opm-core/opm/core/io/eclipse/EclipseWriter.cpp

979 lines
38 KiB
C++
Raw Normal View History

/*
2013-11-06 05:56:19 -06:00
Copyright (c) 2013 Andreas Lauser
Copyright (c) 2013 SINTEF ICT, Applied Mathematics.
Copyright (c) 2013 Uni Research AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
#include "EclipseWriter.hpp"
#include <opm/core/io/eclipse/EclipseGridParser.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/core/props/phaseUsageFromDeck.hpp>
2013-11-06 06:03:08 -06:00
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/core/simulator/SimulatorTimer.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/parameters/Parameter.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/core/wells.h> // WellType
2013-11-06 06:03:08 -06:00
#include <boost/algorithm/string/case_conv.hpp> // to_upper_copy
#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/filesystem.hpp> // path
2013-11-07 05:38:11 -06:00
#include <ctime> // mktime
#include <forward_list>
2013-11-06 06:03:08 -06:00
#include <memory> // unique_ptr
#include <utility> // move
2013-11-06 06:03:08 -06:00
using namespace Opm;
using namespace Opm::parameter;
2013-11-06 06:03:08 -06:00
#ifdef HAVE_ERT
#include <ert/ecl/fortio.h>
2013-11-04 07:27:29 -06:00
#include <ert/ecl/ecl_endian_flip.h>
#include <ert/ecl/ecl_grid.h>
#include <ert/ecl/ecl_kw_magic.h>
#include <ert/ecl/ecl_kw.h>
#include <ert/ecl/ecl_sum.h>
#include <ert/ecl/ecl_util.h>
#include <ert/ecl/ecl_init_file.h>
#include <ert/ecl/ecl_file.h>
#include <ert/ecl/ecl_rst_file.h>
// namespace start here since we don't want the ERT headers in it;
// this means we must also do it in the #else section at the bottom
namespace Opm {
namespace internal {
/// Smart pointer/handle class for ERT opaque types, such as ecl_kw_type*.
///
/// \tparam T Type of handle being wrapper
template <typename T>
struct EclipseHandle {
/// Instead of inheriting std::unique_ptr and letting the compiler
/// provide a default implementation which calls the base class, we
/// define the move constructor and assignment operator ourselves
/// and call and aggregated pointer, because of bugs in GCC 4.4
EclipseHandle <T> (EclipseHandle <T>&& rhs)
: h_ (std::move (rhs.h_)) { }
EclipseHandle <T>& operator= (EclipseHandle <T>&& rhs) {
h_ = std::move (rhs.h_);
return *this;
}
/// Prevent GCC 4.4 from the urge of generating a copy constructor
EclipseHandle (const EclipseHandle&) = delete;
EclipseHandle <T>& operator= (const EclipseHandle <T>&) = delete;
/// Construct a new smart handle based on the returned value of
/// an allocation function and the corresponding destroyer function.
EclipseHandle <T> (T* t, void (*destroy)(T*))
: h_ (t, destroy) { }
/// Convenience operator that lets us use this type as if
/// it was a handle directly.
operator T* () const { return h_.get (); }
private:
std::unique_ptr <T, void (*)(T*) throw()> h_; // handle
};
/**
* Eclipse "keyword" (i.e. named data) for a vector. (This class is
* different from EclKW in the constructors it provide).
*/
template <typename T>
struct EclipseKeyword : public EclipseHandle <ecl_kw_type> {
EclipseKeyword (const std::string& name, /// identification
const std::vector<T>& data, /// array holding values
const int offset = 0, /// distance to first
const int stride = 1) /// distance between each
// allocate handle and put in smart pointer base class
: EclipseHandle <ecl_kw_type> (
ecl_kw_alloc (name.c_str(), data.size (), type ()),
ecl_kw_free) {
copyData (&data[0], data.size (), offset, stride);
}
/// Special initialization from double-precision array which
/// automatically invokes a version of the copy function which
/// downcasts. This is really only applicable to the T = float
/// template instance.
/// The data and name parameters are switched in this version
/// so that it doesn't conflict with the one above in the case
/// of T = double.
EclipseKeyword (const std::vector<double>& data,
const std::string& name,
const int offset = 0,
const int stride = 1);
/// Convenience constructor that gets the set of data
/// from the samely named item in the parser
EclipseKeyword (const std::string& name,
const EclipseGridParser& parser)
// allocate handle and put in smart pointer base class
: EclipseHandle <ecl_kw_type> (
ecl_kw_alloc (name.c_str(),
parser.getValue <T> (name).size (),
type ()),
ecl_kw_free) {
const std::vector <T>& data = parser.getValue <T> (name);
copyData (&data[0], data.size (), 0, 1);
}
/// Constructor for optional fields
EclipseKeyword (const std::string& name)
: EclipseHandle <ecl_kw_type> (0, ecl_kw_free) {
static_cast<void> (name);
}
// GCC 4.4 doesn't generate these constructors for us; provide the
// default implementation explicitly here instead
EclipseKeyword (EclipseKeyword&& rhs)
: EclipseHandle <ecl_kw_type> (std::move (rhs)) { }
EclipseKeyword& operator= (EclipseKeyword&& rhs) {
EclipseHandle <ecl_kw_type>::operator= (std::move(rhs));
return *this;
}
EclipseKeyword (const EclipseKeyword&) = delete;
EclipseKeyword& operator= (const EclipseKeyword&) = delete;
private:
/// Map the C++ data type (given by T) to an Eclipse type enum
static ecl_type_enum type ();
/// Helper function that is the meat of the constructor
template <typename U>
void copyData (const U* data,
const int num,
const int offset,
const int stride) {
// range cannot start outside of data set
assert(offset >= 0 && offset < num);
// don't jump out of the set when trying to
assert(stride > 0 && stride < num - offset);
// fill it with values
T* target = static_cast <T*> (ecl_kw_get_ptr (*this));
for (int i = 0; i < num; ++i) {
target[i] = static_cast <T> (data[i * stride + offset]);
}
}
};
// specializations for known keyword types
template <> ecl_type_enum EclipseKeyword<int >::type () { return ECL_INT_TYPE ; }
template <> ecl_type_enum EclipseKeyword<float >::type () { return ECL_FLOAT_TYPE ; }
template <> ecl_type_enum EclipseKeyword<double>::type () { return ECL_DOUBLE_TYPE; }
/// keywords in ERT requires single-precision type, but OPM have them
/// stored as double-precision. this template specialization instantiates
/// a copy function that downcast the data to the required type.
template <>
EclipseKeyword <float>::EclipseKeyword (
const std::string& name,
const EclipseGridParser& parser)
// allocate handle and put in smart pointer base class
: EclipseHandle <ecl_kw_type> (
ecl_kw_alloc (name.c_str(),
// we can safely use the *size* of the original
parser.getValue <double> (name).size (),
type ()),
ecl_kw_free) {
const std::vector <double>& data = parser.getValue <double> (name);
copyData (&data[0], data.size (), 0, 1);
}
/// Provide only the float version, since that is the one for which
/// we need this conversion (we don't want it for int, for instance)
template <>
EclipseKeyword <float>::EclipseKeyword (
const std::vector<double>& data,
const std::string& name,
const int offset,
const int stride)
// allocate handle and put in smart pointer base class
: EclipseHandle <ecl_kw_type> (
ecl_kw_alloc (name.c_str(), data.size (), type ()),
ecl_kw_free) {
copyData (&data[0], data.size (), offset, stride);
}
/**
* Extract the current time from a timer object into the C type used by ERT.
*/
static time_t current (const SimulatorTimer& timer) {
tm t = boost::posix_time::to_tm (timer.currentDateTime());
2013-11-07 05:38:11 -06:00
return std::mktime(&t);
}
// what each simulator consider to be the first time step
const int ECL_TSTEP_BASE = 1;
const int OPM_TSTEP_BASE = 1;
// convert OPM time step numbers to Eclipse
static int stepNum (const SimulatorTimer& timer) {
return timer.currentStepNum () - OPM_TSTEP_BASE + ECL_TSTEP_BASE;
}
/**
* Pointer to memory that holds the name to an Eclipse output file.
*/
struct EclipseFileName : public EclipseHandle <const char> {
EclipseFileName (const std::string& outputDir,
const std::string& baseName,
ecl_file_enum type,
const SimulatorTimer& timer)
// filename formatting function returns a pointer to allocated
// memory that must be released with the free() function
: EclipseHandle <const char> (
ecl_util_alloc_filename (outputDir.c_str(),
baseName.c_str(),
type,
false, // formatted?
stepNum (timer)),
freestr) { }
private:
/// Facade which allows us to free a const char*
static void freestr (const char* ptr) {
::free (const_cast<char*>(ptr));
}
};
/// Convert OPM phase usage to ERT bitmask
static int phaseMask (const PhaseUsage uses) {
return (uses.phase_used [BlackoilPhases::Liquid] ? ECL_OIL_PHASE : 0)
| (uses.phase_used [BlackoilPhases::Aqua] ? ECL_WATER_PHASE : 0)
| (uses.phase_used [BlackoilPhases::Vapour] ? ECL_GAS_PHASE : 0);
}
struct EclipseRestart : public EclipseHandle <ecl_rst_file_type> {
EclipseRestart (const std::string& outputDir,
const std::string& baseName,
const SimulatorTimer& timer)
// notice the poor man's polymorphism of the allocation function
: EclipseHandle <ecl_rst_file_type> (
(stepNum (timer) > ECL_TSTEP_BASE ? ecl_rst_file_open_append
: ecl_rst_file_open_write)(
EclipseFileName (outputDir,
baseName,
ECL_UNIFIED_RESTART_FILE,
timer)),
ecl_rst_file_close) { }
void writeHeader (const SimulatorTimer& timer,
const PhaseUsage uses,
const EclipseGridParser parser,
const int num_active_cells) {
std::vector<int> dim(/*n=*/3);
if (parser.hasField("SPECGRID"))
dim = parser.getSPECGRID ().dimensions;
else if (parser.hasField("DXV")) {
assert(parser.hasField("DYV"));
assert(parser.hasField("DZV"));
dim[0] = parser.getFloatingPointValue("DXV").size();
dim[1] = parser.getFloatingPointValue("DYV").size();
dim[2] = parser.getFloatingPointValue("DZV").size();
}
else
OPM_THROW(std::runtime_error,
"Only decks featureing either the SPECGRID or the D[XYZ]V keywords "
"are currently supported");
ecl_rst_file_fwrite_header (*this,
stepNum (timer),
current (timer),
Opm::unit::convert::to (timer.currentTime (),
Opm::unit::day),
dim[0],
dim[1],
dim[2],
num_active_cells,
phaseMask (uses));
}
};
/**
* The EclipseSolution class wraps the actions that must be done to the
* restart file while writing solution variables; it is not a handle on
* its own.
*/
struct EclipseSolution : public EclipseHandle <ecl_rst_file_type> {
EclipseSolution (EclipseRestart& rst_file)
: EclipseHandle <ecl_rst_file_type> (start_solution (rst_file),
ecl_rst_file_end_solution) { }
template <typename T>
void add (const EclipseKeyword<T>& kw) {
ecl_rst_file_add_kw (*this, kw);
}
private:
/// Helper method to call function *and* return the handle
static ecl_rst_file_type* start_solution (EclipseRestart& rst_file) {
ecl_rst_file_start_solution (rst_file);
return rst_file;
}
};
namespace {
// enclosure of the current grid in a Cartesian space
int cart_size (const UnstructuredGrid& grid) {
const int nx = grid.cartdims[0];
const int ny = grid.cartdims[1];
const int nz = grid.cartdims[2];
return nx * ny * nz;
}
void active_cells (const UnstructuredGrid& grid,
std::vector <int>& actnum) {
// we must fill the Cartesian grid with flags
const int size = cart_size (grid);
// if we don't have a global_cells field, then assume that all
// grid cells is active
if (!grid.global_cell) {
if (grid.number_of_cells != size) {
OPM_THROW (std::runtime_error,
"No ACTNUM map but grid size != Cartesian size");
}
actnum.assign (size, 1);
}
else {
// start out with entire map being inactive
actnum.assign (size, 0);
// activate those cells that are actually there
for (int i = 0; i < grid.number_of_cells; ++i) {
actnum[grid.global_cell[i]] = 1;
}
}
} // active_cells
} // empty namespace
/**
* Representation of an Eclipse grid.
*/
struct EclipseGrid : public EclipseHandle <ecl_grid_type> {
/// Create a grid based on the keywords available in input file
static EclipseGrid make (const EclipseGridParser& parser,
const UnstructuredGrid& grid) {
if (parser.hasField("DXV")) {
// make sure that the DYV and DZV keywords are present if the
// DXV keyword is used in the deck...
assert(parser.hasField("DYV"));
assert(parser.hasField("DZV"));
const auto& dxv = parser.getFloatingPointValue("DXV");
const auto& dyv = parser.getFloatingPointValue("DYV");
const auto& dzv = parser.getFloatingPointValue("DZV");
return EclipseGrid (dxv, dyv, dzv);
}
else if (parser.hasField("ZCORN")) {
struct grdecl g = parser.get_grdecl ();
EclipseKeyword<float> coord_kw (COORD_KW, parser);
EclipseKeyword<float> zcorn_kw (ZCORN_KW, parser);
// get the actually active cells, after processing
std::vector <int> actnum;
active_cells (grid, actnum);
EclipseKeyword<int> actnum_kw (ACTNUM_KW, actnum);
EclipseKeyword<float> mapaxes_kw (MAPAXES_KW);
if (g.mapaxes) {
mapaxes_kw = std::move (EclipseKeyword<float> (MAPAXES_KW, parser));
}
return EclipseGrid (g.dims, zcorn_kw, coord_kw, actnum_kw, mapaxes_kw);
}
else {
OPM_THROW(std::runtime_error,
"Can't create an ERT grid (no supported keywords found in deck)");
}
}
/**
* Save the grid in an .EGRID file.
*/
void write (const std::string& outputDir,
const std::string& baseName,
const SimulatorTimer& timer) {
ecl_grid_fwrite_EGRID (*this,
EclipseFileName (outputDir,
baseName,
ECL_EGRID_FILE,
timer));
}
// GCC 4.4 doesn't generate these constructors for us; provide the
// default implementation explicitly here instead
EclipseGrid (EclipseGrid&& rhs)
: EclipseHandle <ecl_grid_type> (std::move (rhs)) { }
EclipseGrid& operator= (EclipseGrid&& rhs) {
EclipseHandle <ecl_grid_type>::operator= (std::move(rhs));
return *this;
}
EclipseGrid (const EclipseGrid&) = delete;
EclipseGrid& operator= (const EclipseGrid&) = delete;
private:
// each of these cases could have been their respective subclass,
// but there is not any polymorphism on each of these grid types
// once we have the handle
// setup smart pointer for Cartesian grid
EclipseGrid (const std::vector<double>& dxv,
const std::vector<double>& dyv,
const std::vector<double>& dzv)
: EclipseHandle <ecl_grid_type> (
ecl_grid_alloc_dxv_dyv_dzv (dxv.size (),
dyv.size (),
dzv.size (),
&dxv[0],
&dyv[0],
&dzv[0],
NULL),
ecl_grid_free) { }
// setup smart pointer for cornerpoint grid
EclipseGrid (const int dims[],
const EclipseKeyword<float>& zcorn,
const EclipseKeyword<float>& coord,
const EclipseKeyword<int>& actnum,
const EclipseKeyword<float>& mapaxes)
: EclipseHandle <ecl_grid_type> (
ecl_grid_alloc_GRDECL_kw(dims[0],
dims[1],
dims[2],
zcorn,
coord,
actnum,
mapaxes),
ecl_grid_free) { }
};
2013-11-04 07:27:29 -06:00
/**
* Initialization file which contains static properties (such as
* porosity and permeability) for the simulation field.
*/
struct EclipseInit : public EclipseHandle <fortio_type> {
// contrary to the grid, the location of the file goes here because
// there is only one construction method but several write methods
// (but we need to do a bit of logic before we can call the actual
// constructor, so we'll have to do with a static wrapper)
static EclipseInit make (const std::string& outputDir,
const std::string& baseName,
const SimulatorTimer& timer) {
EclipseFileName initFileName (outputDir,
baseName,
ECL_INIT_FILE,
timer);
bool fmt_file;
if (!ecl_util_fmt_file(initFileName, &fmt_file)) {
OPM_THROW(std::runtime_error,
"Could not determine formatted/unformatted status of file:" << initFileName << " non-standard name?" << std::endl);
}
return EclipseInit (initFileName, fmt_file);
}
void writeHeader (const EclipseGrid& grid,
const SimulatorTimer& timer,
const EclipseGridParser& parser,
const PhaseUsage uses) {
EclipseKeyword<float> poro (PORO_KW, parser);
2013-11-04 07:27:29 -06:00
ecl_init_file_fwrite_header (*this,
grid,
poro,
phaseMask (uses),
2013-11-04 07:27:29 -06:00
current (timer));
}
template <typename T>
void writeKeyword (const std::string& keyword,
const EclipseGridParser& parser) {
EclipseKeyword <T> kw (keyword, parser);
ecl_kw_fwrite (kw, *this);
}
// GCC 4.4 doesn't generate these constructors for us; provide the
// default implementation explicitly here instead
EclipseInit (EclipseInit&& rhs)
: EclipseHandle <fortio_type> (std::move (rhs)) { }
EclipseInit& operator= (EclipseInit& rhs) {
EclipseHandle <fortio_type>::operator= (std::move(rhs));
return *this;
}
EclipseInit (const EclipseInit&) = delete;
EclipseInit& operator= (const EclipseInit&) = delete;
2013-11-04 07:27:29 -06:00
private:
EclipseInit (const EclipseFileName& fname, const bool formatted)
: EclipseHandle <fortio_type> (
fortio_open_writer (fname, formatted, ECL_ENDIAN_FLIP),
fortio_fclose) { }
2013-11-04 07:27:29 -06:00
};
// forward decl. of mutually dependent type
struct EclipseWellReport;
struct EclipseSummary : public EclipseHandle <ecl_sum_type> {
EclipseSummary (const std::string& outputDir,
const std::string& baseName,
const SimulatorTimer& timer,
const EclipseGridParser parser)
: EclipseHandle <ecl_sum_type> (
alloc_writer (outputDir, baseName, timer, parser),
ecl_sum_free) { }
typedef std::unique_ptr <EclipseWellReport> var_t;
typedef std::vector <var_t> vars_t;
EclipseSummary& add (var_t var) {
vars_.push_back (std::move (var));
return *this;
}
// make sure the summary section is flushed before it goes away
// (this will happen before all the timesteps are individually
// destroyed, so their memory is still valid at this point)
~EclipseSummary () {
ecl_sum_fwrite (*this);
}
// no inline implementation of this since it depends on the
// EclipseWellReport type being completed first
void writeTimeStep (const SimulatorTimer& timer,
const WellState& wellState);
private:
vars_t vars_;
// don't define a new type for timesteps (since they should all
// be created with makeTimeStep anyway), just use the basic handle
// type and a typedef.
typedef EclipseHandle <ecl_sum_tstep_type> EclipseTimeStep;
// hold memory for each timestep alive until we can flush it;
// each time step is temporarily referenced in writeTimeStep,
// but this list keeps the reference alive until the entire
// summary goes out of scope.
std::forward_list <std::shared_ptr <EclipseTimeStep> > steps_;
/// Create a new time step and add it to this summary. Use this
/// method instead of creating your own timestep objects, as it
/// will make sure that the
std::shared_ptr <EclipseTimeStep> makeTimeStep (const SimulatorTimer& timer) {
auto tstep = std::make_shared <EclipseTimeStep> (
ecl_sum_add_tstep (*this,
stepNum (timer),
// currentTime is always relative to start
Opm::unit::convert::to (timer.currentTime (),
Opm::unit::day)),
ecl_sum_tstep_free);
steps_.push_front (tstep);
return tstep;
}
/// Helper routine that lets us use local variables to hold
/// intermediate results while filling out the allocations function's
/// argument list.
static ecl_sum_type* alloc_writer (const std::string& outputDir,
const std::string& baseName,
const SimulatorTimer& timer,
const EclipseGridParser& parser) {
boost::filesystem::path casePath (outputDir);
casePath /= boost::to_upper_copy (baseName);
std::vector<int> dim(/*n=*/3);
if (parser.hasField("SPECGRID"))
dim = parser.getSPECGRID ().dimensions;
else if (parser.hasField("DXV")) {
assert(parser.hasField("DYV"));
assert(parser.hasField("DZV"));
dim[0] = parser.getFloatingPointValue("DXV").size();
dim[1] = parser.getFloatingPointValue("DYV").size();
dim[2] = parser.getFloatingPointValue("DZV").size();
}
else
OPM_THROW(std::runtime_error,
"Only decks featureing either the SPECGRID or the D[XYZ]V keywords "
"are currently supported");
return ecl_sum_alloc_writer (casePath.string ().c_str (),
false, /* formatted */
true, /* unified */
":", /* join string */
current (timer),
dim[0],
dim[1],
dim[2]);
}
};
// in order to get RTTI for this "class" (which is just a typedef), we must
// ask the compiler to explicitly instantiate it.
template struct EclipseHandle<ecl_sum_tstep_struct>;
/**
* Summary variable that reports a characteristics of a well.
*/
struct EclipseWellReport : public EclipseHandle <smspec_node_type> {
protected:
EclipseWellReport (const EclipseSummary& summary, /* section to add to */
const EclipseGridParser& parser, /* well names */
int whichWell, /* index of well line */
PhaseUsage uses, /* phases present */
BlackoilPhases::PhaseIndex phase, /* oil, water or gas */
WellType type, /* prod. or inj. */
char aggregation, /* rate or total */
std::string unit)
: EclipseHandle <smspec_node_type> (
ecl_sum_add_var (summary,
varName (phase,
type,
aggregation).c_str (),
wellName (parser, whichWell).c_str (),
/* num = */ 0,
unit.c_str(),
/* defaultValue = */ 0.),
smspec_node_free)
// save these for when we update the value in a timestep
, index_ (whichWell * uses.num_phases + uses.phase_pos [phase])
// producers can be seen as negative injectors
, sign_ (type == INJECTOR ? +1. : -1.) { }
public:
/// Allows us to pass this type to ecl_sum_tstep_iset
operator int () {
return smspec_node_get_params_index (*this);
}
/// Update the monitor according to the new state of the well, and
/// get the reported value. Note: Only call this once for each timestep.
virtual double update (const SimulatorTimer& timer,
const WellState& wellState) = 0;
private:
/// index into a (flattened) wells*phases matrix
const int index_;
/// natural sign of the rate
const double sign_;
/// Get the name associated with this well
std::string wellName (const EclipseGridParser& parser,
int whichWell) {
return parser.getWELSPECS().welspecs[whichWell].name_;
}
/// Compose the name of the summary variable, e.g. "WOPR" for
/// well oil production rate.
std::string varName (BlackoilPhases::PhaseIndex phase,
WellType type,
char aggregation) {
std::string name;
name += 'W'; // well
switch (phase) {
case BlackoilPhases::Aqua: name += 'W'; break; /* water */
case BlackoilPhases::Vapour: name += 'G'; break; /* gas */
case BlackoilPhases::Liquid: name += 'O'; break; /* oil */
default:
OPM_THROW(std::runtime_error,
"Unknown phase used in blackoil reporting");
}
switch (type) {
case WellType::INJECTOR: name += 'I'; break;
case WellType::PRODUCER: name += 'P'; break;
default:
OPM_THROW(std::runtime_error,
"Unknown well type used in blackoil reporting");
}
name += aggregation; /* rate ('R') or total ('T') */
return name;
}
protected:
double rate (const WellState& wellState) {
// convert m^3/s of injected fluid to m^3/d of produced fluid
const double convFactor = Opm::unit::convert::to (1., Opm::unit::day);
const double value = sign_ * wellState.wellRates () [index_] * convFactor;
return value;
}
};
/// Monitors the rate given by a well.
struct EclipseWellRate : public EclipseWellReport {
EclipseWellRate (const EclipseSummary& summary,
const EclipseGridParser& parser,
int whichWell,
PhaseUsage uses,
BlackoilPhases::PhaseIndex phase,
WellType type)
: EclipseWellReport (summary,
parser,
whichWell,
uses,
phase,
type,
'R',
"SM3/DAY" /* surf. cub. m. per day */ ) { }
virtual double update (const SimulatorTimer& timer,
const WellState& wellState) {
// TODO: Why only positive rates?
return std::max (0., rate (wellState));
}
};
/// Monitors the total production in a well.
struct EclipseWellTotal : public EclipseWellReport {
EclipseWellTotal (const EclipseSummary& summary,
const EclipseGridParser& parser,
int whichWell,
PhaseUsage uses,
BlackoilPhases::PhaseIndex phase,
WellType type)
: EclipseWellReport (summary,
parser,
whichWell,
uses,
phase,
type,
'T',
"SM3" /* surface cubic meter */ )
// nothing produced when the reporting starts
, total_ (0.) { }
virtual double update (const SimulatorTimer& timer,
const WellState& wellState) {
// TODO: Is the rate average for the timestep, or is in
// instantaneous (in which case trapezoidal or Simpson integration
// would probably be better)
const double intg = timer.currentStepLength () * rate (wellState);
// add this timesteps production to the total
total_ += intg;
// report the new production total
return total_;
}
private:
/// Aggregated value of the course of the simulation
double total_;
};
inline void
EclipseSummary::writeTimeStep (const SimulatorTimer& timer,
const WellState& wellState) {
std::shared_ptr <EclipseTimeStep> tstep = makeTimeStep (timer);
// write all the variables
for (vars_t::iterator v = vars_.begin(); v != vars_.end(); ++v) {
const double value = (*v)->update (timer, wellState);
ecl_sum_tstep_iset(*tstep, *(*v).get (), value);
}
}
/// Supported well types. Enumeration doesn't let us get all the members,
/// so we must have an explicit array.
static WellType WELL_TYPES[] = { INJECTOR, PRODUCER };
/// Helper method that can be used in std::transform (must curry the barsa
/// argument)
static double pasToBar (double pressureInPascal) {
return Opm::unit::convert::to (pressureInPascal, Opm::unit::barsa);
}
/// Names of the saturation property for each phase. The order of these
/// names are critical; they must be the same as the BlackoilPhases enum
static const char* SAT_NAMES[] = { "SWAT", "SOIL", "SGAS" };
} // namespace Opm::internal
using namespace Opm::internal;
void EclipseWriter::writeInit(const SimulatorTimer &timer) {
/* Grid files */
EclipseGrid ecl_grid = EclipseGrid::make (*parser_, *grid_);
ecl_grid.write (outputDir_, baseName_, timer);
EclipseInit fortio = EclipseInit::make (outputDir_, baseName_, timer);
fortio.writeHeader (ecl_grid,
timer,
*parser_,
uses_);
fortio.writeKeyword<float> ("PERMX", *parser_);
fortio.writeKeyword<float> ("PERMY", *parser_);
fortio.writeKeyword<float> ("PERMZ", *parser_);
/* Summary files */
sum_ = std::move (std::unique_ptr <EclipseSummary> (
new EclipseSummary (outputDir_,
baseName_,
timer,
*parser_)));
// TODO: Only create report variables that are requested with keywords
// (e.g. "WOPR") in the input files, and only for those wells that are
// mentioned in those keywords
const int numWells = parser_->getWELSPECS().welspecs.size();
for (int phaseCounter = 0;
phaseCounter != BlackoilPhases::MaxNumPhases;
++phaseCounter) {
const BlackoilPhases::PhaseIndex phase =
static_cast <BlackoilPhases::PhaseIndex> (phaseCounter);
// don't bother with reporting for phases that aren't there
if (!uses_.phase_used [phaseCounter]) {
continue;
}
for (size_t typeIndex = 0;
typeIndex < sizeof (WELL_TYPES) / sizeof (WELL_TYPES[0]);
++typeIndex) {
const WellType type = WELL_TYPES[typeIndex];
for (int whichWell = 0; whichWell != numWells; ++whichWell) {
// W{O,G,W}{I,P}R
sum_->add (std::unique_ptr <EclipseWellReport> (
new EclipseWellRate (*sum_,
*parser_,
whichWell,
uses_,
phase,
type)));
// W{O,G,W}{I,P}T
sum_->add (std::unique_ptr <EclipseWellReport> (
new EclipseWellTotal (*sum_,
*parser_,
whichWell,
uses_,
phase,
type)));
}
}
}
// flush after all variables are allocated
ecl_sum_fwrite(*sum_);
}
void EclipseWriter::writeTimeStep(
const SimulatorTimer& timer,
const BlackoilState& reservoirState,
const WellState& wellState) {
// convert the pressures from Pascals to bar because eclipse
// seems to write bars
const std::vector<double>& pas = reservoirState.pressure ();
std::vector<double> bar (pas.size (), 0.);
std::transform (pas.begin(), pas.end(), bar.begin(), pasToBar);
// start writing to files
EclipseRestart rst (outputDir_,
baseName_,
timer);
rst.writeHeader (timer,
uses_,
*parser_,
pas.size ());
EclipseSolution sol (rst);
// write pressure and saturation fields (same as DataMap holds)
sol.add (EclipseKeyword<float> (bar, "PRESSURE"));
for (int phase = 0; phase != BlackoilPhases::MaxNumPhases; ++phase) {
// Eclipse never writes the oil saturation, so all post-processors
// must calculate this from the other saturations anyway
if (phase == BlackoilPhases::PhaseIndex::Liquid) {
continue;
}
if (uses_.phase_used [phase]) {
sol.add (EclipseKeyword<float> (reservoirState.saturation(),
SAT_NAMES [phase],
uses_.phase_pos [phase],
uses_.num_phases));
}
}
/* Summary variables (well reporting) */
sum_->writeTimeStep (timer, wellState);
}
#else
namespace Opm {
void EclipseWriter::writeInit(const SimulatorTimer &timer) {
OPM_THROW(std::runtime_error,
"The ERT libraries are required to write ECLIPSE output files.");
}
void EclipseWriter::writeTimeStep(
const SimulatorTimer& timer,
const BlackoilState& reservoirState,
const WellState& wellState) {
OPM_THROW(std::runtime_error,
"The ERT libraries are required to write ECLIPSE output files.");
}
#endif // HAVE_ERT
EclipseWriter::EclipseWriter (
const ParameterGroup& params,
std::shared_ptr <const EclipseGridParser> parser,
std::shared_ptr <const UnstructuredGrid> grid)
: parser_ (parser)
, grid_ (grid)
, uses_ (phaseUsageFromDeck (*parser)) {
// get the base name from the name of the deck
using boost::filesystem::path;
path deck (params.get <std::string> ("deck_filename"));
if (boost::to_upper_copy (path (deck.extension ()).string ()) == ".DATA") {
baseName_ = path (deck.stem ()).string ();
}
else {
baseName_ = path (deck.filename ()).string ();
}
// make uppercase of everything (or otherwise we'll get uppercase
// of some of the files (.SMSPEC, .UNSMRY) and not others
baseName_ = boost::to_upper_copy (baseName_);
// store in current directory if not explicitly set
if (params.has ("output_dir")) {
outputDir_ = params.get <std::string> ("output_dir");
}
else {
// this is needed to prevent file names like "/FOO.INIT" which
// lead to segfaults
outputDir_ = ".";
}
}
// default destructor is OK, just need to be defined
EclipseWriter::~EclipseWriter() { }
} // namespace Opm