mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-18 21:22:57 -06:00
595 lines
20 KiB
C++
595 lines
20 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::WaterAirProblem
|
|
*/
|
|
#ifndef EWOMS_WATER_AIR_PROBLEM_HH
|
|
#define EWOMS_WATER_AIR_PROBLEM_HH
|
|
|
|
#include <opm/models/pvs/pvsproperties.hh>
|
|
#include <opm/simulators/linalg/parallelistlbackend.hh>
|
|
|
|
#include <opm/material/fluidsystems/H2OAirFluidSystem.hpp>
|
|
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
|
|
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
|
#include <opm/material/thermal/ConstantSolidHeatCapLaw.hpp>
|
|
#include <opm/material/thermal/SomertonThermalConductionLaw.hpp>
|
|
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
|
|
#include <opm/material/common/Unused.hpp>
|
|
|
|
#include <dune/grid/yaspgrid.hh>
|
|
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
|
|
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
#include <dune/common/version.hh>
|
|
|
|
#include <sstream>
|
|
#include <string>
|
|
|
|
namespace Opm {
|
|
template <class TypeTag>
|
|
class WaterAirProblem;
|
|
}
|
|
|
|
BEGIN_PROPERTIES
|
|
|
|
NEW_TYPE_TAG(WaterAirBaseProblem);
|
|
|
|
// Set the grid type
|
|
SET_TYPE_PROP(WaterAirBaseProblem, Grid, Dune::YaspGrid<2>);
|
|
|
|
// Set the problem property
|
|
SET_TYPE_PROP(WaterAirBaseProblem, Problem, Opm::WaterAirProblem<TypeTag>);
|
|
|
|
// Set the material Law
|
|
SET_PROP(WaterAirBaseProblem, MaterialLaw)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef Opm::TwoPhaseMaterialTraits<Scalar,
|
|
/*wettingPhaseIdx=*/FluidSystem::liquidPhaseIdx,
|
|
/*nonWettingPhaseIdx=*/FluidSystem::gasPhaseIdx> Traits;
|
|
|
|
// define the material law which is parameterized by effective
|
|
// saturations
|
|
typedef Opm::RegularizedBrooksCorey<Traits> EffMaterialLaw;
|
|
|
|
public:
|
|
// define the material law parameterized by absolute saturations
|
|
// which uses the two-phase API
|
|
typedef Opm::EffToAbsLaw<EffMaterialLaw> type;
|
|
};
|
|
|
|
// Set the thermal conduction law
|
|
SET_PROP(WaterAirBaseProblem, ThermalConductionLaw)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
|
|
public:
|
|
// define the material law parameterized by absolute saturations
|
|
typedef Opm::SomertonThermalConductionLaw<FluidSystem, Scalar> type;
|
|
};
|
|
|
|
// set the energy storage law for the solid phase
|
|
SET_TYPE_PROP(WaterAirBaseProblem, SolidEnergyLaw,
|
|
Opm::ConstantSolidHeatCapLaw<typename GET_PROP_TYPE(TypeTag, Scalar)>);
|
|
|
|
// Set the fluid system. in this case, we use the one which describes
|
|
// air and water
|
|
SET_TYPE_PROP(WaterAirBaseProblem, FluidSystem,
|
|
Opm::H2OAirFluidSystem<typename GET_PROP_TYPE(TypeTag, Scalar)>);
|
|
|
|
// Enable gravity
|
|
SET_BOOL_PROP(WaterAirBaseProblem, EnableGravity, true);
|
|
|
|
// Use forward differences instead of central differences
|
|
SET_INT_PROP(WaterAirBaseProblem, NumericDifferenceMethod, +1);
|
|
|
|
// Write newton convergence
|
|
SET_BOOL_PROP(WaterAirBaseProblem, NewtonWriteConvergence, false);
|
|
|
|
// The default for the end time of the simulation (1 year)
|
|
SET_SCALAR_PROP(WaterAirBaseProblem, EndTime, 1.0 * 365 * 24 * 60 * 60);
|
|
|
|
// The default for the initial time step size of the simulation
|
|
SET_SCALAR_PROP(WaterAirBaseProblem, InitialTimeStepSize, 250);
|
|
|
|
// The default DGF file to load
|
|
SET_STRING_PROP(WaterAirBaseProblem, GridFile, "./data/waterair.dgf");
|
|
|
|
// Use the restarted GMRES linear solver with the ILU-2 preconditioner from dune-istl
|
|
SET_TAG_PROP(WaterAirBaseProblem, LinearSolverSplice, ParallelIstlLinearSolver);
|
|
SET_TYPE_PROP(WaterAirBaseProblem, LinearSolverWrapper,
|
|
Opm::Linear::SolverWrapperRestartedGMRes<TypeTag>);
|
|
#if DUNE_VERSION_NEWER(DUNE_ISTL, 2,7)
|
|
SET_TYPE_PROP(WaterAirBaseProblem, PreconditionerWrapper,
|
|
Opm::Linear::PreconditionerWrapperILU<TypeTag>);
|
|
#else
|
|
SET_TYPE_PROP(WaterAirBaseProblem, PreconditionerWrapper,
|
|
Opm::Linear::PreconditionerWrapperILUn<TypeTag>);
|
|
#endif
|
|
SET_INT_PROP(WaterAirBaseProblem, PreconditionerOrder, 2);
|
|
|
|
END_PROPERTIES
|
|
|
|
namespace Opm {
|
|
/*!
|
|
* \ingroup TestProblems
|
|
* \brief Non-isothermal gas injection problem where a air
|
|
* is injected into a fully water saturated medium.
|
|
*
|
|
* During buoyancy driven upward migration, the gas passes a
|
|
* rectangular high temperature area. This decreases the temperature
|
|
* of the high-temperature area and accelerates gas infiltration due
|
|
* to the lower viscosity of the gas. (Be aware that the pressure of
|
|
* the gas is approximately constant within the lens, so the density
|
|
* of the gas is reduced. This more than off-sets the viscosity
|
|
* increase of the gas at constant density.)
|
|
*
|
|
* The domain is sized 40 m times 40 m. The rectangular area with
|
|
* increased temperature (380 K) starts at (20 m, 5 m) and ends at (30
|
|
* m, 35 m).
|
|
*
|
|
* For the mass conservation equation, no-flow boundary conditions are
|
|
* used on the top and on the bottom of the domain, while free-flow
|
|
* conditions apply on the left and the right boundary. Gas is
|
|
* injected at bottom from 15 m to 25 m at a rate of 0.001 kg/(s m^2)
|
|
* by means if a forced inflow boundary condition.
|
|
*
|
|
* At the free-flow boundaries, the initial condition for the bulk
|
|
* part of the domain is assumed, i. e. hydrostatic pressure, a gas
|
|
* saturation of zero and a geothermal temperature gradient of 0.03
|
|
* K/m.
|
|
*/
|
|
template <class TypeTag >
|
|
class WaterAirProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
|
|
{
|
|
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
|
|
|
// copy some indices for convenience
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
|
|
enum {
|
|
numPhases = FluidSystem::numPhases,
|
|
|
|
// energy related indices
|
|
temperatureIdx = Indices::temperatureIdx,
|
|
energyEqIdx = Indices::energyEqIdx,
|
|
|
|
// component indices
|
|
H2OIdx = FluidSystem::H2OIdx,
|
|
AirIdx = FluidSystem::AirIdx,
|
|
|
|
// phase indices
|
|
liquidPhaseIdx = FluidSystem::liquidPhaseIdx,
|
|
gasPhaseIdx = FluidSystem::gasPhaseIdx,
|
|
|
|
// equation indices
|
|
conti0EqIdx = Indices::conti0EqIdx,
|
|
|
|
// Grid and world dimension
|
|
dim = GridView::dimension,
|
|
dimWorld = GridView::dimensionworld
|
|
};
|
|
|
|
static const bool enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy);
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Constraints) Constraints;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
|
|
typedef typename GET_PROP_TYPE(TypeTag, ThermalConductionLawParams) ThermalConductionLawParams;
|
|
typedef typename GET_PROP_TYPE(TypeTag, SolidEnergyLawParams) SolidEnergyLawParams;
|
|
|
|
typedef typename GridView::ctype CoordScalar;
|
|
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
|
|
|
|
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
|
|
|
|
public:
|
|
/*!
|
|
* \copydoc Doxygen::defaultProblemConstructor
|
|
*/
|
|
WaterAirProblem(Simulator& simulator)
|
|
: ParentType(simulator)
|
|
{ }
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::finishInit
|
|
*/
|
|
void finishInit()
|
|
{
|
|
ParentType::finishInit();
|
|
|
|
maxDepth_ = 1000.0; // [m]
|
|
eps_ = 1e-6;
|
|
|
|
FluidSystem::init(/*Tmin=*/275, /*Tmax=*/600, /*nT=*/100,
|
|
/*pmin=*/9.5e6, /*pmax=*/10.5e6, /*np=*/200);
|
|
|
|
layerBottom_ = 22.0;
|
|
|
|
// intrinsic permeabilities
|
|
fineK_ = this->toDimMatrix_(1e-13);
|
|
coarseK_ = this->toDimMatrix_(1e-12);
|
|
|
|
// porosities
|
|
finePorosity_ = 0.3;
|
|
coarsePorosity_ = 0.3;
|
|
|
|
// residual saturations
|
|
fineMaterialParams_.setResidualSaturation(liquidPhaseIdx, 0.2);
|
|
fineMaterialParams_.setResidualSaturation(gasPhaseIdx, 0.0);
|
|
coarseMaterialParams_.setResidualSaturation(liquidPhaseIdx, 0.2);
|
|
coarseMaterialParams_.setResidualSaturation(gasPhaseIdx, 0.0);
|
|
|
|
// parameters for the Brooks-Corey law
|
|
fineMaterialParams_.setEntryPressure(1e4);
|
|
coarseMaterialParams_.setEntryPressure(1e4);
|
|
fineMaterialParams_.setLambda(2.0);
|
|
coarseMaterialParams_.setLambda(2.0);
|
|
|
|
fineMaterialParams_.finalize();
|
|
coarseMaterialParams_.finalize();
|
|
|
|
// parameters for the somerton law of thermal conduction
|
|
computeThermalCondParams_(fineThermalCondParams_, finePorosity_);
|
|
computeThermalCondParams_(coarseThermalCondParams_, coarsePorosity_);
|
|
|
|
// assume constant volumetric heat capacity and granite
|
|
solidEnergyLawParams_.setSolidHeatCapacity(790.0 // specific heat capacity of granite [J / (kg K)]
|
|
* 2700.0); // density of granite [kg/m^3]
|
|
solidEnergyLawParams_.finalize();
|
|
}
|
|
|
|
/*!
|
|
* \name Problem parameters
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::name
|
|
*/
|
|
std::string name() const
|
|
{
|
|
std::ostringstream oss;
|
|
oss << "waterair_" << Model::name();
|
|
if (GET_PROP_VALUE(TypeTag, EnableEnergy))
|
|
oss << "_ni";
|
|
|
|
return oss.str();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::endTimeStep
|
|
*/
|
|
void endTimeStep()
|
|
{
|
|
#ifndef NDEBUG
|
|
// checkConservativeness() does not include the effect of constraints, so we
|
|
// disable it for this problem...
|
|
//this->model().checkConservativeness();
|
|
|
|
// Calculate storage terms
|
|
EqVector storage;
|
|
this->model().globalStorage(storage);
|
|
|
|
// Write mass balance information for rank 0
|
|
if (this->gridView().comm().rank() == 0) {
|
|
std::cout << "Storage: " << storage << std::endl << std::flush;
|
|
}
|
|
#endif // NDEBUG
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
|
|
*
|
|
* In this problem, the upper part of the domain is sightly less
|
|
* permeable than the lower one.
|
|
*/
|
|
template <class Context>
|
|
const DimMatrix& intrinsicPermeability(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
if (isFineMaterial_(pos))
|
|
return fineK_;
|
|
return coarseK_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::porosity
|
|
*/
|
|
template <class Context>
|
|
Scalar porosity(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
if (isFineMaterial_(pos))
|
|
return finePorosity_;
|
|
else
|
|
return coarsePorosity_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
|
|
*/
|
|
template <class Context>
|
|
const MaterialLawParams& materialLawParams(const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
if (isFineMaterial_(pos))
|
|
return fineMaterialParams_;
|
|
else
|
|
return coarseMaterialParams_;
|
|
}
|
|
|
|
/*!
|
|
* \brief Return the parameters for the energy storage law of the rock
|
|
*
|
|
* In this case, we assume the rock-matrix to be granite.
|
|
*/
|
|
template <class Context>
|
|
const SolidEnergyLawParams&
|
|
solidEnergyLawParams(const Context& context OPM_UNUSED,
|
|
unsigned spaceIdx OPM_UNUSED,
|
|
unsigned timeIdx OPM_UNUSED) const
|
|
{ return solidEnergyLawParams_; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::thermalConductionParams
|
|
*/
|
|
template <class Context>
|
|
const ThermalConductionLawParams&
|
|
thermalConductionLawParams(const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
if (isFineMaterial_(pos))
|
|
return fineThermalCondParams_;
|
|
return coarseThermalCondParams_;
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Boundary conditions
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::boundary
|
|
*
|
|
* For this problem, we inject air at the inlet on the center of
|
|
* the lower domain boundary and use a no-flow condition on the
|
|
* top boundary and a and a free-flow condition on the left and
|
|
* right boundaries of the domain.
|
|
*/
|
|
template <class Context>
|
|
void boundary(BoundaryRateVector& values,
|
|
const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const auto& pos = context.cvCenter(spaceIdx, timeIdx);
|
|
assert(onLeftBoundary_(pos) ||
|
|
onLowerBoundary_(pos) ||
|
|
onRightBoundary_(pos) ||
|
|
onUpperBoundary_(pos));
|
|
|
|
if (onInlet_(pos)) {
|
|
RateVector massRate(0.0);
|
|
massRate[conti0EqIdx + AirIdx] = -1e-3; // [kg/(m^2 s)]
|
|
|
|
// impose an forced inflow boundary condition on the inlet
|
|
values.setMassRate(massRate);
|
|
|
|
if (enableEnergy) {
|
|
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
|
|
initialFluidState_(fs, context, spaceIdx, timeIdx);
|
|
|
|
Scalar hl = fs.enthalpy(liquidPhaseIdx);
|
|
Scalar hg = fs.enthalpy(gasPhaseIdx);
|
|
values.setEnthalpyRate(values[conti0EqIdx + AirIdx] * hg +
|
|
values[conti0EqIdx + H2OIdx] * hl);
|
|
}
|
|
}
|
|
else if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
|
|
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
|
|
initialFluidState_(fs, context, spaceIdx, timeIdx);
|
|
|
|
// impose an freeflow boundary condition
|
|
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
|
|
}
|
|
else
|
|
// no flow on top and bottom
|
|
values.setNoFlow();
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Volumetric terms
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::initial
|
|
*
|
|
* For this problem, we set the medium to be fully saturated by
|
|
* liquid water and assume hydrostatic pressure.
|
|
*/
|
|
template <class Context>
|
|
void initial(PrimaryVariables& values,
|
|
const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
|
|
initialFluidState_(fs, context, spaceIdx, timeIdx);
|
|
|
|
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
|
|
values.assignMassConservative(fs, matParams, /*inEquilibrium=*/true);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::source
|
|
*
|
|
* For this problem, the source term of all components is 0
|
|
* everywhere.
|
|
*/
|
|
template <class Context>
|
|
void source(RateVector& rate,
|
|
const Context& context OPM_UNUSED,
|
|
unsigned spaceIdx OPM_UNUSED,
|
|
unsigned timeIdx OPM_UNUSED) const
|
|
{ rate = 0; }
|
|
|
|
//! \}
|
|
|
|
private:
|
|
bool onLeftBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[0] < eps_; }
|
|
|
|
bool onRightBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
|
|
|
|
bool onLowerBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[1] < eps_; }
|
|
|
|
bool onUpperBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
|
|
|
|
bool onInlet_(const GlobalPosition& pos) const
|
|
{ return onLowerBoundary_(pos) && (15.0 < pos[0]) && (pos[0] < 25.0); }
|
|
|
|
bool inHighTemperatureRegion_(const GlobalPosition& pos) const
|
|
{ return (20 < pos[0]) && (pos[0] < 30) && (pos[1] < 30); }
|
|
|
|
template <class Context, class FluidState>
|
|
void initialFluidState_(FluidState& fs,
|
|
const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
|
|
Scalar densityW = 1000.0;
|
|
fs.setPressure(liquidPhaseIdx, 1e5 + (maxDepth_ - pos[1])*densityW*9.81);
|
|
fs.setSaturation(liquidPhaseIdx, 1.0);
|
|
fs.setMoleFraction(liquidPhaseIdx, H2OIdx, 1.0);
|
|
fs.setMoleFraction(liquidPhaseIdx, AirIdx, 0.0);
|
|
|
|
if (inHighTemperatureRegion_(pos))
|
|
fs.setTemperature(380);
|
|
else
|
|
fs.setTemperature(283.0 + (maxDepth_ - pos[1])*0.03);
|
|
|
|
// set the gas saturation and pressure
|
|
fs.setSaturation(gasPhaseIdx, 0);
|
|
Scalar pc[numPhases];
|
|
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
|
|
MaterialLaw::capillaryPressures(pc, matParams, fs);
|
|
fs.setPressure(gasPhaseIdx, fs.pressure(liquidPhaseIdx) + (pc[gasPhaseIdx] - pc[liquidPhaseIdx]));
|
|
|
|
typename FluidSystem::template ParameterCache<Scalar> paramCache;
|
|
typedef Opm::ComputeFromReferencePhase<Scalar, FluidSystem> CFRP;
|
|
CFRP::solve(fs, paramCache, liquidPhaseIdx, /*setViscosity=*/true, /*setEnthalpy=*/true);
|
|
}
|
|
|
|
void computeThermalCondParams_(ThermalConductionLawParams& params, Scalar poro)
|
|
{
|
|
Scalar lambdaGranite = 2.8; // [W / (K m)]
|
|
|
|
// create a Fluid state which has all phases present
|
|
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
|
|
fs.setTemperature(293.15);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
fs.setPressure(phaseIdx, 1.0135e5);
|
|
}
|
|
|
|
typename FluidSystem::template ParameterCache<Scalar> paramCache;
|
|
paramCache.updateAll(fs);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
Scalar rho = FluidSystem::density(fs, paramCache, phaseIdx);
|
|
fs.setDensity(phaseIdx, rho);
|
|
}
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
Scalar lambdaSaturated;
|
|
if (FluidSystem::isLiquid(phaseIdx)) {
|
|
Scalar lambdaFluid =
|
|
FluidSystem::thermalConductivity(fs, paramCache, phaseIdx);
|
|
lambdaSaturated = std::pow(lambdaGranite, (1-poro)) + std::pow(lambdaFluid, poro);
|
|
}
|
|
else
|
|
lambdaSaturated = std::pow(lambdaGranite, (1-poro));
|
|
|
|
params.setFullySaturatedLambda(phaseIdx, lambdaSaturated);
|
|
if (!FluidSystem::isLiquid(phaseIdx))
|
|
params.setVacuumLambda(lambdaSaturated);
|
|
}
|
|
}
|
|
|
|
bool isFineMaterial_(const GlobalPosition& pos) const
|
|
{ return pos[dim-1] > layerBottom_; }
|
|
|
|
DimMatrix fineK_;
|
|
DimMatrix coarseK_;
|
|
Scalar layerBottom_;
|
|
|
|
Scalar finePorosity_;
|
|
Scalar coarsePorosity_;
|
|
|
|
MaterialLawParams fineMaterialParams_;
|
|
MaterialLawParams coarseMaterialParams_;
|
|
|
|
ThermalConductionLawParams fineThermalCondParams_;
|
|
ThermalConductionLawParams coarseThermalCondParams_;
|
|
SolidEnergyLawParams solidEnergyLawParams_;
|
|
|
|
Scalar maxDepth_;
|
|
Scalar eps_;
|
|
};
|
|
} // namespace Opm
|
|
|
|
#endif
|