frigate/detect_objects.py

493 lines
20 KiB
Python
Raw Normal View History

2019-01-26 08:02:59 -06:00
import os
import cv2
2019-02-09 08:51:11 -06:00
import imutils
2019-01-26 08:02:59 -06:00
import time
import datetime
import ctypes
import logging
import multiprocessing as mp
import threading
2019-02-10 12:00:52 -06:00
import json
2019-01-26 08:02:59 -06:00
from contextlib import closing
import numpy as np
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
from flask import Flask, Response, make_response
2019-02-10 12:00:52 -06:00
import paho.mqtt.client as mqtt
2019-01-26 08:02:59 -06:00
RTSP_URL = os.getenv('RTSP_URL')
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = '/label_map.pbtext'
2019-02-10 12:00:52 -06:00
MQTT_HOST = os.getenv('MQTT_HOST')
MQTT_TOPIC_PREFIX = os.getenv('MQTT_TOPIC_PREFIX')
2019-02-10 12:00:52 -06:00
MQTT_OBJECT_CLASSES = os.getenv('MQTT_OBJECT_CLASSES')
2019-01-26 08:02:59 -06:00
# TODO: make dynamic?
NUM_CLASSES = 90
2019-02-09 20:38:11 -06:00
# REGIONS = "350,0,300,50:400,350,250,50:400,750,250,50"
# REGIONS = "400,350,250,50"
REGIONS = os.getenv('REGIONS')
DETECTED_OBJECTS = []
2019-01-26 08:02:59 -06:00
# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
2019-02-17 07:27:11 -06:00
def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_offset, region_y_offset, debug):
2019-01-26 08:02:59 -06:00
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(cropped_frame, axis=0)
2019-01-26 08:02:59 -06:00
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
2019-02-17 07:27:11 -06:00
if debug:
if len([category_index.get(value) for index,value in enumerate(classes[0]) if scores[0,index] > 0.5]) > 0:
vis_util.visualize_boxes_and_labels_on_image_array(
cropped_frame,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=4)
cv2.imwrite("/lab/debug/obj-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
2019-01-26 08:02:59 -06:00
# build an array of detected objects
objects = []
for index, value in enumerate(classes[0]):
score = scores[0, index]
2019-02-17 07:26:09 -06:00
if score > 0.5:
box = boxes[0, index].tolist()
box[0] = (box[0] * region_size) + region_y_offset
box[1] = (box[1] * region_size) + region_x_offset
box[2] = (box[2] * region_size) + region_y_offset
box[3] = (box[3] * region_size) + region_x_offset
objects += [value, scores[0, index]] + box
# only get the first 10 objects
if len(objects) == 60:
break
2019-01-26 08:02:59 -06:00
return objects
2019-01-26 08:02:59 -06:00
class ObjectParser(threading.Thread):
def __init__(self, object_arrays):
threading.Thread.__init__(self)
self._object_arrays = object_arrays
def run(self):
global DETECTED_OBJECTS
while True:
detected_objects = []
for object_array in self._object_arrays:
object_index = 0
while(object_index < 60 and object_array[object_index] > 0):
object_class = object_array[object_index]
detected_objects.append({
'name': str(category_index.get(object_class).get('name')),
'score': object_array[object_index+1],
'ymin': int(object_array[object_index+2]),
'xmin': int(object_array[object_index+3]),
'ymax': int(object_array[object_index+4]),
'xmax': int(object_array[object_index+5])
})
object_index += 6
DETECTED_OBJECTS = detected_objects
2019-02-10 12:00:52 -06:00
time.sleep(0.1)
class MqttPublisher(threading.Thread):
def __init__(self, host, topic_prefix, object_classes, motion_flags):
2019-02-10 12:00:52 -06:00
threading.Thread.__init__(self)
self.client = mqtt.Client()
self.client.will_set(topic_prefix+'/available', payload='offline', qos=1, retain=True)
2019-02-10 12:00:52 -06:00
self.client.connect(host, 1883, 60)
self.client.loop_start()
self.client.publish(topic_prefix+'/available', 'online', retain=True)
self.topic_prefix = topic_prefix
2019-02-10 12:00:52 -06:00
self.object_classes = object_classes
self.motion_flags = motion_flags
def run(self):
global DETECTED_OBJECTS
last_sent_payload = ""
last_motion = ""
while True:
# initialize the payload
payload = {}
for obj in self.object_classes:
payload[obj] = []
# loop over detected objects and populate
# the payload
detected_objects = DETECTED_OBJECTS.copy()
for obj in detected_objects:
if obj['name'] in self.object_classes:
payload[obj['name']].append(obj)
2019-02-17 10:36:09 -06:00
# send message for objects
2019-02-10 12:00:52 -06:00
new_payload = json.dumps(payload, sort_keys=True)
if new_payload != last_sent_payload:
last_sent_payload = new_payload
self.client.publish(self.topic_prefix+'/objects', new_payload, retain=False)
2019-02-17 10:36:09 -06:00
# send message for motion
2019-02-10 12:00:52 -06:00
motion_status = 'OFF'
if any(obj.value == 1 for obj in self.motion_flags):
motion_status = 'ON'
if motion_status != last_motion:
last_motion = motion_status
self.client.publish(self.topic_prefix+'/motion', motion_status, retain=False)
2019-02-10 12:00:52 -06:00
time.sleep(0.1)
2019-01-26 08:02:59 -06:00
def main():
# Parse selected regions
regions = []
for region_string in REGIONS.split(':'):
region_parts = region_string.split(',')
regions.append({
'size': int(region_parts[0]),
'x_offset': int(region_parts[1]),
2019-02-09 20:38:11 -06:00
'y_offset': int(region_parts[2]),
'min_object_size': int(region_parts[3]),
# shared value for signaling to the capture process that we are ready for the next frame
# (1 for ready 0 for not ready)
'ready_for_frame': mp.Value('i', 1),
# shared value for motion detection signal (1 for motion 0 for no motion)
'motion_detected': mp.Value('i', 0),
# create shared array for storing 10 detected objects
# note: this must be a double even though the value you are storing
# is a float. otherwise it stops updating the value in shared
# memory. probably something to do with the size of the memory block
'output_array': mp.Array(ctypes.c_double, 6*10)
})
# capture a single frame and check the frame shape so the correct array
# size can be allocated in memory
video = cv2.VideoCapture(RTSP_URL)
ret, frame = video.read()
if ret:
frame_shape = frame.shape
else:
print("Unable to capture video stream")
exit(1)
video.release()
2019-01-26 08:02:59 -06:00
# compute the flattened array length from the array shape
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
# create shared array for storing the full frame image data
2019-01-26 08:02:59 -06:00
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
# create shared value for storing the frame_time
shared_frame_time = mp.Value('d', 0.0)
# Lock to control access to the frame while writing
frame_lock = mp.Lock()
# Condition for notifying that a new frame is ready
frame_ready = mp.Condition()
# shape current frame so it can be treated as an image
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
2019-01-26 08:02:59 -06:00
capture_process = mp.Process(target=fetch_frames, args=(shared_arr,
shared_frame_time, frame_lock, frame_ready, frame_shape))
2019-01-26 08:02:59 -06:00
capture_process.daemon = True
detection_processes = []
for index, region in enumerate(regions):
detection_process = mp.Process(target=process_frames, args=(shared_arr,
region['output_array'],
shared_frame_time,
region['motion_detected'],
frame_shape,
region['size'], region['x_offset'], region['y_offset']))
detection_process.daemon = True
detection_processes.append(detection_process)
2019-01-26 08:02:59 -06:00
2019-02-09 08:51:11 -06:00
motion_processes = []
for index, region in enumerate(regions):
motion_process = mp.Process(target=detect_motion, args=(shared_arr,
shared_frame_time,
frame_lock, frame_ready,
region['motion_detected'],
2019-02-09 08:51:11 -06:00
frame_shape,
2019-02-09 20:38:11 -06:00
region['size'], region['x_offset'], region['y_offset'],
2019-02-17 07:27:11 -06:00
region['min_object_size'],
True))
2019-02-09 08:51:11 -06:00
motion_process.daemon = True
motion_processes.append(motion_process)
object_parser = ObjectParser([region['output_array'] for region in regions])
object_parser.start()
mqtt_publisher = MqttPublisher(MQTT_HOST, MQTT_TOPIC_PREFIX,
2019-02-10 12:00:52 -06:00
MQTT_OBJECT_CLASSES.split(','),
[region['motion_detected'] for region in regions])
2019-02-10 12:00:52 -06:00
mqtt_publisher.start()
2019-01-26 08:02:59 -06:00
capture_process.start()
print("capture_process pid ", capture_process.pid)
for detection_process in detection_processes:
detection_process.start()
print("detection_process pid ", detection_process.pid)
2019-02-09 08:51:11 -06:00
for motion_process in motion_processes:
motion_process.start()
print("motion_process pid ", motion_process.pid)
app = Flask(__name__)
@app.route('/')
def index():
# return a multipart response
return Response(imagestream(),
mimetype='multipart/x-mixed-replace; boundary=frame')
def imagestream():
global DETECTED_OBJECTS
while True:
# max out at 5 FPS
time.sleep(0.2)
# make a copy of the current detected objects
detected_objects = DETECTED_OBJECTS.copy()
# lock and make a copy of the current frame
frame_lock.aquire()
frame = frame_arr.copy()
frame_lock.release()
# convert to RGB for drawing
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# draw the bounding boxes on the screen
for obj in detected_objects:
vis_util.draw_bounding_box_on_image_array(frame,
obj['ymin'],
obj['xmin'],
obj['ymax'],
obj['xmax'],
color='red',
thickness=2,
display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
use_normalized_coordinates=False)
for region in regions:
color = (255,255,255)
if region['motion_detected'].value == 1:
color = (0,255,0)
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
(region['x_offset']+region['size'], region['y_offset']+region['size']),
color, 2)
cv2.putText(frame, datetime.datetime.now().strftime("%H:%M:%S"), (1125, 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
# convert back to BGR
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
# encode the image into a jpg
ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
app.run(host='0.0.0.0', debug=False)
2019-01-26 08:02:59 -06:00
capture_process.join()
for detection_process in detection_processes:
detection_process.join()
2019-02-09 08:51:11 -06:00
for motion_process in motion_processes:
motion_process.join()
object_parser.join()
2019-02-10 12:00:52 -06:00
mqtt_publisher.join()
2019-01-26 08:02:59 -06:00
# convert shared memory array into numpy array
def tonumpyarray(mp_arr):
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint16)
# fetch the frames as fast a possible, only decoding the frames when the
# detection_process has consumed the current frame
def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_shape):
2019-01-26 08:02:59 -06:00
# convert shared memory array into numpy and shape into image array
arr = tonumpyarray(shared_arr).reshape(frame_shape)
# start the video capture
video = cv2.VideoCapture(RTSP_URL)
# keep the buffer small so we minimize old data
video.set(cv2.CAP_PROP_BUFFERSIZE,1)
while True:
# grab the frame, but dont decode it yet
ret = video.grab()
# snapshot the time the frame was grabbed
frame_time = datetime.datetime.now()
if ret:
# go ahead and decode the current frame
ret, frame = video.retrieve()
if ret:
# Lock access and update frame
frame_lock.acquire()
arr[:] = frame
shared_frame_time.value = frame_time.timestamp()
frame_lock.release()
# Notify with the condition that a new frame is ready
with frame_ready:
frame_ready.notify_all()
2019-01-26 08:02:59 -06:00
video.release()
# do the actual object detection
def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset):
2019-02-17 07:27:11 -06:00
debug = True
2019-01-26 08:02:59 -06:00
# shape shared input array into frame for processing
arr = tonumpyarray(shared_arr).reshape(frame_shape)
# Load a (frozen) Tensorflow model into memory before the processing loop
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
no_frames_available = -1
frame_time = 0.0
2019-01-26 08:02:59 -06:00
while True:
now = datetime.datetime.now().timestamp()
# if there is no motion detected
if shared_motion.value == 0:
2019-02-10 12:00:52 -06:00
time.sleep(0.1)
continue
# if there isnt a new frame ready for processing
if shared_frame_time.value == frame_time:
2019-01-26 08:02:59 -06:00
# save the first time there were no frames available
if no_frames_available == -1:
no_frames_available = now
2019-01-26 08:02:59 -06:00
# if there havent been any frames available in 30 seconds,
# sleep to avoid using so much cpu if the camera feed is down
if no_frames_available > 0 and (now - no_frames_available) > 30:
2019-01-26 08:02:59 -06:00
time.sleep(1)
print("sleeping because no frames have been available in a while")
2019-02-01 06:35:10 -06:00
else:
# rest a little bit to avoid maxing out the CPU
2019-02-10 12:00:52 -06:00
time.sleep(0.1)
2019-01-26 08:02:59 -06:00
continue
# we got a valid frame, so reset the timer
no_frames_available = -1
# if the frame is more than 0.5 second old, ignore it
if (now - shared_frame_time.value) > 0.5:
2019-02-01 06:35:10 -06:00
# rest a little bit to avoid maxing out the CPU
2019-02-10 12:00:52 -06:00
time.sleep(0.1)
2019-01-26 08:02:59 -06:00
continue
# make a copy of the cropped frame
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
2019-01-26 08:02:59 -06:00
frame_time = shared_frame_time.value
# convert to RGB
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
2019-01-26 08:02:59 -06:00
# do the object detection
2019-02-17 07:27:11 -06:00
objects = detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset, True)
# copy the detected objects to the output array, filling the array when needed
shared_output_arr[:] = objects + [0.0] * (60-len(objects))
2019-01-26 08:02:59 -06:00
# do the actual motion detection
def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area, debug):
2019-02-09 08:51:11 -06:00
# shape shared input array into frame for processing
arr = tonumpyarray(shared_arr).reshape(frame_shape)
no_frames_available = -1
avg_frame = None
last_motion = -1
frame_time = 0.0
motion_frames = 0
2019-02-09 08:51:11 -06:00
while True:
now = datetime.datetime.now().timestamp()
# if it has been long enough since the last motion, clear the flag
2019-02-16 15:04:31 -06:00
if last_motion > 0 and (now - last_motion) > 2:
2019-02-09 08:51:11 -06:00
last_motion = -1
shared_motion.value = 0
with frame_ready:
# if there isnt a frame ready for processing or it is old, wait for a signal
if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
frame_ready.wait()
2019-02-09 08:51:11 -06:00
# lock and make a copy of the cropped frame
frame_lock.acquire()
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy().astype('uint8')
2019-02-09 08:51:11 -06:00
frame_time = shared_frame_time.value
frame_lock.release()
2019-02-09 08:51:11 -06:00
# convert to grayscale
gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
# apply gaussian blur
gray = cv2.GaussianBlur(gray, (21, 21), 0)
if avg_frame is None:
avg_frame = gray.copy().astype("float")
continue
# look at the delta from the avg_frame
cv2.accumulateWeighted(gray, avg_frame, 0.5)
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg_frame))
thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
# dilate the thresholded image to fill in holes, then find contours
# on thresholded image
thresh = cv2.dilate(thresh, None, iterations=2)
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
# if there are no contours, there is no motion
if len(cnts) < 1:
motion_frames = 0
continue
motion_found = False
2019-02-09 08:51:11 -06:00
# loop over the contours
for c in cnts:
# if the contour is big enough, count it as motion
contour_area = cv2.contourArea(c)
if contour_area > min_motion_area:
motion_found = True
2019-02-17 07:27:11 -06:00
if debug:
cv2.drawContours(cropped_frame, [c], -1, (0, 255, 0), 2)
x, y, w, h = cv2.boundingRect(c)
cv2.putText(cropped_frame, str(contour_area), (x, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 100, 0), 2)
else:
break
if motion_found:
motion_frames += 1
# if there have been enough consecutive motion frames, report motion
if motion_frames >= 3:
shared_motion.value = 1
last_motion = now
else:
motion_frames = 0
2019-02-17 07:27:11 -06:00
if debug and motion_frames > 0:
cv2.imwrite("/lab/debug/motion-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
2019-02-09 20:38:11 -06:00
2019-01-26 08:02:59 -06:00
if __name__ == '__main__':
mp.freeze_support()
main()