mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-02-25 18:55:25 -06:00
use yolov9 for users without frigate+ and update retention algorithm
This commit is contained in:
parent
0dcfcb2cf7
commit
793d0fb129
@ -24,6 +24,7 @@ from .api import RealTimeProcessorApi
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
MIN_PLATE_LENGTH = 3
|
||||
WRITE_DEBUG_IMAGES = False
|
||||
|
||||
|
||||
class LicensePlateProcessor(RealTimeProcessorApi):
|
||||
@ -86,12 +87,24 @@ class LicensePlateProcessor(RealTimeProcessorApi):
|
||||
requestor=self.requestor,
|
||||
device="CPU",
|
||||
)
|
||||
self.yolov9_detection_model = GenericONNXEmbedding(
|
||||
model_name="yolov9_license_plate",
|
||||
model_file="yolov9-256-license-plates.onnx",
|
||||
download_urls={
|
||||
"yolov9-256-license-plates.onnx": "https://github.com/hawkeye217/yolov9-license-plates/raw/refs/heads/master/models/yolov9-256-license-plates.onnx"
|
||||
},
|
||||
model_size="large",
|
||||
model_type=ModelTypeEnum.yolov9_lpr_detect,
|
||||
requestor=self.requestor,
|
||||
device="CPU",
|
||||
)
|
||||
|
||||
if self.lpr_config.enabled:
|
||||
# all models need to be loaded to run LPR
|
||||
self.detection_model._load_model_and_utils()
|
||||
self.classification_model._load_model_and_utils()
|
||||
self.recognition_model._load_model_and_utils()
|
||||
self.yolov9_detection_model._load_model_and_utils()
|
||||
|
||||
def _detect(self, image: np.ndarray) -> List[np.ndarray]:
|
||||
"""
|
||||
@ -112,6 +125,13 @@ class LicensePlateProcessor(RealTimeProcessorApi):
|
||||
resized_image = self._resize_image(image)
|
||||
normalized_image = self._normalize_image(resized_image)
|
||||
|
||||
if WRITE_DEBUG_IMAGES:
|
||||
current_time = int(datetime.datetime.now().timestamp())
|
||||
cv2.imwrite(
|
||||
f"debug/frames/license_plate_resized_{current_time}.jpg",
|
||||
resized_image,
|
||||
)
|
||||
|
||||
outputs = self.detection_model([normalized_image])[0]
|
||||
outputs = outputs[0, :, :]
|
||||
|
||||
@ -207,12 +227,27 @@ class LicensePlateProcessor(RealTimeProcessorApi):
|
||||
|
||||
plate_points = self._detect(image)
|
||||
if len(plate_points) == 0:
|
||||
logger.debug("No points found by OCR detector model")
|
||||
return [], [], []
|
||||
|
||||
plate_points = self._sort_polygon(list(plate_points))
|
||||
plate_images = [self._crop_license_plate(image, x) for x in plate_points]
|
||||
rotated_images, _ = self._classify(plate_images)
|
||||
|
||||
# debug rotated and classification result
|
||||
if WRITE_DEBUG_IMAGES:
|
||||
current_time = int(datetime.datetime.now().timestamp())
|
||||
for i, img in enumerate(plate_images):
|
||||
cv2.imwrite(
|
||||
f"debug/frames/license_plate_rotated_{current_time}_{i + 1}.jpg",
|
||||
img,
|
||||
)
|
||||
for i, img in enumerate(rotated_images):
|
||||
cv2.imwrite(
|
||||
f"debug/frames/license_plate_classified_{current_time}_{i + 1}.jpg",
|
||||
img,
|
||||
)
|
||||
|
||||
# keep track of the index of each image for correct area calc later
|
||||
sorted_indices = np.argsort([x.shape[1] / x.shape[0] for x in rotated_images])
|
||||
reverse_mapping = {
|
||||
@ -331,6 +366,7 @@ class LicensePlateProcessor(RealTimeProcessorApi):
|
||||
|
||||
# get minimum bounding box (rotated rectangle) around the contour and the smallest side length.
|
||||
points, min_side = self._get_min_boxes(contour)
|
||||
logger.debug(f"min side {index}, {min_side}")
|
||||
|
||||
if min_side < self.min_size:
|
||||
continue
|
||||
@ -338,6 +374,7 @@ class LicensePlateProcessor(RealTimeProcessorApi):
|
||||
points = np.array(points)
|
||||
|
||||
score = self._box_score(output, contour)
|
||||
logger.debug(f"box score {index}, {score}")
|
||||
if self.box_thresh > score:
|
||||
continue
|
||||
|
||||
@ -492,7 +529,7 @@ class LicensePlateProcessor(RealTimeProcessorApi):
|
||||
def _sort_polygon(points):
|
||||
"""
|
||||
Sort polygons based on their position in the image. If polygons are close in vertical
|
||||
position (within 10 pixels), sort them by horizontal position.
|
||||
position (within 5 pixels), sort them by horizontal position.
|
||||
|
||||
Args:
|
||||
points: List of polygons to sort.
|
||||
@ -503,7 +540,7 @@ class LicensePlateProcessor(RealTimeProcessorApi):
|
||||
points.sort(key=lambda x: (x[0][1], x[0][0]))
|
||||
for i in range(len(points) - 1):
|
||||
for j in range(i, -1, -1):
|
||||
if abs(points[j + 1][0][1] - points[j][0][1]) < 10 and (
|
||||
if abs(points[j + 1][0][1] - points[j][0][1]) < 5 and (
|
||||
points[j + 1][0][0] < points[j][0][0]
|
||||
):
|
||||
temp = points[j]
|
||||
@ -602,7 +639,8 @@ class LicensePlateProcessor(RealTimeProcessorApi):
|
||||
for j in range(len(outputs)):
|
||||
label, score = outputs[j]
|
||||
results[indices[i + j]] = [label, score]
|
||||
if "180" in label and score >= self.lpr_config.threshold:
|
||||
# make sure we have high confidence if we need to flip a box, this will be rare in lpr
|
||||
if "180" in label and score >= 0.9:
|
||||
images[indices[i + j]] = cv2.rotate(images[indices[i + j]], 1)
|
||||
|
||||
return images, results
|
||||
@ -701,10 +739,122 @@ class LicensePlateProcessor(RealTimeProcessorApi):
|
||||
self.metrics.alpr_pps.value = (self.metrics.alpr_pps.value * 9 + duration) / 10
|
||||
|
||||
def _detect_license_plate(self, input: np.ndarray) -> tuple[int, int, int, int]:
|
||||
"""Return the dimensions of the input image as [x, y, width, height]."""
|
||||
# TODO: use a small model here to detect plates
|
||||
height, width = input.shape[:2]
|
||||
return (0, 0, width, height)
|
||||
"""
|
||||
Use a lightweight YOLOv9 model to detect license plates for users without Frigate+
|
||||
|
||||
Return the dimensions of the detected plate as [x1, y1, x2, y2].
|
||||
"""
|
||||
predictions = self.yolov9_detection_model(input)
|
||||
|
||||
confidence_threshold = self.lpr_config.threshold
|
||||
|
||||
top_score = -1
|
||||
top_box = None
|
||||
|
||||
# Loop over predictions
|
||||
for prediction in predictions:
|
||||
score = prediction[6]
|
||||
if score >= confidence_threshold:
|
||||
bbox = prediction[1:5]
|
||||
# Scale boxes back to original image size
|
||||
scale_x = input.shape[1] / 256
|
||||
scale_y = input.shape[0] / 256
|
||||
bbox[0] *= scale_x
|
||||
bbox[1] *= scale_y
|
||||
bbox[2] *= scale_x
|
||||
bbox[3] *= scale_y
|
||||
|
||||
if score > top_score:
|
||||
top_score = score
|
||||
top_box = bbox
|
||||
|
||||
# Return the top scoring bounding box if found
|
||||
if top_box is not None:
|
||||
logger.debug("Found license plate: {}".format(top_box.astype(int)))
|
||||
return tuple(top_box.astype(int))
|
||||
else:
|
||||
return None # No detection above the threshold
|
||||
|
||||
def _should_keep_previous_plate(
|
||||
self, id, top_plate, top_char_confidences, top_area, avg_confidence
|
||||
):
|
||||
if id not in self.detected_license_plates:
|
||||
return False
|
||||
|
||||
prev_data = self.detected_license_plates[id]
|
||||
prev_plate = prev_data["plate"]
|
||||
prev_char_confidences = prev_data["char_confidences"]
|
||||
prev_area = prev_data["area"]
|
||||
prev_avg_confidence = (
|
||||
sum(prev_char_confidences) / len(prev_char_confidences)
|
||||
if prev_char_confidences
|
||||
else 0
|
||||
)
|
||||
|
||||
# 1. Normalize metrics
|
||||
# Length score - use relative comparison
|
||||
# If lengths are equal, score is 0.5 for both
|
||||
# If one is longer, it gets a higher score up to 1.0
|
||||
max_length_diff = 4 # Maximum expected difference in plate lengths
|
||||
length_diff = len(top_plate) - len(prev_plate)
|
||||
curr_length_score = 0.5 + (
|
||||
length_diff / (2 * max_length_diff)
|
||||
) # Normalize to 0-1
|
||||
curr_length_score = max(0, min(1, curr_length_score)) # Clamp to 0-1
|
||||
prev_length_score = 1 - curr_length_score # Inverse relationship
|
||||
|
||||
# Area score (normalize based on max of current and previous)
|
||||
max_area = max(top_area, prev_area)
|
||||
curr_area_score = top_area / max_area
|
||||
prev_area_score = prev_area / max_area
|
||||
|
||||
# Average confidence score (already normalized 0-1)
|
||||
curr_conf_score = avg_confidence
|
||||
prev_conf_score = prev_avg_confidence
|
||||
|
||||
# Character confidence comparison score
|
||||
min_length = min(len(top_plate), len(prev_plate))
|
||||
if min_length > 0:
|
||||
curr_char_conf = sum(top_char_confidences[:min_length]) / min_length
|
||||
prev_char_conf = sum(prev_char_confidences[:min_length]) / min_length
|
||||
else:
|
||||
curr_char_conf = 0
|
||||
prev_char_conf = 0
|
||||
|
||||
# 2. Define weights
|
||||
weights = {
|
||||
"length": 0.4,
|
||||
"area": 0.3,
|
||||
"avg_confidence": 0.2,
|
||||
"char_confidence": 0.1,
|
||||
}
|
||||
|
||||
# 3. Calculate weighted scores
|
||||
curr_score = (
|
||||
curr_length_score * weights["length"]
|
||||
+ curr_area_score * weights["area"]
|
||||
+ curr_conf_score * weights["avg_confidence"]
|
||||
+ curr_char_conf * weights["char_confidence"]
|
||||
)
|
||||
|
||||
prev_score = (
|
||||
prev_length_score * weights["length"]
|
||||
+ prev_area_score * weights["area"]
|
||||
+ prev_conf_score * weights["avg_confidence"]
|
||||
+ prev_char_conf * weights["char_confidence"]
|
||||
)
|
||||
|
||||
# 4. Log the comparison for debugging
|
||||
logger.debug(
|
||||
f"Plate comparison - Current plate: {top_plate} (score: {curr_score:.3f}) vs "
|
||||
f"Previous plate: {prev_plate} (score: {prev_score:.3f})\n"
|
||||
f"Metrics - Length: {len(top_plate)} vs {len(prev_plate)} (scores: {curr_length_score:.2f} vs {prev_length_score:.2f}), "
|
||||
f"Area: {top_area} vs {prev_area}, "
|
||||
f"Avg Conf: {avg_confidence:.2f} vs {prev_avg_confidence:.2f}"
|
||||
)
|
||||
|
||||
# 5. Return True if we should keep the previous plate (i.e., if it scores higher)
|
||||
return prev_score > curr_score
|
||||
|
||||
def process_frame(self, obj_data: dict[str, any], frame: np.ndarray):
|
||||
"""Look for license plates in image."""
|
||||
@ -739,19 +889,41 @@ class LicensePlateProcessor(RealTimeProcessorApi):
|
||||
if not car_box:
|
||||
return
|
||||
|
||||
rgb = cv2.cvtColor(frame, cv2.COLOR_YUV2RGB_I420)
|
||||
rgb = cv2.cvtColor(frame, cv2.COLOR_YUV2BGR_I420)
|
||||
left, top, right, bottom = car_box
|
||||
car = rgb[top:bottom, left:right]
|
||||
|
||||
# double the size of the car for better box detection
|
||||
car = cv2.resize(car, (int(2 * car.shape[1]), int(2 * car.shape[0])))
|
||||
|
||||
if WRITE_DEBUG_IMAGES:
|
||||
current_time = int(datetime.datetime.now().timestamp())
|
||||
cv2.imwrite(
|
||||
f"debug/frames/car_frame_{current_time}.jpg",
|
||||
car,
|
||||
)
|
||||
|
||||
license_plate = self._detect_license_plate(car)
|
||||
|
||||
if not license_plate:
|
||||
logger.debug("Detected no license plates for car object.")
|
||||
return
|
||||
|
||||
# double the size of the license plate for better OCR
|
||||
license_plate_area = max(
|
||||
0,
|
||||
(license_plate[2] - license_plate[0])
|
||||
* (license_plate[3] - license_plate[1]),
|
||||
)
|
||||
|
||||
# check that license plate is valid
|
||||
if license_plate_area < self.config.lpr.min_area:
|
||||
logger.debug("License plate is less than min_area")
|
||||
return
|
||||
|
||||
license_plate_frame = car[
|
||||
license_plate[1] : license_plate[3], license_plate[0] : license_plate[2]
|
||||
]
|
||||
license_plate_frame = cv2.cvtColor(license_plate_frame, cv2.COLOR_RGB2BGR)
|
||||
else:
|
||||
# don't run for object without attributes
|
||||
if not obj_data.get("current_attributes"):
|
||||
@ -788,6 +960,22 @@ class LicensePlateProcessor(RealTimeProcessorApi):
|
||||
license_plate_box[0] : license_plate_box[2],
|
||||
]
|
||||
|
||||
# double the size of the license plate frame for better OCR
|
||||
license_plate_frame = cv2.resize(
|
||||
license_plate_frame,
|
||||
(
|
||||
int(2 * license_plate_frame.shape[1]),
|
||||
int(2 * license_plate_frame.shape[0]),
|
||||
),
|
||||
)
|
||||
|
||||
if WRITE_DEBUG_IMAGES:
|
||||
current_time = int(datetime.datetime.now().timestamp())
|
||||
cv2.imwrite(
|
||||
f"debug/frames/license_plate_frame_{current_time}.jpg",
|
||||
license_plate_frame,
|
||||
)
|
||||
|
||||
# run detection, returns results sorted by confidence, best first
|
||||
license_plates, confidences, areas = self._process_license_plate(
|
||||
license_plate_frame
|
||||
@ -824,38 +1012,11 @@ class LicensePlateProcessor(RealTimeProcessorApi):
|
||||
|
||||
# Check if we have a previously detected plate for this ID
|
||||
if id in self.detected_license_plates:
|
||||
prev_plate = self.detected_license_plates[id]["plate"]
|
||||
prev_char_confidences = self.detected_license_plates[id]["char_confidences"]
|
||||
prev_area = self.detected_license_plates[id]["area"]
|
||||
prev_avg_confidence = (
|
||||
(sum(prev_char_confidences) / len(prev_char_confidences))
|
||||
if prev_char_confidences
|
||||
else 0
|
||||
)
|
||||
|
||||
# Define conditions for keeping the previous plate
|
||||
shorter_than_previous = len(top_plate) < len(prev_plate)
|
||||
lower_avg_confidence = avg_confidence <= prev_avg_confidence
|
||||
smaller_area = top_area < prev_area
|
||||
|
||||
# Compare character-by-character confidence where possible
|
||||
min_length = min(len(top_plate), len(prev_plate))
|
||||
char_confidence_comparison = sum(
|
||||
1
|
||||
for i in range(min_length)
|
||||
if top_char_confidences[i] <= prev_char_confidences[i]
|
||||
)
|
||||
worse_char_confidences = char_confidence_comparison >= min_length / 2
|
||||
|
||||
if (shorter_than_previous or smaller_area) and (
|
||||
lower_avg_confidence and worse_char_confidences
|
||||
if self._should_keep_previous_plate(
|
||||
id, top_plate, top_char_confidences, top_area, avg_confidence
|
||||
):
|
||||
logger.debug(
|
||||
f"Keeping previous plate. New plate stats: "
|
||||
f"length={len(top_plate)}, avg_conf={avg_confidence:.2f}, area={top_area} "
|
||||
f"vs Previous: length={len(prev_plate)}, avg_conf={prev_avg_confidence:.2f}, area={prev_area}"
|
||||
)
|
||||
return True
|
||||
logger.debug("Keeping previous plate")
|
||||
return
|
||||
|
||||
# Check against minimum confidence threshold
|
||||
if avg_confidence < self.lpr_config.threshold:
|
||||
|
Loading…
Reference in New Issue
Block a user