANTITIES_HH
#include "pvsproperties.hh"
#include <opm/models/common/energymodule.hh>
#include <opm/models/common/diffusionmodule.hh>
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
#include <opm/material/constraintsolvers/MiscibleMultiPhaseComposition.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <iostream>
namespace Opm {
/*!
* \ingroup PvsModel
* \ingroup IntensiveQuantities
*
* \brief Contains the quantities which are are constant within a
* finite volume in the compositional multi-phase primary
* variable switching model.
*/
template <class TypeTag>
class PvsIntensiveQuantities
: public GET_PROP_TYPE(TypeTag, DiscIntensiveQuantities)
, public DiffusionIntensiveQuantities<TypeTag, GET_PROP_VALUE(TypeTag, EnableDiffusion) >
, public EnergyIntensiveQuantities<TypeTag, GET_PROP_VALUE(TypeTag, EnableEnergy) >
, public GET_PROP_TYPE(TypeTag, FluxModule)::FluxIntensiveQuantities
{
typedef typename GET_PROP_TYPE(TypeTag, DiscIntensiveQuantities) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, FluxModule) FluxModule;
enum { switch0Idx = Indices::switch0Idx };
enum { pressure0Idx = Indices::pressure0Idx };
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
enum { numComponents = GET_PROP_VALUE(TypeTag, NumComponents) };
enum { enableDiffusion = GET_PROP_VALUE(TypeTag, EnableDiffusion) };
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
enum { dimWorld = GridView::dimensionworld };
typedef Opm::MathToolbox<Evaluation> Toolbox;
typedef Opm::MiscibleMultiPhaseComposition<Scalar, FluidSystem, Evaluation> MiscibleMultiPhaseComposition;
typedef Opm::ComputeFromReferencePhase<Scalar, FluidSystem, Evaluation> ComputeFromReferencePhase;
typedef Dune::FieldVector<Scalar, numPhases> PhaseVector;
typedef Dune::FieldVector<Evaluation, numPhases> EvalPhaseVector;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
typedef typename FluxModule::FluxIntensiveQuantities FluxIntensiveQuantities;
typedef Opm::DiffusionIntensiveQuantities<TypeTag, enableDiffusion> DiffusionIntensiveQuantities;
typedef Opm::EnergyIntensiveQuantities<TypeTag, enableEnergy> EnergyIntensiveQuantities;
public:
//! The type of the object returned by the fluidState() method
typedef Opm::CompositionalFluidState<Evaluation, FluidSystem> FluidState;
PvsIntensiveQuantities()
{ }
PvsIntensiveQuantities(const PvsIntensiveQuantities& other) = default;
PvsIntensiveQuantities& operator=(const PvsIntensiveQuantities& other) = default;
/*!
* \copydoc ImmiscibleIntensiveQuantities::update
*/
void update(const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx)
{
ParentType::update(elemCtx, dofIdx, timeIdx);
EnergyIntensiveQuantities::updateTemperatures_(fluidState_, elemCtx, dofIdx, timeIdx);
const auto& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
const auto& problem = elemCtx.problem();
/////////////
// set the saturations
/////////////
Evaluation sumSat = 0.0;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
fluidState_.setSaturation(phaseIdx, priVars.explicitSaturationValue(phaseIdx, timeIdx));
Opm::Valgrind::CheckDefined(fluidState_.saturation(phaseIdx));
sumSat += fluidState_.saturation(phaseIdx);
}
Opm::Valgrind::CheckDefined(priVars.implicitSaturationIdx());
Opm::Valgrind::CheckDefined(sumSat);
fluidState_.setSaturation(priVars.implicitSaturationIdx(), 1.0 - sumSat);
/////////////
// set the pressures of the fluid phases
/////////////
// calculate capillary pressure
const MaterialLawParams& materialParams =
problem.materialLawParams(elemCtx, dofIdx, timeIdx);
EvalPhaseVector pC;
MaterialLaw::capillaryPressures(pC, materialParams, fluidState_);
// set the absolute phase pressures in the fluid state
const Evaluation& p0 = priVars.makeEvaluation(pressure0Idx, timeIdx);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
fluidState_.setPressure(phaseIdx, p0 + (pC[phaseIdx] - pC[0]));
/////////////
// calculate the phase compositions
/////////////
typename FluidSystem::template ParameterCache<Evaluation> paramCache;
unsigned lowestPresentPhaseIdx = priVars.lowestPresentPhaseIdx();
unsigned numNonPresentPhases = 0;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!priVars.phaseIsPresent(phaseIdx))
++numNonPresentPhases;
}
// now comes the tricky part: calculate phase compositions
if (numNonPresentPhases == numPhases - 1) {
// only one phase is present, i.e. the primary variables
// contain the complete composition of the phase
Evaluation sumx = 0.0;
for (unsigned compIdx = 1; compIdx < numComponents; ++compIdx) {
const Evaluation& x = priVars.makeEvaluation(switch0Idx + compIdx - 1, timeIdx);
fluidState_.setMoleFraction(lowestPresentPhaseIdx, compIdx, x);
sumx += x;
}
// set the mole fraction of the first component
fluidState_.setMoleFraction(lowestPresentPhaseIdx, 0, 1 - sumx);
// calculate the composition of the remaining phases (as
// well as the densities of all phases). this is the job
// of the "ComputeFromReferencePhase" constraint solver
ComputeFromReferencePhase::solve(fluidState_, paramCache,
lowestPresentPhaseIdx,
/*setViscosity=*/true,
/*setEnthalpy=*/false);
}
else {
// create the auxiliary constraints
unsigned numAuxConstraints = numComponents + numNonPresentPhases - numPhases;
Opm::MMPCAuxConstraint<Evaluation> auxConstraints[numComponents];
unsigned auxIdx = 0;
unsigned switchIdx = 0;
for (; switchIdx < numPhases - 1; ++switchIdx) {
unsigned compIdx = switchIdx + 1;
unsigned switchPhaseIdx = switchIdx;
if (switchIdx >= lowestPresentPhaseIdx)
switchPhaseIdx += 1;
if (!priVars.phaseIsPresent(switchPhaseIdx)) {
auxConstraints[auxIdx].set(lowestPresentPhaseIdx, compIdx,
priVars.makeEvaluation(switch0Idx + switchIdx, timeIdx));
++auxIdx;
}
}
for (; auxIdx < numAuxConstraints; ++auxIdx, ++switchIdx) {
unsigned compIdx = numPhases - numNonPresentPhases + auxIdx;
auxConstraints[auxIdx].set(lowestPresentPhaseIdx, compIdx,
priVars.makeEvaluation(switch0Idx + switchIdx, timeIdx));
}
// both phases are present, i.e. phase compositions are a result of the the
// gas <-> liquid equilibrium. This is the job of the
// "MiscibleMultiPhaseComposition" constraint solver
MiscibleMultiPhaseComposition::solve(fluidState_, paramCache,
priVars.phasePresence(),
auxConstraints,
numAuxConstraints,
/*setViscosity=*/true,
/*setEnthalpy=*/false);
}
#ifndef NDEBUG
// make valgrind happy and set the enthalpies to NaN
if (!enableEnergy) {
Scalar myNan = std::numeric_limits<Scalar>::quiet_NaN();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
fluidState_.setEnthalpy(phaseIdx, myNan);
}
#endif
/////////////
// calculate the remaining quantities
/////////////
// calculate relative permeabilities
MaterialLaw::relativePermeabilities(relativePermeability_,
materialParams, fluidState_);
Opm::Valgrind::CheckDefined(relativePermeability_);
// mobilities
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
mobility_[phaseIdx] =
relativePermeability_[phaseIdx] / fluidState().viscosity(phaseIdx);
// porosity
porosity_ = problem.porosity(elemCtx, dofIdx, timeIdx);
Opm::Valgrind::CheckDefined(porosity_);
// intrinsic permeability
intrinsicPerm_ = problem.intrinsicPermeability(elemCtx, dofIdx, timeIdx);
// update the quantities specific for the velocity model
FluxIntensiveQuantities::update_(elemCtx, dofIdx, timeIdx);
// energy related quantities
EnergyIntensiveQuantities::update_(fluidState_, paramCache, elemCtx, dofIdx, timeIdx);
// update the diffusion specific quantities of the intensive quantities
DiffusionIntensiveQuantities::update_(fluidState_, paramCache, elemCtx, dofIdx, timeIdx);
fluidState_.checkDefined();
}
/*!
* \copydoc ImmiscibleIntensiveQuantities::fluidState
*/
const FluidState& fluidState() const
{ return fluidState_; }
/*!
* \copydoc ImmiscibleIntensiveQuantities::intrinsicPermeability
*/
const DimMatrix& intrinsicPermeability() const
{ return intrinsicPerm_; }
/*!
* \copydoc ImmiscibleIntensiveQuantities::relativePermeability
*/
const Evaluation& relativePermeability(unsigned phaseIdx) const
{ return relativePermeability_[phaseIdx]; }
/*!
* \copydoc ImmiscibleIntensiveQuantities::mobility
*/
const Evaluation& mobility(unsigned phaseIdx) const
{ return mobility_[phaseIdx]; }
/*!
* \copydoc ImmiscibleIntensiveQuantities::porosity
*/
const Evaluation& porosity() const
{ return porosity_; }
private:
FluidState fluidState_;
Evaluation porosity_;
DimMatrix intrinsicPerm_;
Evaluation relativePermeability_[numPhases];
Evaluation mobility_[numPhases];
};
} // namespace Opm
#endif