Files
openvino/docs/tutorials.md
Sebastian Golebiewski 3094384d74 revert tutorials (#15164)
2023-01-18 08:32:22 +01:00

60 KiB

Interactive Tutorials (Python)

@sphinxdirective

.. _notebook tutorials:

.. meta:: :description: A collection of Python tutorials run on Jupyter notebooks. The tutorials explain how to use OpenVINO™ toolkit for optimized deep learning inference. :keywords: OpenVINO™ toolkit, Jupyter, Jupyter notebooks, tutorials, Python API, Python, deep learning, inference, model inference, infer a model, Binder, object detection, quantization, image classification, speech recognition, OCR, OpenVINO IR, deep learning model, AI, neural networks

.. toctree:: :maxdepth: 2 :caption: Notebooks :hidden:

notebooks-installation notebooks/notebooks

This collection of Python tutorials are written for running on Jupyter notebooks. The tutorials provide an introduction to the OpenVINO™ toolkit and explain how to use the Python API and tools for optimized deep learning inference. You can run the code one section at a time to see how to integrate your application with OpenVINO libraries.

Notebooks with a |binder logo| button can be run without installing anything. Once you have found the tutorial of your interest, just click the button next to the name of it and Binder <https://mybinder.org/>__ will start it in a new tab of a browser. Binder is a free online service with limited resources (for more information about it,
see the Additional Resources <#-additional-resources>__ section).

.. note:: For the best performance, more control and resources, you should run the notebooks locally. Follow the Installation Guide <notebooks-installation.html>__ in order to get information on how to run and manage the notebooks on your machine.


Contents:

  • Getting Started <#-getting-started>__

    • First steps with OpenVINO <#-first-steps>__
    • Convert & Optimize <#-convert--optimize>__
    • Model Demos <#-model-demos>__
    • Model Training <#-model-training>__
    • Live Demos <#-live-demos>__
    • Recommended Tutorials <#-recommended-tutorials>__
    • Additional Resources <#-additional-resources>__
    • Contributors <#-contributors>__

.. raw:: html

Getting Started_

The Jupyter notebooks are categorized into four classes, select one related to your needs or give them all a try. Good Luck!

.. raw:: html

First steps with OpenVINO_

Brief tutorials that demonstrate how to use Python API for inference in OpenVINO.

+-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | Notebook | Description | Preview | +===============================================================================================================================+============================================================================================================================================+===========================================+ | 001-hello-world <notebooks/001-hello-world-with-output.html>__ |br| |n001| | Classify an image with OpenVINO. | |n001-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 002-openvino-api <notebooks/002-openvino-api-with-output.html>__ |br| |n002| | Learn the OpenVINO Python API. | |n002-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 003-hello-segmentation <notebooks/003-hello-segmentation-with-output.html>__ |br| |n003| | Semantic segmentation with OpenVINO. | |n003-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 004-hello-detection <notebooks/004-hello-detection-with-output.html>__ |br| |n004| | Text detection with OpenVINO. | |n004-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+

.. raw:: html

Convert & Optimize_

Tutorials that explain how to optimize and quantize models with OpenVINO tools.

+-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | Notebook | Description | Preview | +===============================================================================================================================+============================================================================================================================================+===========================================+ | 101-tensorflow-to-openvino <notebooks/101-tensorflow-to-openvino-with-output.html>__ |br| |n101| | Convert TensorFlow models to OpenVINO IR. | |n101-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 102-pytorch-onnx-to-openvino <notebooks/102-pytorch-onnx-to-openvino-with-output.html>__ | Convert PyTorch models to OpenVINO IR. | |n102-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 103-paddle-onnx-to-openvino <notebooks/103-paddle-onnx-to-openvino-classification-with-output.html>__ |br| |n103| | Convert PaddlePaddle models to OpenVINO IR. | |n103-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 104-model-tools <notebooks/104-model-tools-with-output.html>__ |br| |n104| | Download, convert and benchmark models from Open Model Zoo. | |n104-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+

.. dropdown:: Explore more notebooks here.

+------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------+ | Notebook | Description | +==============================================================================================================================+==================================================================================================================================+ | 105-language-quantize-bert <notebooks/105-language-quantize-bert-with-output.html>__ | Optimize and quantize a pre-trained BERT model | +------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------+ | 106-auto-device <notebooks/106-auto-device-with-output.html>__ | Demonstrates how to use AUTO Device | +------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------+ | 107-speech-recognition-quantization <notebooks/107-speech-recognition-quantization-with-output.html>__ | Optimize and quantize a pre-trained Wav2Vec2 speech model | +------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------+ | 110-ct-segmentation-quantize <notebooks/110-ct-segmentation-quantize-with-output.html>__ | Quantize a kidney segmentation model and show live inference | +------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------+ | 111-detection-quantization <notebooks/111-detection-quantization-with-output.html>__ |br| |n111| | Quantize an object detection model | +------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------+ | 112-pytorch-post-training-quantization-nncf <notebooks/112-pytorch-post-training-quantization-nncf-with-output.html>__ | Use Neural Network Compression Framework (NNCF) to quantize PyTorch model in post-training mode (without model fine-tuning) | +------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------+ | 113-image-classification-quantization <notebooks/113-image-classification-quantization-with-output.html>__ | Quantize mobilenet image classification | +------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------+ | 114-quantization-simplified-mode <notebooks/114-quantization-simplified-mode-with-output.html>__ | Quantize Image Classification Models with POT in Simplified Mode | +------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------+ | 115-async-api <notebooks/115-async-api-with-output.html>__ | Use Asynchronous Execution to Improve Data Pipelining | +------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------+

.. raw:: html

Model Demos_

Demos that demonstrate inference on a particular model.

+-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | Notebook | Description | Preview | +===============================================================================================================================+============================================================================================================================================+===========================================+ | 210-ct-scan-live-inference <notebooks/210-ct-scan-live-inference-with-output.html>__ |br| |n210| | Show live inference on segmentation of CT-scan data. | |n210-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 211-speech-to-text <notebooks/211-speech-to-text-with-output.html>__ |br| |n211| | Run inference on speech-to-text recognition model. | |n211-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 208-optical-character-recognition <notebooks/208-optical-character-recognition-with-output.html>__ | Annotate text on images using text recognition resnet. | |n208-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 209-handwritten-ocr <notebooks/209-handwritten-ocr-with-output.html>__ |br| |n209| | OCR for handwritten simplified Chinese and Japanese. | |n209-img1| |br| |chinese-text| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 218-vehicle-detection-and-recognition <notebooks/218-vehicle-detection-and-recognition-with-output.html>__ | Use pre-trained models to detect and recognize vehicles and their attributes with OpenVINO. | |n218-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+

.. dropdown:: Explore more notebooks below.

+-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | Notebook | Description | Preview | +===============================================================================================================================+============================================================================================================================================+===========================================+ | 201-vision-monodepth <notebooks/201-vision-monodepth-with-output.html>__ |br| |n201| | Monocular depth estimation with images and video. | |n201-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 202-vision-superresolution-image <notebooks/202-vision-superresolution-image-with-output.html>__ |br| |n202i| | Upscale raw images with a super resolution model. | |n202i-img1| → |n202i-img2| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 202-vision-superresolution-video <notebooks/202-vision-superresolution-video-with-output.html>__ |br| |n202v| | Turn 360p into 1080p video using a super resolution model. | |n202v-img1| → |n202v-img2| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 203-meter-reader <notebooks/203-meter-reader-with-output.html>__ |br| |n203| | PaddlePaddle pre-trained models to read industrial meter's value | |n203-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 204-named-entity-recognition <notebooks/204-named-entity-recognition-with-output.html>__ |br| |n204| | Perform named entity recognition on simple text. | |n204-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 205-vision-background-removal <notebooks/205-vision-background-removal-with-output.html>__ |br| |n205| | Remove and replace the background in an image using salient object detection. | |n205-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 206-vision-paddlegan-anime <notebooks/206-vision-paddlegan-anime-with-output.html>__ |br| |n206| | Turn an image into anime using a GAN. | |n206-img1| → |n206-img2| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 207-vision-paddlegan-superresolution <notebooks/207-vision-paddlegan-superresolution-with-output.html>__ |br| |n207| | Upscale small images with superresolution using a PaddleGAN model. | |n207-img1| → |n207-img2| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 212-onnx-style-transfer <notebooks/212-onnx-style-transfer-with-output.html>__ |br| |n212| | Transform images to five different styles with neural style transfer. | |n212-img1| → |n212-img2| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 214-vision-paddle-classification <notebooks/214-vision-paddle-classification-with-output.html>__ |br| |n214| | PaddlePaddle Image Classification with OpenVINO. | | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 215-image-inpainting <notebooks/215-image-inpainting-with-output.html>__ | Fill missing pixels with image in-painting. | |n215-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 216-license-plate-recognition <notebooks/216-license-plate-recognition-with-output.html>__ | Recognize Chinese license plates in traffic. | |n216-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 217-vision-deblur <notebooks/217-vision-deblur-with-output.html>__ |br| |n217| | Deblur Images with DeblurGAN-v2. | |n217-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 219-knowledge-graphs-conve <notebooks/219-knowledge-graphs-conve-with-output.html>__ | Optimize the knowledge graph embeddings model (ConvE) with OpenVINO | | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 220-yolov5-accuracy-check-and-quantization <notebooks/220-yolov5-accuracy-check-and-quantization-with-output.html>__ | Quantize the Ultralytics YOLOv5 model and check accuracy using the OpenVINO POT API | |n220-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 221-machine-translation <notebooks/221-machine-translation-with-output.html>__ | Real-time translation from English to German | | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 222-vision-image-colorization <notebooks/222-vision-image-colorization-with-output.html>__ | Use pre-trained models to colorize black & white images using OpenVINO | |n222-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 223-gpt2-text-prediction <notebooks/223-gpt2-text-prediction-with-output.html>__ | Use GPT-2 to perform text prediction on an input sequence | |n223-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+

.. raw:: html

Model Training_

Tutorials that include code to train neural networks.

+-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | Notebook | Description | Preview | +===============================================================================================================================+============================================================================================================================================+===========================================+ | 301-tensorflow-training-openvino <notebooks/301-tensorflow-training-openvino-with-output.html>__ | Train a flower classification model from TensorFlow, then convert to OpenVINO IR. | |n301-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 301-tensorflow-training-openvino-pot <notebooks/301-tensorflow-training-openvino-pot-with-output.html>__ | Use Post-training Optimization Tool (POT) to quantize the flowers model. | | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 302-pytorch-quantization-aware-training <notebooks/302-pytorch-quantization-aware-training-with-output.html>__ | Use Neural Network Compression Framework (NNCF) to quantize PyTorch model. | | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 305-tensorflow-quantization-aware-training <notebooks/305-tensorflow-quantization-aware-training-with-output.html>__ | Use Neural Network Compression Framework (NNCF) to quantize TensorFlow model. | | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+

.. raw:: html

Live Demos_

Live inference demos that run on a webcam or video files.

+-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | Notebook | Description | Preview | +===============================================================================================================================+============================================================================================================================================+===========================================+ | 401-object-detection-webcam <notebooks/401-object-detection-with-output.html>__ |br| |n401| | Object detection with a webcam or video file. | |n401-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 402-pose-estimation-webcam <notebooks/402-pose-estimation-with-output.html>__ |br| |n402| | Human pose estimation with a webcam or video file. | |n402-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 403-action-recognition-webcam <notebooks/403-action-recognition-webcam-with-output.html>__ |br| |n403| | Human action recognition with a webcam or video file. | |n403-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | 405-paddle-ocr-webcam <notebooks/405-paddle-ocr-webcam-with-output.html>__ |br| |n405| | OCR with a webcam or video file | |n405-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+

.. raw:: html

The following tutorials are guaranteed to provide a great experience with inference in OpenVINO:

+-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | Notebook | | Preview | +===============================================================================================================================+============================================================================================================================================+===========================================+ | Vision-monodepth <notebooks/201-vision-monodepth-with-output.html>__ |br| |n201| | Monocular depth estimation with images and video. | |n201-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | CT-scan-live-inference <notebooks/210-ct-scan-live-inference-with-output.html>__ |br| |n210| | Show live inference on segmentation of CT-scan data. | |n210-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | Object-detection-webcam <notebooks/401-object-detection-with-output.html>__ |br| |n401| | Object detection with a webcam or video file. | |n401-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | Pose-estimation-webcam <notebooks/402-pose-estimation-with-output>__ |br| |n402| | Human pose estimation with a webcam or video file. | |n402-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+ | Action-recognition-webcam <notebooks/403-action-recognition-webcam-with-output.html>__ |br| |n403| | Human action recognition with a webcam or video file. | |n403-img1| | +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+


.. note:: If there are any issues while running the notebooks, refer to the Troubleshooting and FAQ sections in the Installation Guide <notebooks-installation.html>__ or start a GitHub discussion <https://github.com/openvinotoolkit/openvino_notebooks/discussions>__.

.. raw:: html

Additional Resources_

  • OpenVINO™ Notebooks - Github Repository <https://github.com/openvinotoolkit/openvino_notebooks/blob/main/README.md>_
  • Binder documentation <https://mybinder.readthedocs.io/en/latest/>_

.. raw:: html

Contributors_

|contributors|

Made with contributors-img <https://contrib.rocks>__.

.. |br| raw:: html


.. |chinese-text| raw:: html

的人不一了是他有为在责新中任自之我们

.. |contributors| image:: https://contrib.rocks/image?repo=openvinotoolkit/openvino_notebooks :target: https://github.com/openvinotoolkit/openvino_notebooks/graphs/contributors .. |n001-img1| image:: https://user-images.githubusercontent.com/36741649/127170593-86976dc3-e5e4-40be-b0a6-206379cd7df5.jpg :target: https://user-images.githubusercontent.com/36741649/127170593-86976dc3-e5e4-40be-b0a6-206379cd7df5.jpg .. |n002-img1| image:: https://user-images.githubusercontent.com/15709723/127787560-d8ec4d92-b4a0-411f-84aa-007e90faba98.png :target: https://user-images.githubusercontent.com/15709723/127787560-d8ec4d92-b4a0-411f-84aa-007e90faba98.png .. |n003-img1| image:: https://user-images.githubusercontent.com/15709723/128290691-e2eb875c-775e-4f4d-a2f4-15134044b4bb.png :target: https://user-images.githubusercontent.com/15709723/128290691-e2eb875c-775e-4f4d-a2f4-15134044b4bb.png .. |n004-img1| image:: https://user-images.githubusercontent.com/36741649/128489933-bf215a3f-06fa-4918-8833-cb0bf9fb1cc7.jpg :target: https://user-images.githubusercontent.com/36741649/128489933-bf215a3f-06fa-4918-8833-cb0bf9fb1cc7.jpg .. |n101-img1| image:: https://user-images.githubusercontent.com/15709723/127779167-9d33dcc6-9001-4d74-a089-8248310092fe.png :target: https://user-images.githubusercontent.com/15709723/127779167-9d33dcc6-9001-4d74-a089-8248310092fe.png .. |n102-img1| image:: https://user-images.githubusercontent.com/15709723/127779246-32e7392b-2d72-4a7d-b871-e79e7bfdd2e9.png :target: https://user-images.githubusercontent.com/15709723/127779246-32e7392b-2d72-4a7d-b871-e79e7bfdd2e9.png .. |n103-img1| image:: https://user-images.githubusercontent.com/15709723/127779326-dc14653f-a960-4877-b529-86908a6f2a61.png :target: https://user-images.githubusercontent.com/15709723/127779326-dc14653f-a960-4877-b529-86908a6f2a61.png .. |n104-img1| image:: https://user-images.githubusercontent.com/10940214/157541917-c5455105-b0d9-4adf-91a7-fbc142918015.png :target: https://user-images.githubusercontent.com/10940214/157541917-c5455105-b0d9-4adf-91a7-fbc142918015.png .. |n210-img1| image:: https://user-images.githubusercontent.com/15709723/134784204-cf8f7800-b84c-47f5-a1d8-25a9afab88f8.gif :target: https://user-images.githubusercontent.com/15709723/134784204-cf8f7800-b84c-47f5-a1d8-25a9afab88f8.gif .. |n211-img1| image:: https://user-images.githubusercontent.com/36741649/140987347-279de058-55d7-4772-b013-0f2b12deaa61.png :target: https://user-images.githubusercontent.com/36741649/140987347-279de058-55d7-4772-b013-0f2b12deaa61.png .. |n213-img1| image:: https://user-images.githubusercontent.com/4547501/152571639-ace628b2-e3d2-433e-8c28-9a5546d76a86.gif :target: https://user-images.githubusercontent.com/4547501/152571639-ace628b2-e3d2-433e-8c28-9a5546d76a86.gif .. |n208-img1| image:: https://user-images.githubusercontent.com/36741649/129315292-a37266dc-dfb2-4749-bca5-2ac9c1e93d64.jpg :target: https://user-images.githubusercontent.com/36741649/129315292-a37266dc-dfb2-4749-bca5-2ac9c1e93d64.jpg .. |n209-img1| image:: https://user-images.githubusercontent.com/36741649/132660640-da2211ec-c389-450e-8980-32a75ed14abb.png :target: https://user-images.githubusercontent.com/36741649/132660640-da2211ec-c389-450e-8980-32a75ed14abb.png .. |n201-img1| image:: https://user-images.githubusercontent.com/15709723/127752390-f6aa371f-31b5-4846-84b9-18dd4f662406.gif :target: https://user-images.githubusercontent.com/15709723/127752390-f6aa371f-31b5-4846-84b9-18dd4f662406.gif .. |n202i-img1| image:: https://user-images.githubusercontent.com/36741649/170005347-e4409f9e-ec34-416b-afdf-a9d8185929ca.jpg :width: 70 :target: https://user-images.githubusercontent.com/36741649/170005347-e4409f9e-ec34-416b-afdf-a9d8185929ca.jpg .. |n202i-img2| image:: https://user-images.githubusercontent.com/36741649/170005347-e4409f9e-ec34-416b-afdf-a9d8185929ca.jpg :width: 130 :target: https://user-images.githubusercontent.com/36741649/170005347-e4409f9e-ec34-416b-afdf-a9d8185929ca.jpg .. |n202v-img1| image:: https://user-images.githubusercontent.com/15709723/127269258-a8e2c03e-731e-4317-b5b2-ed2ee767ff5e.gif :target: https://user-images.githubusercontent.com/15709723/127269258-a8e2c03e-731e-4317-b5b2-ed2ee767ff5e.gif :width: 80 .. |n202v-img2| image:: https://user-images.githubusercontent.com/15709723/127269258-a8e2c03e-731e-4317-b5b2-ed2ee767ff5e.gif :width: 125 :target: https://user-images.githubusercontent.com/15709723/127269258-a8e2c03e-731e-4317-b5b2-ed2ee767ff5e.gif .. |n203-img1| image:: https://user-images.githubusercontent.com/91237924/166135627-194405b0-6c25-4fd8-9ad1-83fb3a00a081.jpg :target: https://user-images.githubusercontent.com/91237924/166135627-194405b0-6c25-4fd8-9ad1-83fb3a00a081.jpg .. |n204-img1| image:: https://user-images.githubusercontent.com/33627846/169470030-0370963e-6ad8-49e3-be7a-f02a2c677733.gif :target: https://user-images.githubusercontent.com/33627846/169470030-0370963e-6ad8-49e3-be7a-f02a2c677733.gif .. |n205-img1| image:: https://user-images.githubusercontent.com/15709723/125184237-f4b6cd00-e1d0-11eb-8e3b-d92c9a728372.png :target: https://user-images.githubusercontent.com/15709723/125184237-f4b6cd00-e1d0-11eb-8e3b-d92c9a728372.png .. |n206-img1| image:: https://user-images.githubusercontent.com/15709723/127788059-1f069ae1-8705-4972-b50e-6314a6f36632.jpeg :target: https://user-images.githubusercontent.com/15709723/127788059-1f069ae1-8705-4972-b50e-6314a6f36632.jpeg .. |n206-img2| image:: https://user-images.githubusercontent.com/15709723/125184441-b4584e80-e1d2-11eb-8964-d8131cd97409.png :target: https://user-images.githubusercontent.com/15709723/125184441-b4584e80-e1d2-11eb-8964-d8131cd97409.png .. |n207-img1| image:: https://user-images.githubusercontent.com/36741649/127170593-86976dc3-e5e4-40be-b0a6-206379cd7df5.jpg :target: https://user-images.githubusercontent.com/36741649/127170593-86976dc3-e5e4-40be-b0a6-206379cd7df5.jpg :width: 70 .. |n207-img2| image:: https://user-images.githubusercontent.com/36741649/127170593-86976dc3-e5e4-40be-b0a6-206379cd7df5.jpg :target: https://user-images.githubusercontent.com/36741649/127170593-86976dc3-e5e4-40be-b0a6-206379cd7df5.jpg :width: 130 .. |n212-img1| image:: https://user-images.githubusercontent.com/77325899/147358090-ff5b21f5-0efb-4aff-8444-9d07add49b92.png :target: https://user-images.githubusercontent.com/77325899/147358090-ff5b21f5-0efb-4aff-8444-9d07add49b92.png .. |n212-img2| image:: https://user-images.githubusercontent.com/77325899/147358009-0cf10d51-3150-40cb-a776-074558b98da5.png :target: https://user-images.githubusercontent.com/77325899/147358009-0cf10d51-3150-40cb-a776-074558b98da5.png .. |n215-img1| image:: https://user-images.githubusercontent.com/4547501/167121084-ec58fbdb-b269-4de2-9d4c-253c5b95de1e.png :target: https://user-images.githubusercontent.com/4547501/167121084-ec58fbdb-b269-4de2-9d4c-253c5b95de1e.png .. |n216-img1| image:: https://user-images.githubusercontent.com/70456146/162759539-4a0a996f-dabe-40ea-98d6-85b4dce8511d.png :target: https://user-images.githubusercontent.com/70456146/162759539-4a0a996f-dabe-40ea-98d6-85b4dce8511d.png .. |n217-img1| image:: https://user-images.githubusercontent.com/41332813/158430181-05d07f42-cdb8-4b7a-b7dc-e7f7d9391877.png :target: https://user-images.githubusercontent.com/41332813/158430181-05d07f42-cdb8-4b7a-b7dc-e7f7d9391877.png .. |n218-img1| image:: https://user-images.githubusercontent.com/47499836/163544861-fa2ad64b-77df-4c16-b065-79183e8ed964.png :target: https://user-images.githubusercontent.com/47499836/163544861-fa2ad64b-77df-4c16-b065-79183e8ed964.png .. |n220-img1| image:: https://user-images.githubusercontent.com/44352144/177097174-cfe78939-e946-445e-9fce-d8897417ef8e.png :target: https://user-images.githubusercontent.com/44352144/177097174-cfe78939-e946-445e-9fce-d8897417ef8e.png .. |n222-img1| image:: https://user-images.githubusercontent.com/18904157/166343139-c6568e50-b856-4066-baef-5cdbd4e8bc18.png :target: https://user-images.githubusercontent.com/18904157/166343139-c6568e50-b856-4066-baef-5cdbd4e8bc18.png .. |n223-img1| image:: https://user-images.githubusercontent.com/91228207/185105225-0f996b0b-0a3b-4486-872d-364ac6fab68b.png :target: https://user-images.githubusercontent.com/91228207/185105225-0f996b0b-0a3b-4486-872d-364ac6fab68b.png .. |n301-img1| image:: https://user-images.githubusercontent.com/15709723/127779607-8fa34947-1c35-4260-8d04-981c41a2a2cc.png :target: https://user-images.githubusercontent.com/15709723/127779607-8fa34947-1c35-4260-8d04-981c41a2a2cc.png .. |n401-img1| image:: https://user-images.githubusercontent.com/4547501/141471665-82b28c86-cf64-4bfe-98b3-c314658f2d96.gif :target: https://user-images.githubusercontent.com/4547501/141471665-82b28c86-cf64-4bfe-98b3-c314658f2d96.gif .. |n402-img1| image:: https://user-images.githubusercontent.com/4547501/138267961-41d754e7-59db-49f6-b700-63c3a636fad7.gif :target: https://user-images.githubusercontent.com/4547501/138267961-41d754e7-59db-49f6-b700-63c3a636fad7.gif .. |n403-img1| image:: https://user-images.githubusercontent.com/10940214/151552326-642d6e49-f5a0-4fc1-bf14-ae3f457e1fec.gif :target: https://user-images.githubusercontent.com/10940214/151552326-642d6e49-f5a0-4fc1-bf14-ae3f457e1fec.gif .. |n405-img1| image:: https://raw.githubusercontent.com/yoyowz/classification/master/images/paddleocr.gif :target: https://raw.githubusercontent.com/yoyowz/classification/master/images/paddleocr.gif .. |launch-jupyter| image:: https://user-images.githubusercontent.com/15709723/120527271-006fd200-c38f-11eb-9935-2d36d50bab9f.gif :target: https://user-images.githubusercontent.com/15709723/120527271-006fd200-c38f-11eb-9935-2d36d50bab9f.gif

.. |Apache License Version 2.0| image:: https://img.shields.io/badge/license-Apache_2.0-green.svg :target: https://github.com/openvinotoolkit/openvino_notebooks/blob/main/LICENSE .. |nbval| image:: https://github.com/openvinotoolkit/openvino_notebooks/actions/workflows/nbval.yml/badge.svg :target: https://github.com/openvinotoolkit/openvino_notebooks/actions/workflows/nbval.yml?query=branch%3Amain .. |nbval-docker| image:: https://github.com/openvinotoolkit/openvino_notebooks/actions/workflows/docker.yml/badge.svg :target: https://github.com/openvinotoolkit/openvino_notebooks/actions/workflows/nbval.yml?query=branch%3Amain

.. |n001| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F001-hello-world%2F001-hello-world.ipynb .. |n002| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F002-openvino-api%2F002-openvino-api.ipynb .. |n003| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F003-hello-segmentation%2F003-hello-segmentation.ipynb .. |n004| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F004-hello-detection%2F004-hello-detection.ipynb .. |n101| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F101-tensorflow-to-openvino%2F101-tensorflow-to-openvino.ipynb .. |n103| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F103-paddle-onnx-to-openvino-classification%2F103-paddle-onnx-to-openvino-classification.ipynb .. |n104| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F104-model-tools%2F104-model-tools.ipynb .. |n111| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F111-detection-quantization%2F111-detection-quantization.ipynb .. |n210| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F210-ct-scan-live-inference%2F210-ct-scan-live-inference.ipynb .. |n211| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F211-speech-to-text%2F211-speech-to-text.ipynb .. |n213| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F213-question-answering%2F213-question-answering.ipynb .. |n209| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F209-handwritten-ocr%2F209-handwritten-ocr.ipynb .. |n201| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F201-vision-monodepth%2F201-vision-monodepth.ipynb .. |n202i| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F202-vision-superresolution%2F202-vision-superresolution-image.ipynb .. |n202v| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F202-vision-superresolution%2F202-vision-superresolution-video.ipynb .. |n203| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?labpath=notebooks%2F203-meter-reader%2F203-meter-reader.ipynb .. |n204| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F204-named-entity-recognition%2F204-named-entity-recognition.ipynb .. |n205| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F205-vision-background-removal%2F205-vision-background-removal.ipynb .. |n206| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F206-vision-paddlegan-anime%2F206-vision-paddlegan-anime.ipynb .. |n207| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F207-vision-paddlegan-superresolution%2F207-vision-paddlegan-superresolution.ipynb .. |n212| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F212-onnx-style-transfer%2F212-onnx-style-transfer.ipynb .. |n214| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F214-vision-paddle-classification%2F214-vision-paddle-classification.ipynb .. |n217| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/ThanosM97/openvino_notebooks/217-vision-deblur?labpath=notebooks%2F217-vision-deblur%2F217-vision-deblur.ipynb .. |n401| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F401-object-detection-webcam%2F401-object-detection.ipynb .. |n402| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F402-pose-estimation-webcam%2F402-pose-estimation.ipynb .. |n403| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F403-action-recognition-webcam%2F403-action-recognition-webcam.ipynb .. |n405| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=notebooks%2F405-paddle-ocr-webcam%2F405-paddle-ocr-webcam.ipynb

.. |binder logo| image:: https://mybinder.org/badge_logo.svg :alt: Binder button

@endsphinxdirective