opm-core/opm/core/props/BlackoilPropertiesFromDeck.cpp

344 lines
14 KiB
C++
Raw Normal View History

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/core/fluid/BlackoilPropertiesFromDeck.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
namespace Opm
{
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
const UnstructuredGrid& grid)
{
rock_.init(deck, grid);
pvt_.init(deck, 200);
SaturationPropsFromDeck<SatFuncSimpleUniform>* ptr
= new SaturationPropsFromDeck<SatFuncSimpleUniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, 200);
if (pvt_.numPhases() != satprops_->numPhases()) {
THROW("BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_->numPhases() << ").");
}
}
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
const UnstructuredGrid& grid,
const parameter::ParameterGroup& param)
{
rock_.init(deck, grid);
const int pvt_samples = param.getDefault("pvt_tab_size", 200);
pvt_.init(deck, pvt_samples);
// Unfortunate lack of pointer smartness here...
const int sat_samples = param.getDefault("sat_tab_size", 200);
std::string threephase_model = param.getDefault<std::string>("threephase_model", "simple");
if (deck.hasField("ENDSCALE") && threephase_model != "simple") {
THROW("Sorry, end point scaling currently available for the 'simple' model only.");
}
if (sat_samples > 1) {
if (threephase_model == "stone2") {
SaturationPropsFromDeck<SatFuncStone2Uniform>* ptr
= new SaturationPropsFromDeck<SatFuncStone2Uniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, sat_samples);
} else if (threephase_model == "simple") {
SaturationPropsFromDeck<SatFuncSimpleUniform>* ptr
= new SaturationPropsFromDeck<SatFuncSimpleUniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, sat_samples);
} else if (threephase_model == "gwseg") {
SaturationPropsFromDeck<SatFuncGwsegUniform>* ptr
= new SaturationPropsFromDeck<SatFuncGwsegUniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, sat_samples);
} else {
THROW("Unknown threephase_model: " << threephase_model);
}
} else {
if (threephase_model == "stone2") {
SaturationPropsFromDeck<SatFuncStone2Nonuniform>* ptr
= new SaturationPropsFromDeck<SatFuncStone2Nonuniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, sat_samples);
} else if (threephase_model == "simple") {
SaturationPropsFromDeck<SatFuncSimpleNonuniform>* ptr
= new SaturationPropsFromDeck<SatFuncSimpleNonuniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, sat_samples);
} else if (threephase_model == "gwseg") {
SaturationPropsFromDeck<SatFuncGwsegNonuniform>* ptr
= new SaturationPropsFromDeck<SatFuncGwsegNonuniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, sat_samples);
} else {
THROW("Unknown threephase_model: " << threephase_model);
}
}
if (pvt_.numPhases() != satprops_->numPhases()) {
THROW("BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_->numPhases() << ").");
}
}
BlackoilPropertiesFromDeck::~BlackoilPropertiesFromDeck()
{
}
/// \return D, the number of spatial dimensions.
int BlackoilPropertiesFromDeck::numDimensions() const
{
return rock_.numDimensions();
}
/// \return N, the number of cells.
int BlackoilPropertiesFromDeck::numCells() const
{
return rock_.numCells();
}
/// \return Array of N porosity values.
const double* BlackoilPropertiesFromDeck::porosity() const
{
return rock_.porosity();
}
/// \return Array of ND^2 permeability values.
/// The D^2 permeability values for a cell are organized as a matrix,
/// which is symmetric (so ordering does not matter).
const double* BlackoilPropertiesFromDeck::permeability() const
{
return rock_.permeability();
}
// ---- Fluid interface ----
/// \return P, the number of phases (also the number of components).
int BlackoilPropertiesFromDeck::numPhases() const
{
return pvt_.numPhases();
}
/// \param[in] n Number of data points.
/// \param[in] p Array of n pressure values.
/// \param[in] z Array of nP surface volume values.
/// \param[in] cells Array of n cell indices to be associated with the p and z values.
/// \param[out] mu Array of nP viscosity values, array must be valid before calling.
/// \param[out] dmudp If non-null: array of nP viscosity derivative values,
/// array must be valid before calling.
void BlackoilPropertiesFromDeck::viscosity(const int n,
const double* p,
const double* z,
const int* /*cells*/,
double* mu,
double* dmudp) const
{
if (dmudp) {
THROW("BlackoilPropertiesFromDeck::viscosity() -- derivatives of viscosity not yet implemented.");
} else {
pvt_.mu(n, p, z, mu);
}
}
/// \param[in] n Number of data points.
/// \param[in] p Array of n pressure values.
/// \param[in] z Array of nP surface volume values.
/// \param[in] cells Array of n cell indices to be associated with the p and z values.
/// \param[out] A Array of nP^2 values, array must be valid before calling.
/// The P^2 values for a cell give the matrix A = RB^{-1} which
/// relates z to u by z = Au. The matrices are output in Fortran order.
/// \param[out] dAdp If non-null: array of nP^2 matrix derivative values,
/// array must be valid before calling. The matrices are output
/// in Fortran order.
void BlackoilPropertiesFromDeck::matrix(const int n,
const double* p,
const double* z,
2012-01-05 14:39:33 -06:00
const int* /*cells*/,
double* A,
double* dAdp) const
{
2012-01-05 14:39:33 -06:00
const int np = numPhases();
B_.resize(n*np);
R_.resize(n*np);
if (dAdp) {
dB_.resize(n*np);
dR_.resize(n*np);
pvt_.dBdp(n, p, z, &B_[0], &dB_[0]);
pvt_.dRdp(n, p, z, &R_[0], &dR_[0]);
} else {
pvt_.B(n, p, z, &B_[0]);
pvt_.R(n, p, z, &R_[0]);
}
const int* phase_pos = pvt_.phasePosition();
bool oil_and_gas = pvt_.phaseUsed()[BlackoilPhases::Liquid] &&
pvt_.phaseUsed()[BlackoilPhases::Vapour];
const int o = phase_pos[BlackoilPhases::Liquid];
const int g = phase_pos[BlackoilPhases::Vapour];
// Compute A matrix
// #pragma omp parallel for
2012-01-05 14:39:33 -06:00
for (int i = 0; i < n; ++i) {
double* m = A + i*np*np;
std::fill(m, m + np*np, 0.0);
// Diagonal entries.
for (int phase = 0; phase < np; ++phase) {
m[phase + phase*np] = 1.0/B_[i*np + phase];
}
// Off-diagonal entries.
if (oil_and_gas) {
m[o + g*np] = R_[i*np + g]/B_[i*np + g];
m[g + o*np] = R_[i*np + o]/B_[i*np + o];
}
}
2012-01-05 14:39:33 -06:00
// Derivative of A matrix.
// A = R*inv(B) whence
//
// dA/dp = (dR/dp*inv(B) + R*d(inv(B))/dp)
// = (dR/dp*inv(B) - R*inv(B)*(dB/dp)*inv(B))
// = (dR/dp - A*(dB/dp)) * inv(B)
//
// The B matrix is diagonal and that fact is exploited in the
// following implementation.
2012-01-05 14:39:33 -06:00
if (dAdp) {
// #pragma omp parallel for
// (1): dA/dp <- A
std::copy(A, A + n*np*np, dAdp);
2012-01-05 14:39:33 -06:00
for (int i = 0; i < n; ++i) {
double* m = dAdp + i*np*np;
// (2): dA/dp <- -dA/dp*(dB/dp) == -A*(dB/dp)
const double* dB = & dB_[i * np];
for (int col = 0; col < np; ++col) {
for (int row = 0; row < np; ++row) {
m[col*np + row] *= - dB[ col ]; // Note sign.
}
2012-01-05 14:39:33 -06:00
}
2012-01-05 14:39:33 -06:00
if (oil_and_gas) {
// (2b): dA/dp += dR/dp (== dR/dp - A*(dB/dp))
const double* dR = & dR_[i * np];
m[o*np + g] += dR[ o ];
m[g*np + o] += dR[ g ];
}
// (3): dA/dp *= inv(B) (== final result)
const double* B = & B_[i * np];
for (int col = 0; col < np; ++col) {
for (int row = 0; row < np; ++row) {
m[col*np + row] /= B[ col ];
}
2012-01-05 14:39:33 -06:00
}
}
}
}
/// \param[in] n Number of data points.
/// \param[in] A Array of nP^2 values, where the P^2 values for a cell give the
/// matrix A = RB^{-1} which relates z to u by z = Au. The matrices
/// are assumed to be in Fortran order, and are typically the result
/// of a call to the method matrix().
/// \param[out] rho Array of nP density values, array must be valid before calling.
void BlackoilPropertiesFromDeck::density(const int n,
const double* A,
double* rho) const
{
2012-01-05 14:39:33 -06:00
const int np = numPhases();
const double* sdens = pvt_.surfaceDensities();
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
for (int phase = 0; phase < np; ++phase) {
rho[np*i + phase] = 0.0;
for (int comp = 0; comp < np; ++comp) {
rho[np*i + phase] += A[i*np*np + np*phase + comp]*sdens[comp];
}
}
}
}
/// Densities of stock components at surface conditions.
/// \return Array of P density values.
const double* BlackoilPropertiesFromDeck::surfaceDensity() const
{
return pvt_.surfaceDensities();
}
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[in] cells Array of n cell indices to be associated with the s values.
/// \param[out] kr Array of nP relperm values, array must be valid before calling.
/// \param[out] dkrds If non-null: array of nP^2 relperm derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
void BlackoilPropertiesFromDeck::relperm(const int n,
const double* s,
const int* cells,
double* kr,
double* dkrds) const
{
satprops_->relperm(n, s, cells, kr, dkrds);
}
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[in] cells Array of n cell indices to be associated with the s values.
/// \param[out] pc Array of nP capillary pressure values, array must be valid before calling.
/// \param[out] dpcds If non-null: array of nP^2 derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dpc_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
void BlackoilPropertiesFromDeck::capPress(const int n,
const double* s,
const int* cells,
double* pc,
double* dpcds) const
{
satprops_->capPress(n, s, cells, pc, dpcds);
}
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// \param[in] n Number of data points.
/// \param[in] cells Array of n cell indices.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
void BlackoilPropertiesFromDeck::satRange(const int n,
const int* cells,
double* smin,
double* smax) const
{
satprops_->satRange(n, cells, smin, smax);
}
} // namespace Opm