mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-12 09:21:56 -06:00
296 lines
9.6 KiB
C++
296 lines
9.6 KiB
C++
/*
|
|
Copyright 2022-2023 SINTEF AS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <config.h>
|
|
|
|
#define BOOST_TEST_MODULE TestCuVector
|
|
|
|
#include <boost/test/unit_test.hpp>
|
|
#include <cuda_runtime.h>
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/istl/bvector.hh>
|
|
#include <opm/simulators/linalg/cuistl/CuVector.hpp>
|
|
#include <random>
|
|
|
|
BOOST_AUTO_TEST_CASE(TestDocumentedUsage)
|
|
{
|
|
auto someDataOnCPU = std::vector<double>({1.0, 2.0, 42.0, 59.9451743, 10.7132692});
|
|
|
|
auto dataOnGPU = ::Opm::cuistl::CuVector<double>(someDataOnCPU);
|
|
|
|
// Multiply by 4.0:
|
|
dataOnGPU *= 4.0;
|
|
|
|
// Get data back on CPU in another vector:
|
|
auto stdVectorOnCPU = dataOnGPU.asStdVector();
|
|
|
|
std::vector<double> correctVector(someDataOnCPU.size());
|
|
|
|
std::transform(someDataOnCPU.begin(), someDataOnCPU.end(), correctVector.begin(), [](double x) { return 4 * x; });
|
|
BOOST_CHECK_EQUAL_COLLECTIONS(
|
|
stdVectorOnCPU.begin(), stdVectorOnCPU.end(), correctVector.begin(), correctVector.end());
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(TestConstructionSize)
|
|
{
|
|
const int numberOfElements = 1234;
|
|
auto vectorOnGPU = Opm::cuistl::CuVector<double>(numberOfElements);
|
|
BOOST_CHECK_EQUAL(numberOfElements, vectorOnGPU.dim());
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(TestCopyFromHostConstructor)
|
|
{
|
|
std::vector<double> data {{1, 2, 3, 4, 5, 6, 7}};
|
|
auto vectorOnGPU = Opm::cuistl::CuVector<double>(data.data(), data.size());
|
|
BOOST_CHECK_EQUAL(data.size(), vectorOnGPU.dim());
|
|
std::vector<double> buffer(data.size(), 0.0);
|
|
vectorOnGPU.copyToHost(buffer.data(), buffer.size());
|
|
BOOST_CHECK_EQUAL_COLLECTIONS(buffer.begin(), buffer.end(), data.begin(), data.end());
|
|
}
|
|
|
|
|
|
BOOST_AUTO_TEST_CASE(TestCopyFromHostFunction)
|
|
{
|
|
std::vector<double> data {{1, 2, 3, 4, 5, 6, 7}};
|
|
auto vectorOnGPU = Opm::cuistl::CuVector<double>(data.size());
|
|
BOOST_CHECK_EQUAL(data.size(), vectorOnGPU.dim());
|
|
vectorOnGPU.copyFromHost(data.data(), data.size());
|
|
std::vector<double> buffer(data.size(), 0.0);
|
|
vectorOnGPU.copyToHost(buffer.data(), buffer.size());
|
|
BOOST_CHECK_EQUAL_COLLECTIONS(buffer.begin(), buffer.end(), data.begin(), data.end());
|
|
}
|
|
|
|
|
|
BOOST_AUTO_TEST_CASE(TestCopyFromBvector)
|
|
{
|
|
auto blockVector = Dune::BlockVector<Dune::FieldVector<double, 2>> {{{42, 43}, {44, 45}, {46, 47}}};
|
|
auto vectorOnGPU = Opm::cuistl::CuVector<double>(blockVector.dim());
|
|
vectorOnGPU.copyFromHost(blockVector);
|
|
std::vector<double> buffer(vectorOnGPU.dim());
|
|
vectorOnGPU.copyToHost(buffer.data(), buffer.size());
|
|
|
|
BOOST_CHECK_EQUAL_COLLECTIONS(
|
|
buffer.begin(), buffer.end(), &blockVector[0][0], &blockVector[0][0] + blockVector.dim());
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(TestCopyToBvector)
|
|
{
|
|
std::vector<double> data {{1, 2, 3, 4, 5, 6, 7, 8, 9}};
|
|
auto blockVector = Dune::BlockVector<Dune::FieldVector<double, 3>>(3);
|
|
auto vectorOnGPU = Opm::cuistl::CuVector<double>(data.data(), data.size());
|
|
vectorOnGPU.copyToHost(blockVector);
|
|
|
|
|
|
BOOST_CHECK_EQUAL_COLLECTIONS(data.begin(), data.end(), &blockVector[0][0], &blockVector[0][0] + blockVector.dim());
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(TestDataPointer)
|
|
{
|
|
std::vector<double> data {{1, 2, 3, 4, 5, 6, 7, 8, 9}};
|
|
auto vectorOnGPU = Opm::cuistl::CuVector<double>(data.data(), data.size());
|
|
|
|
std::vector<double> buffer(data.size(), 0.0);
|
|
cudaMemcpy(buffer.data(), vectorOnGPU.data(), sizeof(double) * data.size(), cudaMemcpyDeviceToHost);
|
|
BOOST_CHECK_EQUAL_COLLECTIONS(data.begin(), data.end(), buffer.begin(), buffer.end());
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(TestCopyScalarMultiply)
|
|
{
|
|
std::vector<double> data {{1, 2, 3, 4, 5, 6, 7}};
|
|
auto vectorOnGPU = Opm::cuistl::CuVector<double>(data.data(), data.size());
|
|
BOOST_CHECK_EQUAL(data.size(), vectorOnGPU.dim());
|
|
const double scalar = 42.25;
|
|
vectorOnGPU *= scalar;
|
|
std::vector<double> buffer(data.size(), 0.0);
|
|
vectorOnGPU.copyToHost(buffer.data(), buffer.size());
|
|
|
|
for (size_t i = 0; i < buffer.size(); ++i) {
|
|
BOOST_CHECK_EQUAL(buffer[i], scalar * data[i]);
|
|
}
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(TestTwoNorm)
|
|
{
|
|
std::vector<double> data {{1, 2, 3, 4, 5, 6, 7}};
|
|
auto vectorOnGPU = Opm::cuistl::CuVector<double>(data.data(), data.size());
|
|
auto twoNorm = vectorOnGPU.two_norm();
|
|
|
|
double correctAnswer = 0.0;
|
|
for (double d : data) {
|
|
correctAnswer += d * d;
|
|
}
|
|
correctAnswer = std::sqrt(correctAnswer);
|
|
BOOST_CHECK_EQUAL(correctAnswer, twoNorm);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(TestDot)
|
|
{
|
|
std::vector<double> dataA {{1, 2, 3, 4, 5, 6, 7}};
|
|
std::vector<double> dataB {{8, 9, 10, 11, 12, 13, 14}};
|
|
auto vectorOnGPUA = Opm::cuistl::CuVector<double>(dataA.data(), dataA.size());
|
|
auto vectorOnGPUB = Opm::cuistl::CuVector<double>(dataB.data(), dataB.size());
|
|
auto dot = vectorOnGPUA.dot(vectorOnGPUB);
|
|
|
|
double correctAnswer = 0.0;
|
|
for (size_t i = 0; i < dataA.size(); ++i) {
|
|
correctAnswer += dataA[i] * dataB[i];
|
|
}
|
|
correctAnswer = correctAnswer;
|
|
BOOST_CHECK_EQUAL(correctAnswer, dot);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(Assigment)
|
|
{
|
|
std::vector<double> data {{1, 2, 3, 4, 5, 6, 7}};
|
|
auto vectorOnGPU = Opm::cuistl::CuVector<double>(data.data(), data.size());
|
|
vectorOnGPU = 10.0;
|
|
vectorOnGPU.copyToHost(data.data(), data.size());
|
|
|
|
for (double x : data) {
|
|
BOOST_CHECK_EQUAL(10.0, x);
|
|
}
|
|
}
|
|
|
|
|
|
BOOST_AUTO_TEST_CASE(CopyAssignment)
|
|
{
|
|
std::vector<double> data {{1, 2, 3, 4, 5, 6, 7}};
|
|
auto vectorOnGPU = Opm::cuistl::CuVector<double>(data.data(), data.size());
|
|
vectorOnGPU.copyToHost(data.data(), data.size());
|
|
auto vectorOnGPUB = Opm::cuistl::CuVector<double>(data.size());
|
|
vectorOnGPUB = 4.0;
|
|
vectorOnGPUB = vectorOnGPU;
|
|
|
|
std::vector<double> output(data.size());
|
|
vectorOnGPUB.copyToHost(output.data(), output.size());
|
|
BOOST_CHECK_EQUAL_COLLECTIONS(output.begin(), output.end(), data.begin(), data.end());
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(RandomVectors)
|
|
{
|
|
|
|
using GVector = Opm::cuistl::CuVector<double>;
|
|
std::srand(0);
|
|
std::mt19937 generator;
|
|
std::uniform_real_distribution<double> distribution(-100.0, 100.0);
|
|
std::uniform_real_distribution<double> distribution01(.0, 1.0);
|
|
|
|
const size_t N = 1000;
|
|
|
|
const size_t retries = 100;
|
|
|
|
for (size_t retry = 0; retry < retries; ++retry) {
|
|
std::vector<double> a(N);
|
|
std::vector<double> b(N);
|
|
|
|
for (size_t i = 0; i < N; ++i) {
|
|
a[i] = distribution(generator);
|
|
b[i] = distribution(generator);
|
|
}
|
|
|
|
auto aGPU = GVector(a);
|
|
auto bGPU = GVector(b);
|
|
|
|
aGPU += bGPU;
|
|
|
|
auto aOutputPlus = aGPU.asStdVector();
|
|
|
|
for (size_t i = 0; i < N; ++i) {
|
|
BOOST_CHECK_EQUAL(aOutputPlus[i], a[i] + b[i]);
|
|
}
|
|
|
|
aGPU = GVector(a);
|
|
aGPU -= bGPU;
|
|
|
|
auto aOutputMinus = aGPU.asStdVector();
|
|
|
|
for (size_t i = 0; i < N; ++i) {
|
|
BOOST_CHECK_EQUAL(aOutputMinus[i], a[i] - b[i]);
|
|
}
|
|
|
|
|
|
aGPU = GVector(a);
|
|
auto scalar = distribution(generator);
|
|
aGPU *= scalar;
|
|
auto aOutputScalar = aGPU.asStdVector();
|
|
for (size_t i = 0; i < N; ++i) {
|
|
BOOST_CHECK_EQUAL(aOutputScalar[i], scalar * a[i]);
|
|
}
|
|
|
|
aGPU = GVector(a);
|
|
aGPU.axpy(scalar, bGPU);
|
|
auto aOutputSaxypy = aGPU.asStdVector();
|
|
for (size_t i = 0; i < N; ++i) {
|
|
BOOST_CHECK_CLOSE(aOutputSaxypy[i], a[i] + scalar * b[i], 1e-10);
|
|
}
|
|
|
|
aGPU = GVector(a);
|
|
auto dotted = aGPU.dot(bGPU);
|
|
double correct = 0.0;
|
|
for (size_t i = 0; i < N; ++i) {
|
|
correct += a[i] * b[i];
|
|
}
|
|
|
|
BOOST_CHECK_CLOSE(dotted, correct, 1e-10);
|
|
|
|
aGPU = GVector(a);
|
|
auto twoNorm = aGPU.two_norm();
|
|
double correctTwoNorm = 0.0;
|
|
for (size_t i = 0; i < N; ++i) {
|
|
correctTwoNorm += a[i] * a[i];
|
|
}
|
|
correctTwoNorm = std::sqrt(correctTwoNorm);
|
|
|
|
BOOST_CHECK_CLOSE(twoNorm, correctTwoNorm, 1e-12);
|
|
|
|
aGPU = GVector(a);
|
|
std::vector<int> indexSet;
|
|
const double rejectCriteria = 0.2;
|
|
for (size_t i = 0; i < N; ++i) {
|
|
const auto reject = distribution01(generator);
|
|
if (reject < rejectCriteria) {
|
|
indexSet.push_back(i);
|
|
}
|
|
}
|
|
auto indexSetGPU = Opm::cuistl::CuVector<int>(indexSet);
|
|
|
|
aGPU.setZeroAtIndexSet(indexSetGPU);
|
|
auto projectedA = aGPU.asStdVector();
|
|
for (size_t i = 0; i < N; ++i) {
|
|
// Yeah, O(N^2) so sue me
|
|
bool found = std::find(indexSet.begin(), indexSet.end(), i) != indexSet.end();
|
|
if (found) {
|
|
BOOST_CHECK_EQUAL(projectedA[i], 0);
|
|
} else {
|
|
BOOST_CHECK_EQUAL(projectedA[i], a[i]);
|
|
}
|
|
}
|
|
|
|
aGPU = GVector(a);
|
|
auto twoNormAtIndices = aGPU.two_norm(indexSetGPU);
|
|
|
|
double correctTwoNormAtIndices = 0.0;
|
|
for (size_t i = 0; i < indexSet.size(); ++i) {
|
|
correctTwoNormAtIndices += a[indexSet[i]] * a[indexSet[i]];
|
|
}
|
|
correctTwoNormAtIndices = std::sqrt(correctTwoNormAtIndices);
|
|
|
|
BOOST_CHECK_CLOSE(correctTwoNormAtIndices, twoNormAtIndices, 1e-13);
|
|
}
|
|
}
|