Add tracer computations (method solveTofTracer()).

Same interface as in class TofReorder.
This commit is contained in:
Atgeirr Flø Rasmussen
2013-04-24 10:39:50 +02:00
parent 3086d5d815
commit 1a84b4fe7d
2 changed files with 170 additions and 10 deletions

View File

@@ -24,6 +24,7 @@
#include <opm/core/tof/DGBasis.hpp>
#include <opm/core/grid.h>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/SparseTable.hpp>
#include <opm/core/utility/VelocityInterpolation.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/linalg/blas_lapack.h>
@@ -98,9 +99,9 @@ namespace Opm
/// Solve for time-of-flight.
void TofDiscGalReorder::solveTof(const double* darcyflux,
const double* porevolume,
const double* source,
std::vector<double>& tof_coeff)
const double* porevolume,
const double* source,
std::vector<double>& tof_coeff)
{
darcyflux_ = darcyflux;
porevolume_ = porevolume;
@@ -124,6 +125,103 @@ namespace Opm
basis_nb_.resize(num_basis);
grad_basis_.resize(num_basis*grid_.dimensions);
velocity_interpolation_->setupFluxes(darcyflux);
num_tracers_ = 0;
num_multicell_ = 0;
max_size_multicell_ = 0;
max_iter_multicell_ = 0;
num_singlesolves_ = 0;
reorderAndTransport(grid_, darcyflux);
switch (limiter_usage_) {
case AsPostProcess:
applyLimiterAsPostProcess();
break;
case AsSimultaneousPostProcess:
applyLimiterAsSimultaneousPostProcess();
break;
case DuringComputations:
// Do nothing.
break;
default:
THROW("Unknown limiter usage choice: " << limiter_usage_);
}
if (num_multicell_ > 0) {
std::cout << num_multicell_ << " multicell blocks with max size "
<< max_size_multicell_ << " cells in upto "
<< max_iter_multicell_ << " iterations." << std::endl;
std::cout << "Average solves per cell (for all cells) was "
<< double(num_singlesolves_)/double(grid_.number_of_cells) << std::endl;
}
}
/// Solve for time-of-flight and a number of tracers.
/// \param[in] darcyflux Array of signed face fluxes.
/// \param[in] porevolume Array of pore volumes.
/// \param[in] source Source term. Sign convention is:
/// (+) inflow flux,
/// (-) outflow flux.
/// \param[in] tracerheads Table containing one row per tracer, and each
/// row contains the source cells for that tracer.
/// \param[out] tof_coeff Array of time-of-flight solution coefficients.
/// The values are ordered by cell, meaning that
/// the K coefficients corresponding to the first
/// cell comes before the K coefficients corresponding
/// to the second cell etc.
/// K depends on degree and grid dimension.
/// \param[out] tracer_coeff Array of tracer solution coefficients. N*K per cell,
/// where N is equal to tracerheads.size(). All K coefs
/// for a tracer are consecutive, and all tracers' coefs
/// for a cell come before those for the next cell.
void TofDiscGalReorder::solveTofTracer(const double* darcyflux,
const double* porevolume,
const double* source,
const SparseTable<int>& tracerheads,
std::vector<double>& tof_coeff,
std::vector<double>& tracer_coeff)
{
darcyflux_ = darcyflux;
porevolume_ = porevolume;
source_ = source;
#ifndef NDEBUG
// Sanity check for sources.
const double cum_src = std::accumulate(source, source + grid_.number_of_cells, 0.0);
if (std::fabs(cum_src) > *std::max_element(source, source + grid_.number_of_cells)*1e-2) {
// THROW("Sources do not sum to zero: " << cum_src);
MESSAGE("Warning: sources do not sum to zero: " << cum_src);
}
#endif
const int num_basis = basis_func_->numBasisFunc();
num_tracers_ = tracerheads.size();
tof_coeff.resize(num_basis*grid_.number_of_cells);
std::fill(tof_coeff.begin(), tof_coeff.end(), 0.0);
tof_coeff_ = &tof_coeff[0];
rhs_.resize(num_basis*(num_tracers_ + 1));
jac_.resize(num_basis*num_basis);
orig_jac_.resize(num_basis*num_basis);
basis_.resize(num_basis);
basis_nb_.resize(num_basis);
grad_basis_.resize(num_basis*grid_.dimensions);
velocity_interpolation_->setupFluxes(darcyflux);
// Set up tracer
tracer_coeff.resize(grid_.number_of_cells*num_tracers_*num_basis);
std::fill(tracer_coeff.begin(), tracer_coeff.end(), 0.0);
if (num_tracers_ > 0) {
tracerhead_by_cell_.clear();
tracerhead_by_cell_.resize(grid_.number_of_cells, NoTracerHead);
}
for (int tr = 0; tr < num_tracers_; ++tr) {
for (int i = 0; i < tracerheads[tr].size(); ++i) {
const int cell = tracerheads[tr][i];
basis_func_->addConstant(1.0, &tracer_coeff[cell*num_tracers_*num_basis + tr*num_basis]);
tracer_coeff[cell*num_tracers_ + tr] = 1.0;
tracerhead_by_cell_[cell] = tr;
}
}
tracer_coeff_ = &tracer_coeff[0];
num_multicell_ = 0;
max_size_multicell_ = 0;
max_iter_multicell_ = 0;
@@ -165,6 +263,13 @@ namespace Opm
// This is linear in c_i, so we do not need any nonlinear iterations.
// We assemble the jacobian and the right-hand side. The residual is
// equal to Res = Jac*c - rhs, and we compute rhs directly.
//
// For tracers, the equation is the same, except for the last
// term being zero (the one with \phi).
//
// The rhs_ vector contains a (Fortran ordering) matrix of all
// right-hand-sides, first for tof and then (optionally) for
// all tracers.
const int dim = grid_.dimensions;
const int num_basis = basis_func_->numBasisFunc();
@@ -183,6 +288,7 @@ namespace Opm
basis_func_->eval(cell, &coord_[0], &basis_[0]);
const double w = quad.quadPtWeight(quad_pt);
for (int j = 0; j < num_basis; ++j) {
// Only adding to the tof rhs.
rhs_[j] += w * basis_[j] * porevolume_[cell] / grid_.cell_volumes[cell];
}
}
@@ -206,6 +312,8 @@ namespace Opm
}
if (upstream_cell < 0) {
// This is an outer boundary. Assumed tof = 0 on inflow, so no contribution.
// For tracers, a cell with inflow should be marked as a tracer head cell,
// and not be modified.
continue;
}
// Do quadrature over the face to compute
@@ -222,12 +330,23 @@ namespace Opm
quad.quadPtCoord(quad_pt, &coord_[0]);
basis_func_->eval(cell, &coord_[0], &basis_[0]);
basis_func_->eval(upstream_cell, &coord_[0], &basis_nb_[0]);
const double w = quad.quadPtWeight(quad_pt);
// Modify tof rhs
const double tof_upstream = std::inner_product(basis_nb_.begin(), basis_nb_.end(),
tof_coeff_ + num_basis*upstream_cell, 0.0);
const double w = quad.quadPtWeight(quad_pt);
for (int j = 0; j < num_basis; ++j) {
rhs_[j] -= w * tof_upstream * normal_velocity * basis_[j];
}
// Modify tracer rhs
if (num_tracers_ && tracerhead_by_cell_[cell] == NoTracerHead) {
for (int tr = 0; tr < num_tracers_; ++tr) {
const double* up_tr_co = tracer_coeff_ + num_tracers_*num_basis*upstream_cell + num_basis*tr;
const double tracer_up = std::inner_product(basis_nb_.begin(), basis_nb_.end(), up_tr_co, 0.0);
for (int j = 0; j < num_basis; ++j) {
rhs_[num_basis*(tr + 1) + j] -= w * tracer_up * normal_velocity * basis_[j];
}
}
}
}
}
@@ -318,7 +437,13 @@ namespace Opm
// Solve linear equation.
MAT_SIZE_T n = num_basis;
MAT_SIZE_T nrhs = 1;
int num_tracer_to_compute = num_tracers_;
if (num_tracers_) {
if (tracerhead_by_cell_[cell] != NoTracerHead) {
num_tracer_to_compute = 0;
}
}
MAT_SIZE_T nrhs = 1 + num_tracer_to_compute;
MAT_SIZE_T lda = num_basis;
std::vector<MAT_SIZE_T> piv(num_basis);
MAT_SIZE_T ldb = num_basis;
@@ -344,7 +469,10 @@ namespace Opm
}
// The solution ends up in rhs_, so we must copy it.
std::copy(rhs_.begin(), rhs_.end(), tof_coeff_ + num_basis*cell);
std::copy(rhs_.begin(), rhs_.begin() + num_basis, tof_coeff_ + num_basis*cell);
if (num_tracers_ && tracerhead_by_cell_[cell] == NoTracerHead) {
std::copy(rhs_.begin() + num_basis, rhs_.end(), tracer_coeff_ + num_tracers_*num_basis*cell);
}
// Apply limiter.
if (basis_func_->degree() > 0 && use_limiter_ && limiter_usage_ == DuringComputations) {
@@ -372,6 +500,7 @@ namespace Opm
std::cout << std::endl;
#endif
applyLimiter(cell, tof_coeff_);
// We do not (yet) apply a limiter to the tracer solution.
}
}

View File

@@ -35,6 +35,7 @@ namespace Opm
class VelocityInterpolationInterface;
class DGBasisInterface;
namespace parameter { class ParameterGroup; }
template <typename T> class SparseTable;
/// Implements a discontinuous Galerkin solver for
/// (single-phase) time-of-flight using reordering.
@@ -83,7 +84,7 @@ namespace Opm
/// \param[out] tof_coeff Array of time-of-flight solution coefficients.
/// The values are ordered by cell, meaning that
/// the K coefficients corresponding to the first
/// cell comes before the K coefficients corresponding
/// cell come before the K coefficients corresponding
/// to the second cell etc.
/// K depends on degree and grid dimension.
void solveTof(const double* darcyflux,
@@ -91,6 +92,31 @@ namespace Opm
const double* source,
std::vector<double>& tof_coeff);
/// Solve for time-of-flight and a number of tracers.
/// \param[in] darcyflux Array of signed face fluxes.
/// \param[in] porevolume Array of pore volumes.
/// \param[in] source Source term. Sign convention is:
/// (+) inflow flux,
/// (-) outflow flux.
/// \param[in] tracerheads Table containing one row per tracer, and each
/// row contains the source cells for that tracer.
/// \param[out] tof_coeff Array of time-of-flight solution coefficients.
/// The values are ordered by cell, meaning that
/// the K coefficients corresponding to the first
/// cell comes before the K coefficients corresponding
/// to the second cell etc.
/// K depends on degree and grid dimension.
/// \param[out] tracer_coeff Array of tracer solution coefficients. N*K per cell,
/// where N is equal to tracerheads.size(). All K coefs
/// for a tracer are consecutive, and all tracers' coefs
/// for a cell come before those for the next cell.
void solveTofTracer(const double* darcyflux,
const double* porevolume,
const double* source,
const SparseTable<int>& tracerheads,
std::vector<double>& tof_coeff,
std::vector<double>& tracer_coeff);
private:
virtual void solveSingleCell(const int cell);
virtual void solveMultiCell(const int num_cells, const int* cells);
@@ -115,11 +141,16 @@ namespace Opm
const double* source_; // one volumetric source term per cell
boost::shared_ptr<DGBasisInterface> basis_func_;
double* tof_coeff_;
std::vector<double> rhs_; // single-cell right-hand-side
// For tracers.
double* tracer_coeff_;
int num_tracers_;
enum { NoTracerHead = -1 };
std::vector<int> tracerhead_by_cell_;
// Used by solveSingleCell().
std::vector<double> rhs_; // single-cell right-hand-sides
std::vector<double> jac_; // single-cell jacobian
std::vector<double> orig_rhs_; // single-cell right-hand-side (copy)
std::vector<double> orig_rhs_; // single-cell right-hand-sides (copy)
std::vector<double> orig_jac_; // single-cell jacobian (copy)
// Below: storage for quantities needed by solveSingleCell().
std::vector<double> coord_;
mutable std::vector<double> basis_;
mutable std::vector<double> basis_nb_;