492 lines
21 KiB
C++
492 lines
21 KiB
C++
/*
|
|
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#if HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif // HAVE_CONFIG_H
|
|
|
|
#include <opm/core/pressure/CompressibleTpfa.hpp>
|
|
|
|
#include <opm/core/grid.h>
|
|
#include <opm/core/GridManager.hpp>
|
|
#include <opm/core/newwells.h>
|
|
#include <opm/core/wells/WellsManager.hpp>
|
|
#include <opm/core/utility/ErrorMacros.hpp>
|
|
#include <opm/core/utility/initState.hpp>
|
|
#include <opm/core/simulator/SimulatorTimer.hpp>
|
|
#include <opm/core/utility/StopWatch.hpp>
|
|
#include <opm/core/utility/Units.hpp>
|
|
#include <opm/core/utility/writeVtkData.hpp>
|
|
#include <opm/core/utility/miscUtilities.hpp>
|
|
#include <opm/core/utility/miscUtilitiesBlackoil.hpp>
|
|
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
|
|
|
#include <opm/core/fluid/BlackoilPropertiesBasic.hpp>
|
|
#include <opm/core/fluid/BlackoilPropertiesFromDeck.hpp>
|
|
#include <opm/core/fluid/RockCompressibility.hpp>
|
|
|
|
#include <opm/core/linalg/LinearSolverFactory.hpp>
|
|
|
|
#include <opm/core/utility/ColumnExtract.hpp>
|
|
#include <opm/core/simulator/BlackoilState.hpp>
|
|
#include <opm/core/simulator/WellState.hpp>
|
|
#include <opm/core/transport/GravityColumnSolver.hpp>
|
|
|
|
#include <opm/core/transport/reorder/TransportModelCompressibleTwophase.hpp>
|
|
|
|
#include <boost/filesystem/convenience.hpp>
|
|
#include <boost/scoped_ptr.hpp>
|
|
#include <boost/lexical_cast.hpp>
|
|
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
|
|
#include <algorithm>
|
|
#include <tr1/array>
|
|
#include <functional>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <fstream>
|
|
#include <iterator>
|
|
#include <vector>
|
|
#include <numeric>
|
|
|
|
|
|
template <class State>
|
|
static void outputState(const UnstructuredGrid& grid,
|
|
const State& state,
|
|
const int step,
|
|
const std::string& output_dir)
|
|
{
|
|
// Write data in VTK format.
|
|
std::ostringstream vtkfilename;
|
|
vtkfilename << output_dir << "/output-" << std::setw(3) << std::setfill('0') << step << ".vtu";
|
|
std::ofstream vtkfile(vtkfilename.str().c_str());
|
|
if (!vtkfile) {
|
|
THROW("Failed to open " << vtkfilename.str());
|
|
}
|
|
Opm::DataMap dm;
|
|
dm["saturation"] = &state.saturation();
|
|
dm["pressure"] = &state.pressure();
|
|
std::vector<double> cell_velocity;
|
|
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
|
|
dm["velocity"] = &cell_velocity;
|
|
Opm::writeVtkData(grid, dm, vtkfile);
|
|
|
|
// Write data (not grid) in Matlab format
|
|
for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
|
|
std::ostringstream fname;
|
|
fname << output_dir << "/" << it->first << "-" << std::setw(3) << std::setfill('0') << step << ".dat";
|
|
std::ofstream file(fname.str().c_str());
|
|
if (!file) {
|
|
THROW("Failed to open " << fname.str());
|
|
}
|
|
const std::vector<double>& d = *(it->second);
|
|
std::copy(d.begin(), d.end(), std::ostream_iterator<double>(file, "\n"));
|
|
}
|
|
}
|
|
|
|
|
|
static void outputWaterCut(const Opm::Watercut& watercut,
|
|
const std::string& output_dir)
|
|
{
|
|
// Write water cut curve.
|
|
std::string fname = output_dir + "/watercut.txt";
|
|
std::ofstream os(fname.c_str());
|
|
if (!os) {
|
|
THROW("Failed to open " << fname);
|
|
}
|
|
watercut.write(os);
|
|
}
|
|
|
|
|
|
static void outputWellReport(const Opm::WellReport& wellreport,
|
|
const std::string& output_dir)
|
|
{
|
|
// Write well report.
|
|
std::string fname = output_dir + "/wellreport.txt";
|
|
std::ofstream os(fname.c_str());
|
|
if (!os) {
|
|
THROW("Failed to open " << fname);
|
|
}
|
|
wellreport.write(os);
|
|
}
|
|
|
|
|
|
// ----------------- Main program -----------------
|
|
int
|
|
main(int argc, char** argv)
|
|
{
|
|
using namespace Opm;
|
|
|
|
std::cout << "\n================ Test program for weakly compressible two-phase flow ===============\n\n";
|
|
Opm::parameter::ParameterGroup param(argc, argv, false);
|
|
std::cout << "--------------- Reading parameters ---------------" << std::endl;
|
|
|
|
// Reading various control parameters.
|
|
const bool use_reorder = param.getDefault("use_reorder", true);
|
|
const bool output = param.getDefault("output", true);
|
|
std::string output_dir;
|
|
int output_interval = 1;
|
|
if (output) {
|
|
output_dir = param.getDefault("output_dir", std::string("output"));
|
|
// Ensure that output dir exists
|
|
boost::filesystem::path fpath(output_dir);
|
|
try {
|
|
create_directories(fpath);
|
|
}
|
|
catch (...) {
|
|
THROW("Creating directories failed: " << fpath);
|
|
}
|
|
output_interval = param.getDefault("output_interval", output_interval);
|
|
}
|
|
const int num_transport_substeps = param.getDefault("num_transport_substeps", 1);
|
|
|
|
// If we have a "deck_filename", grid and props will be read from that.
|
|
bool use_deck = param.has("deck_filename");
|
|
boost::scoped_ptr<Opm::GridManager> grid;
|
|
boost::scoped_ptr<Opm::BlackoilPropertiesInterface> props;
|
|
boost::scoped_ptr<Opm::WellsManager> wells;
|
|
boost::scoped_ptr<Opm::RockCompressibility> rock_comp;
|
|
Opm::SimulatorTimer simtimer;
|
|
Opm::BlackoilState state;
|
|
bool check_well_controls = false;
|
|
int max_well_control_iterations = 0;
|
|
double gravity[3] = { 0.0 };
|
|
if (use_deck) {
|
|
std::string deck_filename = param.get<std::string>("deck_filename");
|
|
Opm::EclipseGridParser deck(deck_filename);
|
|
// Grid init
|
|
grid.reset(new Opm::GridManager(deck));
|
|
// Rock and fluid init
|
|
props.reset(new Opm::BlackoilPropertiesFromDeck(deck, *grid->c_grid()));
|
|
// Wells init.
|
|
wells.reset(new Opm::WellsManager(deck, *grid->c_grid(), props->permeability()));
|
|
check_well_controls = param.getDefault("check_well_controls", false);
|
|
max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
|
|
// Timer init.
|
|
if (deck.hasField("TSTEP")) {
|
|
simtimer.init(deck);
|
|
} else {
|
|
simtimer.init(param);
|
|
}
|
|
// Rock compressibility.
|
|
rock_comp.reset(new Opm::RockCompressibility(deck));
|
|
// Gravity.
|
|
gravity[2] = deck.hasField("NOGRAV") ? 0.0 : Opm::unit::gravity;
|
|
// Init state variables (saturation and pressure).
|
|
if (param.has("init_saturation")) {
|
|
initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
|
|
} else {
|
|
initStateFromDeck(*grid->c_grid(), *props, deck, gravity[2], state);
|
|
}
|
|
initBlackoilSurfvol(*grid->c_grid(), *props, state);
|
|
} else {
|
|
// Grid init.
|
|
const int nx = param.getDefault("nx", 100);
|
|
const int ny = param.getDefault("ny", 100);
|
|
const int nz = param.getDefault("nz", 1);
|
|
const double dx = param.getDefault("dx", 1.0);
|
|
const double dy = param.getDefault("dy", 1.0);
|
|
const double dz = param.getDefault("dz", 1.0);
|
|
grid.reset(new Opm::GridManager(nx, ny, nz, dx, dy, dz));
|
|
// Rock and fluid init.
|
|
props.reset(new Opm::BlackoilPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
|
|
// Wells init.
|
|
wells.reset(new Opm::WellsManager());
|
|
// Timer init.
|
|
simtimer.init(param);
|
|
// Rock compressibility.
|
|
rock_comp.reset(new Opm::RockCompressibility(param));
|
|
// Gravity.
|
|
gravity[2] = param.getDefault("gravity", 0.0);
|
|
// Init state variables (saturation and pressure).
|
|
initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
|
|
}
|
|
|
|
// Warn if gravity but no density difference.
|
|
bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
|
|
if (use_gravity) {
|
|
if (props->surfaceDensity()[0] == props->surfaceDensity()[1]) {
|
|
std::cout << "**** Warning: nonzero gravity, but zero density difference." << std::endl;
|
|
}
|
|
}
|
|
bool use_segregation_split = false;
|
|
bool use_column_solver = false;
|
|
bool use_gauss_seidel_gravity = false;
|
|
if (use_gravity && use_reorder) {
|
|
use_segregation_split = param.getDefault("use_segregation_split", use_segregation_split);
|
|
if (use_segregation_split) {
|
|
use_column_solver = param.getDefault("use_column_solver", use_column_solver);
|
|
if (use_column_solver) {
|
|
use_gauss_seidel_gravity = param.getDefault("use_gauss_seidel_gravity", use_gauss_seidel_gravity);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check that rock compressibility is not used with solvers that do not handle it.
|
|
// int nl_pressure_maxiter = 0;
|
|
// double nl_pressure_tolerance = 0.0;
|
|
if (rock_comp->isActive()) {
|
|
THROW("No rock compressibility in comp. pressure solver yet.");
|
|
if (!use_reorder) {
|
|
THROW("Cannot run implicit (non-reordering) transport solver with rock compressibility yet.");
|
|
}
|
|
// nl_pressure_maxiter = param.getDefault("nl_pressure_maxiter", 10);
|
|
// nl_pressure_tolerance = param.getDefault("nl_pressure_tolerance", 1.0); // in Pascal
|
|
}
|
|
|
|
// Source-related variables init.
|
|
int num_cells = grid->c_grid()->number_of_cells;
|
|
std::vector<double> totmob;
|
|
std::vector<double> omega; // Will remain empty if no gravity.
|
|
std::vector<double> rc; // Will remain empty if no rock compressibility.
|
|
|
|
// Extra rock init.
|
|
std::vector<double> porevol;
|
|
if (rock_comp->isActive()) {
|
|
THROW("CompressibleTpfa solver does not handle this.");
|
|
computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state.pressure(), porevol);
|
|
} else {
|
|
computePorevolume(*grid->c_grid(), props->porosity(), porevol);
|
|
}
|
|
double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
|
|
|
|
|
|
// Initialising src
|
|
std::vector<double> src(num_cells, 0.0);
|
|
if (wells->c_wells()) {
|
|
// Do nothing, wells will be the driving force, not source terms.
|
|
// Opm::wellsToSrc(*wells->c_wells(), num_cells, src);
|
|
} else {
|
|
const double default_injection = use_gravity ? 0.0 : 0.1;
|
|
const double flow_per_sec = param.getDefault<double>("injected_porevolumes_per_day", default_injection)
|
|
*tot_porevol_init/Opm::unit::day;
|
|
src[0] = flow_per_sec;
|
|
src[num_cells - 1] = -flow_per_sec;
|
|
}
|
|
|
|
std::vector<double> reorder_src = src;
|
|
|
|
// Solvers init.
|
|
// Linear solver.
|
|
Opm::LinearSolverFactory linsolver(param);
|
|
// Pressure solver.
|
|
const double nl_press_res_tol = param.getDefault("nl_press_res_tol", 1e-6);
|
|
const double nl_press_change_tol = param.getDefault("nl_press_change_tol", 10.0);
|
|
const int nl_press_maxiter = param.getDefault("nl_press_maxiter", 20);
|
|
const double *grav = use_gravity ? &gravity[0] : 0;
|
|
Opm::CompressibleTpfa psolver(*grid->c_grid(), *props, linsolver,
|
|
nl_press_res_tol, nl_press_change_tol, nl_press_maxiter,
|
|
grav, wells->c_wells());
|
|
// Reordering solver.
|
|
const double nl_tolerance = param.getDefault("nl_tolerance", 1e-9);
|
|
const int nl_maxiter = param.getDefault("nl_maxiter", 30);
|
|
Opm::TransportModelCompressibleTwophase reorder_model(*grid->c_grid(), *props, nl_tolerance, nl_maxiter);
|
|
if (use_gauss_seidel_gravity) {
|
|
reorder_model.initGravity();
|
|
}
|
|
|
|
// Column-based gravity segregation solver.
|
|
std::vector<std::vector<int> > columns;
|
|
if (use_column_solver) {
|
|
Opm::extractColumn(*grid->c_grid(), columns);
|
|
}
|
|
|
|
// The allcells vector is used in calls to computeTotalMobility()
|
|
// and computeTotalMobilityOmega().
|
|
std::vector<int> allcells(num_cells);
|
|
for (int cell = 0; cell < num_cells; ++cell) {
|
|
allcells[cell] = cell;
|
|
}
|
|
|
|
// Warn if any parameters are unused.
|
|
if (param.anyUnused()) {
|
|
std::cout << "-------------------- Unused parameters: --------------------\n";
|
|
param.displayUsage();
|
|
std::cout << "----------------------------------------------------------------" << std::endl;
|
|
}
|
|
|
|
// Write parameters used for later reference.
|
|
if (output) {
|
|
param.writeParam(output_dir + "/spu_2p.param");
|
|
}
|
|
|
|
// Main simulation loop.
|
|
Opm::time::StopWatch pressure_timer;
|
|
double ptime = 0.0;
|
|
Opm::time::StopWatch transport_timer;
|
|
double ttime = 0.0;
|
|
Opm::time::StopWatch total_timer;
|
|
total_timer.start();
|
|
std::cout << "\n\n================ Starting main simulation loop ===============" << std::endl;
|
|
double init_satvol[2] = { 0.0 };
|
|
double satvol[2] = { 0.0 };
|
|
double injected[2] = { 0.0 };
|
|
double produced[2] = { 0.0 };
|
|
double tot_injected[2] = { 0.0 };
|
|
double tot_produced[2] = { 0.0 };
|
|
Opm::computeSaturatedVol(porevol, state.saturation(), init_satvol);
|
|
std::cout << "\nInitial saturations are " << init_satvol[0]/tot_porevol_init
|
|
<< " " << init_satvol[1]/tot_porevol_init << std::endl;
|
|
Opm::Watercut watercut;
|
|
watercut.push(0.0, 0.0, 0.0);
|
|
Opm::WellReport wellreport;
|
|
Opm::WellState well_state;
|
|
std::vector<double> fractional_flows;
|
|
std::vector<double> well_resflows_phase;
|
|
int num_wells = 0;
|
|
if (wells->c_wells()) {
|
|
num_wells = wells->c_wells()->number_of_wells;
|
|
well_state.init(wells->c_wells(), state);
|
|
well_resflows_phase.resize((wells->c_wells()->number_of_phases)*(num_wells), 0.0);
|
|
wellreport.push(*props, *wells->c_wells(),
|
|
state.pressure(), state.surfacevol(), state.saturation(),
|
|
0.0, well_state.bhp(), well_state.perfRates());
|
|
}
|
|
for (; !simtimer.done(); ++simtimer) {
|
|
// Report timestep and (optionally) write state to disk.
|
|
simtimer.report(std::cout);
|
|
if (output && (simtimer.currentStepNum() % output_interval == 0)) {
|
|
outputState(*grid->c_grid(), state, simtimer.currentStepNum(), output_dir);
|
|
}
|
|
|
|
// Solve pressure.
|
|
if (check_well_controls) {
|
|
computeFractionalFlow(*props, allcells, state.pressure(), state.surfacevol(), state.saturation(), fractional_flows);
|
|
}
|
|
if (check_well_controls) {
|
|
wells->applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
|
|
}
|
|
bool well_control_passed = !check_well_controls;
|
|
int well_control_iteration = 0;
|
|
do { // Well control outer loop.
|
|
pressure_timer.start();
|
|
psolver.solve(simtimer.currentStepLength(), state, well_state);
|
|
pressure_timer.stop();
|
|
double pt = pressure_timer.secsSinceStart();
|
|
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
|
|
ptime += pt;
|
|
|
|
if (check_well_controls) {
|
|
Opm::computePhaseFlowRatesPerWell(*wells->c_wells(),
|
|
fractional_flows,
|
|
well_state.perfRates(),
|
|
well_resflows_phase);
|
|
std::cout << "Checking well conditions." << std::endl;
|
|
// For testing we set surface := reservoir
|
|
well_control_passed = wells->conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
|
|
++well_control_iteration;
|
|
if (!well_control_passed && well_control_iteration > max_well_control_iterations) {
|
|
THROW("Could not satisfy well conditions in " << max_well_control_iterations << " tries.");
|
|
}
|
|
if (!well_control_passed) {
|
|
std::cout << "Well controls not passed, solving again." << std::endl;
|
|
} else {
|
|
std::cout << "Well conditions met." << std::endl;
|
|
}
|
|
}
|
|
} while (!well_control_passed);
|
|
|
|
// Process transport sources (to include bdy terms and well flows).
|
|
Opm::computeTransportSource(*grid->c_grid(), src, state.faceflux(), 1.0,
|
|
wells->c_wells(), well_state.perfRates(), reorder_src);
|
|
|
|
// Solve transport.
|
|
transport_timer.start();
|
|
double stepsize = simtimer.currentStepLength();
|
|
if (num_transport_substeps != 1) {
|
|
stepsize /= double(num_transport_substeps);
|
|
std::cout << "Making " << num_transport_substeps << " transport substeps." << std::endl;
|
|
}
|
|
for (int tr_substep = 0; tr_substep < num_transport_substeps; ++tr_substep) {
|
|
// Note that for now we do not handle rock compressibility,
|
|
// although the transport solver should be able to.
|
|
reorder_model.solve(&state.faceflux()[0], &state.pressure()[0], &state.surfacevol()[0],
|
|
&porevol[0], &porevol[0], &reorder_src[0], stepsize, state.saturation());
|
|
// Opm::computeInjectedProduced(*props, state.saturation(), reorder_src, stepsize, injected, produced);
|
|
if (use_segregation_split) {
|
|
reorder_model.solveGravity(columns, &state.pressure()[0], &porevol[0], stepsize, grav, state.saturation());
|
|
}
|
|
}
|
|
transport_timer.stop();
|
|
double tt = transport_timer.secsSinceStart();
|
|
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
|
|
ttime += tt;
|
|
|
|
// Report volume balances.
|
|
Opm::computeSaturatedVol(porevol, state.saturation(), satvol);
|
|
tot_injected[0] += injected[0];
|
|
tot_injected[1] += injected[1];
|
|
tot_produced[0] += produced[0];
|
|
tot_produced[1] += produced[1];
|
|
std::cout.precision(5);
|
|
const int width = 18;
|
|
std::cout << "\nVolume balance report (all numbers relative to total pore volume).\n";
|
|
std::cout << " Saturated volumes: "
|
|
<< std::setw(width) << satvol[0]/tot_porevol_init
|
|
<< std::setw(width) << satvol[1]/tot_porevol_init << std::endl;
|
|
std::cout << " Injected volumes: "
|
|
<< std::setw(width) << injected[0]/tot_porevol_init
|
|
<< std::setw(width) << injected[1]/tot_porevol_init << std::endl;
|
|
std::cout << " Produced volumes: "
|
|
<< std::setw(width) << produced[0]/tot_porevol_init
|
|
<< std::setw(width) << produced[1]/tot_porevol_init << std::endl;
|
|
std::cout << " Total inj volumes: "
|
|
<< std::setw(width) << tot_injected[0]/tot_porevol_init
|
|
<< std::setw(width) << tot_injected[1]/tot_porevol_init << std::endl;
|
|
std::cout << " Total prod volumes: "
|
|
<< std::setw(width) << tot_produced[0]/tot_porevol_init
|
|
<< std::setw(width) << tot_produced[1]/tot_porevol_init << std::endl;
|
|
std::cout << " In-place + prod - inj: "
|
|
<< std::setw(width) << (satvol[0] + tot_produced[0] - tot_injected[0])/tot_porevol_init
|
|
<< std::setw(width) << (satvol[1] + tot_produced[1] - tot_injected[1])/tot_porevol_init << std::endl;
|
|
std::cout << " Init - now - pr + inj: "
|
|
<< std::setw(width) << (init_satvol[0] - satvol[0] - tot_produced[0] + tot_injected[0])/tot_porevol_init
|
|
<< std::setw(width) << (init_satvol[1] - satvol[1] - tot_produced[1] + tot_injected[1])/tot_porevol_init
|
|
<< std::endl;
|
|
std::cout.precision(8);
|
|
|
|
watercut.push(simtimer.currentTime() + simtimer.currentStepLength(),
|
|
produced[0]/(produced[0] + produced[1]),
|
|
tot_produced[0]/tot_porevol_init);
|
|
if (wells->c_wells()) {
|
|
wellreport.push(*props, *wells->c_wells(),
|
|
state.pressure(), state.surfacevol(), state.saturation(),
|
|
simtimer.currentTime() + simtimer.currentStepLength(),
|
|
well_state.bhp(), well_state.perfRates());
|
|
}
|
|
}
|
|
total_timer.stop();
|
|
|
|
std::cout << "\n\n================ End of simulation ===============\n"
|
|
<< "Total time taken: " << total_timer.secsSinceStart()
|
|
<< "\n Pressure time: " << ptime
|
|
<< "\n Transport time: " << ttime << std::endl;
|
|
|
|
if (output) {
|
|
outputState(*grid->c_grid(), state, simtimer.currentStepNum(), output_dir);
|
|
outputWaterCut(watercut, output_dir);
|
|
if (wells->c_wells()) {
|
|
outputWellReport(wellreport, output_dir);
|
|
}
|
|
}
|
|
}
|