Program compute_tof added.

This commit is contained in:
Atgeirr Flø Rasmussen 2012-08-27 09:34:03 +02:00
parent 6c34ddd59d
commit dfef531fc8
2 changed files with 243 additions and 0 deletions

View File

@ -15,6 +15,7 @@ $(BOOST_SYSTEM_LIB)
# Please keep the list sorted.
noinst_PROGRAMS = \
compute_tof \
refine_wells \
scaneclipsedeck \
sim_2p_comp_reorder \
@ -29,6 +30,7 @@ wells_example
#
# Please maintain sort order from "noinst_PROGRAMS".
compute_tof_SOURCES = compute_tof.cpp
refine_wells_SOURCES = refine_wells.cpp
sim_2p_comp_reorder_SOURCES = sim_2p_comp_reorder.cpp
sim_2p_incomp_reorder_SOURCES = sim_2p_incomp_reorder.cpp

241
examples/compute_tof.cpp Normal file
View File

@ -0,0 +1,241 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
#include <opm/core/pressure/FlowBCManager.hpp>
#include <opm/core/grid.h>
#include <opm/core/GridManager.hpp>
#include <opm/core/newwells.h>
#include <opm/core/wells/WellsManager.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/initState.hpp>
#include <opm/core/utility/StopWatch.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/fluid/IncompPropertiesBasic.hpp>
#include <opm/core/fluid/IncompPropertiesFromDeck.hpp>
#include <opm/core/linalg/LinearSolverFactory.hpp>
#include <opm/core/simulator/TwophaseState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/pressure/IncompTpfa.hpp>
#include <opm/core/transport/reorder/TransportModelTracerTof.hpp>
#include <boost/scoped_ptr.hpp>
#include <boost/filesystem.hpp>
#include <algorithm>
#include <iostream>
#include <vector>
#include <numeric>
namespace
{
void warnIfUnusedParams(const Opm::parameter::ParameterGroup& param)
{
if (param.anyUnused()) {
std::cout << "-------------------- Unused parameters: --------------------\n";
param.displayUsage();
std::cout << "----------------------------------------------------------------" << std::endl;
}
}
} // anon namespace
// ----------------- Main program -----------------
int
main(int argc, char** argv)
{
using namespace Opm;
std::cout << "\n================ Test program for incompressible two-phase flow ===============\n\n";
parameter::ParameterGroup param(argc, argv, false);
std::cout << "--------------- Reading parameters ---------------" << std::endl;
// If we have a "deck_filename", grid and props will be read from that.
bool use_deck = param.has("deck_filename");
boost::scoped_ptr<EclipseGridParser> deck;
boost::scoped_ptr<GridManager> grid;
boost::scoped_ptr<IncompPropertiesInterface> props;
boost::scoped_ptr<Opm::WellsManager> wells;
TwophaseState state;
// bool check_well_controls = false;
// int max_well_control_iterations = 0;
double gravity[3] = { 0.0 };
if (use_deck) {
std::string deck_filename = param.get<std::string>("deck_filename");
deck.reset(new EclipseGridParser(deck_filename));
// Grid init
grid.reset(new GridManager(*deck));
// Rock and fluid init
props.reset(new IncompPropertiesFromDeck(*deck, *grid->c_grid()));
// Wells init.
wells.reset(new Opm::WellsManager(*deck, *grid->c_grid(), props->permeability()));
// Gravity.
gravity[2] = deck->hasField("NOGRAV") ? 0.0 : unit::gravity;
// Init state variables (saturation and pressure).
if (param.has("init_saturation")) {
initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
} else {
initStateFromDeck(*grid->c_grid(), *props, *deck, gravity[2], state);
}
} else {
// Grid init.
const int nx = param.getDefault("nx", 100);
const int ny = param.getDefault("ny", 100);
const int nz = param.getDefault("nz", 1);
const double dx = param.getDefault("dx", 1.0);
const double dy = param.getDefault("dy", 1.0);
const double dz = param.getDefault("dz", 1.0);
grid.reset(new GridManager(nx, ny, nz, dx, dy, dz));
// Rock and fluid init.
props.reset(new IncompPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
// Wells init.
wells.reset(new Opm::WellsManager());
// Gravity.
gravity[2] = param.getDefault("gravity", 0.0);
// Init state variables (saturation and pressure).
initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
}
// Warn if gravity but no density difference.
bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
if (use_gravity) {
if (props->density()[0] == props->density()[1]) {
std::cout << "**** Warning: nonzero gravity, but zero density difference." << std::endl;
}
}
const double *grav = use_gravity ? &gravity[0] : 0;
// Initialising src
std::vector<double> porevol;
computePorevolume(*grid->c_grid(), props->porosity(), porevol);
int num_cells = grid->c_grid()->number_of_cells;
std::vector<double> src(num_cells, 0.0);
if (use_deck) {
// Do nothing, wells will be the driving force, not source terms.
} else {
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
const double default_injection = use_gravity ? 0.0 : 0.1;
const double flow_per_sec = param.getDefault<double>("injected_porevolumes_per_day", default_injection)
*tot_porevol_init/unit::day;
src[0] = flow_per_sec;
src[num_cells - 1] = -flow_per_sec;
}
// Boundary conditions.
FlowBCManager bcs;
if (param.getDefault("use_pside", false)) {
int pside = param.get<int>("pside");
double pside_pressure = param.get<double>("pside_pressure");
bcs.pressureSide(*grid->c_grid(), FlowBCManager::Side(pside), pside_pressure);
}
// Linear solver.
LinearSolverFactory linsolver(param);
// Pressure solver.
Opm::IncompTpfa psolver(*grid->c_grid(), *props, 0, linsolver,
0.0, 0.0, 0,
grav, wells->c_wells(), src, bcs.c_bcs());
// Tof solver.
Opm::TransportModelTracerTof tofsolver(*grid->c_grid());
// Write parameters used for later reference.
bool output = param.getDefault("output", true);
std::ofstream epoch_os;
std::string output_dir;
if (output) {
output_dir =
param.getDefault("output_dir", std::string("output"));
boost::filesystem::path fpath(output_dir);
try {
create_directories(fpath);
}
catch (...) {
THROW("Creating directories failed: " << fpath);
}
std::string filename = output_dir + "/epoch_timing.param";
epoch_os.open(filename.c_str(), std::fstream::trunc | std::fstream::out);
// open file to clean it. The file is appended to in SimulatorTwophase
filename = output_dir + "/step_timing.param";
std::fstream step_os(filename.c_str(), std::fstream::trunc | std::fstream::out);
step_os.close();
param.writeParam(output_dir + "/simulation.param");
}
// Init wells.
Opm::WellState well_state;
well_state.init(wells->c_wells(), state);
// Main solvers.
Opm::time::StopWatch pressure_timer;
double ptime = 0.0;
Opm::time::StopWatch transport_timer;
double ttime = 0.0;
Opm::time::StopWatch total_timer;
total_timer.start();
std::cout << "\n\n================ Starting main solvers ===============" << std::endl;
// Solve pressure.
pressure_timer.start();
psolver.solve(1.0, state, well_state);
pressure_timer.stop();
double pt = pressure_timer.secsSinceStart();
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
ptime += pt;
// Process transport sources (to include bdy terms and well flows).
std::vector<double> transport_src;
Opm::computeTransportSource(*grid->c_grid(), src, state.faceflux(), 1.0,
wells->c_wells(), well_state.perfRates(), transport_src);
// Solve time-of-flight.
std::vector<double> tof(num_cells, 0.0);
transport_timer.start();
tofsolver.solveTof(&state.faceflux()[0], &porevol[0], tof);
transport_timer.stop();
double tt = transport_timer.secsSinceStart();
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
ttime += tt;
total_timer.stop();
// Output.
if (output) {
std::string tof_filename = output_dir + "/tof.txt";
std::ofstream tof_stream(tof_filename.c_str());
std::copy(tof.begin(), tof.end(), std::ostream_iterator<double>(tof_stream, "\n"));
}
std::cout << "\n\n================ End of simulation ===============\n"
<< "Total time taken: " << total_timer.secsSinceStart()
<< "\n Pressure time: " << ptime
<< "\n Transport time: " << ttime << std::endl;
}