To bring behavior of processgrid closer to that of processGRDECL, add post-processing to split grid in connected pieces.

Signed-off-by: Bård Skaflestad <Bard.Skaflestad@sintef.no>
This commit is contained in:
Jostein R. Natvig
2012-01-27 10:03:23 +00:00
committed by Bård Skaflestad
parent ca0e2600db
commit d711a08b55

View File

@@ -1,4 +1,4 @@
function varargout = processgrid(varargin)
function G = processgrid(varargin)
%Compute grid topology and geometry from pillar grid description.
%
% SYNOPSIS:
@@ -34,5 +34,33 @@ function varargout = processgrid(varargin)
% $Date$
% $Revision$
[varargout{1:nargout}] = processgrid_mex(varargin{:});
varargout{1}.griddim = 3;
G = processgrid_mex(varargin{:});
G.griddim = 3;
G = splitDisconnectedGrid(G, false);
end
function G = splitDisconnectedGrid(G, verbose)
% Check if grid is connected
ix = all(G.faces.neighbors~=0, 2);
I = [G.faces.neighbors(ix,1);G.faces.neighbors(ix,2)];
J = [G.faces.neighbors(ix,2);G.faces.neighbors(ix,1)];
N = double(max(G.faces.neighbors(:)));
A = sparse(double(I),double(J),1,N,N)+speye(N);
clear ix I J
[a,b,c,d]=dmperm(A); %#ok
clear A b d
if numel(c) > 2,
dispif(verbose, '\nGrid has %d disconnected components\n', ...
numel(c)- 1);
% Partition grid into connected subgrids
for i = 1:numel(c) - 1,
g(i) = extractSubgrid(G, a(c(i):c(i+1)-1)); %#ok
sz(i) = g(i).cells.num; %#ok
g(i).cartDims = G.cartDims; %#ok
end
% Return largest (in number of cells) grid first
[i,i] = sort(-sz); %#ok
G = g(i);
end
end