opm-simulators/opm/autodiff/FullyImplicitBlackoilSolver.hpp

416 lines
17 KiB
C++
Raw Normal View History

/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_FULLYIMPLICITBLACKOILSOLVER_HEADER_INCLUDED
#define OPM_FULLYIMPLICITBLACKOILSOLVER_HEADER_INCLUDED
#include <cassert>
#include <opm/autodiff/AutoDiffBlock.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/autodiff/LinearisedBlackoilResidual.hpp>
#include <opm/autodiff/NewtonIterationBlackoilInterface.hpp>
#include <array>
struct UnstructuredGrid;
struct Wells;
namespace Opm {
namespace parameter { class ParameterGroup; }
class DerivedGeology;
class RockCompressibility;
class NewtonIterationBlackoilInterface;
class BlackoilState;
class WellStateFullyImplicitBlackoil;
2013-05-24 04:14:05 -05:00
/// A fully implicit solver for the black-oil problem.
///
/// The simulator is capable of handling three-phase problems
/// where gas can be dissolved in oil (but not vice versa). It
/// uses an industry-standard TPFA discretization with per-phase
/// upwind weighting of mobilities.
///
/// It uses automatic differentiation via the class AutoDiffBlock
/// to simplify assembly of the jacobian matrix.
template<class T>
class FullyImplicitBlackoilSolver
{
public:
// the Newton relaxation type
enum RelaxType { DAMPEN, SOR };
// class holding the solver parameters
struct SolverParameter
{
double dp_max_rel_;
double ds_max_;
double dr_max_rel_;
enum RelaxType relax_type_;
double relax_max_;
double relax_increment_;
double relax_rel_tol_;
double max_residual_allowed_;
double tolerance_mb_;
double tolerance_cnv_;
double tolerance_wells_;
int max_iter_;
SolverParameter( const parameter::ParameterGroup& param );
SolverParameter();
void reset();
};
/// \brief The type of the grid that we use.
typedef T Grid;
/// Construct a solver. It will retain references to the
/// arguments of this functions, and they are expected to
/// remain in scope for the lifetime of the solver.
/// \param[in] param parameters
/// \param[in] grid grid data structure
/// \param[in] fluid fluid properties
/// \param[in] geo rock properties
/// \param[in] rock_comp_props if non-null, rock compressibility properties
/// \param[in] wells well structure
/// \param[in] linsolver linear solver
FullyImplicitBlackoilSolver(const SolverParameter& param,
const Grid& grid ,
const BlackoilPropsAdInterface& fluid,
const DerivedGeology& geo ,
const RockCompressibility* rock_comp_props,
const Wells* wells,
const NewtonIterationBlackoilInterface& linsolver,
const bool has_disgas,
const bool has_vapoil );
2014-08-27 04:30:42 -05:00
/// \brief Set threshold pressures that prevent or reduce flow.
/// This prevents flow across faces if the potential
/// difference is less than the threshold. If the potential
/// difference is greater, the threshold value is subtracted
/// before calculating flow. This is treated symmetrically, so
/// flow is prevented or reduced in both directions equally.
/// \param[in] threshold_pressures_by_face array of size equal to the number of faces
2014-08-27 04:30:42 -05:00
/// of the grid passed in the constructor.
void setThresholdPressures(const std::vector<double>& threshold_pressures_by_face);
2014-08-27 04:30:42 -05:00
2013-05-24 04:14:05 -05:00
/// Take a single forward step, modifiying
/// state.pressure()
/// state.faceflux()
/// state.saturation()
/// state.gasoilratio()
/// wstate.bhp()
/// \param[in] dt time step size
/// \param[in] state reservoir state
/// \param[in] wstate well state
2014-10-20 07:47:45 -05:00
/// \return number of linear iterations used
int
step(const double dt ,
BlackoilState& state ,
WellStateFullyImplicitBlackoil& wstate);
private:
2013-05-24 04:14:05 -05:00
// Types and enums
typedef AutoDiffBlock<double> ADB;
typedef ADB::V V;
typedef ADB::M M;
typedef Eigen::Array<double,
Eigen::Dynamic,
Eigen::Dynamic,
Eigen::RowMajor> DataBlock;
struct ReservoirResidualQuant {
2013-05-24 04:14:05 -05:00
ReservoirResidualQuant();
std::vector<ADB> accum; // Accumulations
ADB mflux; // Mass flux (surface conditions)
ADB b; // Reciprocal FVF
ADB head; // Pressure drop across int. interfaces
ADB mob; // Phase mobility (per cell)
};
struct SolutionState {
2013-05-24 04:14:05 -05:00
SolutionState(const int np);
ADB pressure;
ADB temperature;
std::vector<ADB> saturation;
ADB rs;
ADB rv;
ADB qs;
ADB bhp;
};
2013-05-24 10:22:35 -05:00
struct WellOps {
WellOps(const Wells* wells);
2013-05-24 10:22:35 -05:00
M w2p; // well -> perf (scatter)
M p2w; // perf -> well (gather)
};
enum { Water = BlackoilPropsAdInterface::Water,
Oil = BlackoilPropsAdInterface::Oil ,
Gas = BlackoilPropsAdInterface::Gas ,
MaxNumPhases = BlackoilPropsAdInterface::MaxNumPhases
};
2013-05-24 04:14:05 -05:00
enum PrimalVariables { Sg = 0, RS = 1, RV = 2 };
2014-05-19 11:41:38 -05:00
2013-05-24 04:14:05 -05:00
// Member data
const Grid& grid_;
const BlackoilPropsAdInterface& fluid_;
const DerivedGeology& geo_;
const RockCompressibility* rock_comp_props_;
const Wells* wells_;
const NewtonIterationBlackoilInterface& linsolver_;
2013-05-24 03:39:10 -05:00
// For each canonical phase -> true if active
const std::vector<bool> active_;
2014-06-03 03:59:50 -05:00
// Size = # active phases. Maps active -> canonical phase indices.
2013-05-24 03:39:10 -05:00
const std::vector<int> canph_;
const std::vector<int> cells_; // All grid cells
HelperOps ops_;
2013-05-24 10:22:35 -05:00
const WellOps wops_;
const bool has_disgas_;
const bool has_vapoil_;
SolverParameter param_;
bool use_threshold_pressure_;
V threshold_pressures_by_interior_face_;
std::vector<ReservoirResidualQuant> rq_;
std::vector<PhasePresence> phaseCondition_;
V well_perforation_pressure_diffs_; // Diff to bhp for each well perforation.
LinearisedBlackoilResidual residual_;
2015-02-20 09:03:08 -06:00
/// \brief Whether we print something to std::cout
bool terminal_output_;
std::vector<int> primalVariable_;
2013-05-24 04:14:05 -05:00
// Private methods.
// return true if wells are available
bool wellsActive() const { return wells_ ? wells_->number_of_wells > 0 : false ; }
// return wells object
const Wells& wells () const { assert( bool(wells_ != 0) ); return *wells_; }
SolutionState
constantState(const BlackoilState& x,
const WellStateFullyImplicitBlackoil& xw);
SolutionState
variableState(const BlackoilState& x,
const WellStateFullyImplicitBlackoil& xw);
void
computeAccum(const SolutionState& state,
2013-05-24 04:14:05 -05:00
const int aix );
void computeWellConnectionPressures(const SolutionState& state,
const WellStateFullyImplicitBlackoil& xw);
void
addWellControlEq(const SolutionState& state,
const WellStateFullyImplicitBlackoil& xw,
const V& aliveWells);
void
addWellEq(const SolutionState& state,
WellStateFullyImplicitBlackoil& xw,
V& aliveWells);
void updateWellControls(ADB& bhp,
ADB& well_phase_flow_rate,
2014-03-25 08:31:06 -05:00
WellStateFullyImplicitBlackoil& xw) const;
void
assemble(const V& dtpv,
const BlackoilState& x,
WellStateFullyImplicitBlackoil& xw);
V solveJacobianSystem() const;
void updateState(const V& dx,
BlackoilState& state,
WellStateFullyImplicitBlackoil& well_state);
std::vector<ADB>
computePressures(const SolutionState& state) const;
std::vector<ADB>
computePressures(const ADB& po,
const ADB& sw,
const ADB& so,
const ADB& sg) const;
std::vector<ADB>
computeRelPerm(const SolutionState& state) const;
std::vector<ADB>
computeRelPermWells(const SolutionState& state,
const DataBlock& well_s,
const std::vector<int>& well_cells) const;
void
computeMassFlux(const int actph ,
const V& transi,
const ADB& kr ,
const ADB& p ,
2013-05-24 04:14:05 -05:00
const SolutionState& state );
void applyThresholdPressures(ADB& dp);
double
residualNorm() const;
/// \brief Compute the residual norms of the mass balance for each phase,
/// the well flux, and the well equation.
/// \return a vector that contains for each phase the norm of the mass balance
2015-01-27 07:05:38 -06:00
/// and afterwards the norm of the residual of the well flux and the well equation.
std::vector<double> computeResidualNorms() const;
2014-05-19 03:41:23 -05:00
ADB
fluidViscosity(const int phase,
const ADB& p ,
const ADB& temp ,
const ADB& rs ,
const ADB& rv ,
const std::vector<PhasePresence>& cond,
2013-05-24 04:14:05 -05:00
const std::vector<int>& cells) const;
ADB
fluidReciprocFVF(const int phase,
const ADB& p ,
const ADB& temp ,
const ADB& rs ,
const ADB& rv ,
const std::vector<PhasePresence>& cond,
2013-05-24 04:14:05 -05:00
const std::vector<int>& cells) const;
ADB
fluidDensity(const int phase,
const ADB& p ,
const ADB& temp ,
const ADB& rs ,
const ADB& rv ,
const std::vector<PhasePresence>& cond,
2013-05-24 04:14:05 -05:00
const std::vector<int>& cells) const;
V
fluidRsSat(const V& p,
const V& so,
const std::vector<int>& cells) const;
ADB
fluidRsSat(const ADB& p,
const ADB& so,
const std::vector<int>& cells) const;
V
fluidRvSat(const V& p,
const V& so,
const std::vector<int>& cells) const;
ADB
fluidRvSat(const ADB& p,
const ADB& so,
const std::vector<int>& cells) const;
ADB
poroMult(const ADB& p) const;
ADB
transMult(const ADB& p) const;
void
classifyCondition(const SolutionState& state,
std::vector<PhasePresence>& cond ) const;
const std::vector<PhasePresence>
phaseCondition() const {return phaseCondition_;}
void
classifyCondition(const BlackoilState& state);
/// update the primal variable for Sg, Rv or Rs. The Gas phase must
/// be active to call this method.
void
updatePrimalVariableFromState(const BlackoilState& state);
/// Update the phaseCondition_ member based on the primalVariable_ member.
void
updatePhaseCondFromPrimalVariable();
/// Compute convergence based on total mass balance (tol_mb) and maximum
/// residual mass balance (tol_cnv).
bool getConvergence(const double dt, const int iteration);
/// \brief Compute the reduction within the convergence check.
/// \param[in] B A matrix with MaxNumPhases columns and the same number rows
/// as the number of cells of the grid. B.col(i) contains the values
/// for phase i.
/// \param[in] tempV A matrix with MaxNumPhases columns and the same number rows
/// as the number of cells of the grid. tempV.col(i) contains the
/// values
/// for phase i.
/// \param[in] R A matrix with MaxNumPhases columns and the same number rows
/// as the number of cells of the grid. B.col(i) contains the values
/// for phase i.
/// \param[out] R_sum An array of size MaxNumPhases where entry i contains the sum
/// of R for the phase i.
/// \param[out] maxCoeff An array of size MaxNumPhases where entry i contains the
2015-01-28 12:17:25 -06:00
/// maximum of tempV for the phase i.
/// \param[out] B_avg An array of size MaxNumPhases where entry i contains the average
/// of B for the phase i.
/// \param[in] nc The number of cells of the local grid.
/// \return The total pore volume over all cells.
double
convergenceReduction(const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases>& B,
const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases>& tempV,
const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases>& R,
std::array<double,MaxNumPhases>& R_sum,
std::array<double,MaxNumPhases>& maxCoeff,
std::array<double,MaxNumPhases>& B_avg,
int nc) const;
void detectNewtonOscillations(const std::vector<std::vector<double>>& residual_history,
2014-05-19 08:43:56 -05:00
const int it, const double relaxRelTol,
bool& oscillate, bool& stagnate) const;
2014-05-19 08:43:56 -05:00
void stablizeNewton(V& dx, V& dxOld, const double omega, const RelaxType relax_type) const;
double dpMaxRel() const { return param_.dp_max_rel_; }
double dsMax() const { return param_.ds_max_; }
double drMaxRel() const { return param_.dr_max_rel_; }
enum RelaxType relaxType() const { return param_.relax_type_; }
double relaxMax() const { return param_.relax_max_; };
double relaxIncrement() const { return param_.relax_increment_; };
double relaxRelTol() const { return param_.relax_rel_tol_; };
double maxIter() const { return param_.max_iter_; }
double maxResidualAllowed() const { return param_.max_residual_allowed_; }
};
} // namespace Opm
#include "FullyImplicitBlackoilSolver_impl.hpp"
#endif // OPM_FULLYIMPLICITBLACKOILSOLVER_HEADER_INCLUDED