opm-simulators/opm/simulators/flow/SimulatorFullyImplicitBlackoil.hpp

619 lines
24 KiB
C++
Raw Normal View History

/*
Copyright 2013, 2015, 2020 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2015 Andreas Lauser
2017-11-21 04:12:16 -06:00
Copyright 2017 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_SIMULATOR_FULLY_IMPLICIT_BLACKOIL_HEADER_INCLUDED
#define OPM_SIMULATOR_FULLY_IMPLICIT_BLACKOIL_HEADER_INCLUDED
#include <opm/common/ErrorMacros.hpp>
#include <opm/input/eclipse/Units/UnitSystem.hpp>
#include <opm/grid/utility/StopWatch.hpp>
#include <opm/simulators/aquifers/BlackoilAquiferModel.hpp>
#include <opm/simulators/flow/BlackoilModel.hpp>
#include <opm/simulators/flow/BlackoilModelParameters.hpp>
#include <opm/simulators/flow/ConvergenceOutputConfiguration.hpp>
#include <opm/simulators/flow/ExtraConvergenceOutputThread.hpp>
#include <opm/simulators/flow/NonlinearSolver.hpp>
#include <opm/simulators/flow/SimulatorReportBanners.hpp>
#include <opm/simulators/flow/SimulatorSerializer.hpp>
#include <opm/simulators/timestepping/AdaptiveTimeStepping.hpp>
#include <opm/simulators/timestepping/ConvergenceReport.hpp>
#include <opm/simulators/utils/moduleVersion.hpp>
#include <opm/simulators/wells/WellState.hpp>
#if HAVE_HDF5
#include <opm/simulators/utils/HDF5Serializer.hpp>
#endif
#include <fmt/format.h>
#include <cstddef>
#include <filesystem>
#include <memory>
#include <optional>
#include <string>
#include <string_view>
#include <thread>
#include <utility>
#include <vector>
namespace Opm::Parameters {
struct EnableAdaptiveTimeStepping { static constexpr bool value = true; };
struct OutputExtraConvergenceInfo { static constexpr auto* value = "none"; };
struct SaveStep { static constexpr auto* value = ""; };
struct SaveFile { static constexpr auto* value = ""; };
struct LoadFile { static constexpr auto* value = ""; };
struct LoadStep { static constexpr int value = -1; };
} // namespace Opm::Parameters
namespace Opm {
/// a simulator for the blackoil model
template<class TypeTag>
class SimulatorFullyImplicitBlackoil : private SerializableSim
{
public:
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Grid = GetPropType<TypeTag, Properties::Grid>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using BlackoilIndices = GetPropType<TypeTag, Properties::Indices>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
using AquiferModel = GetPropType<TypeTag, Properties::AquiferModel>;
using TimeStepper = AdaptiveTimeStepping<TypeTag>;
using PolymerModule = BlackOilPolymerModule<TypeTag>;
using MICPModule = BlackOilMICPModule<TypeTag>;
using Model = BlackoilModel<TypeTag>;
using Solver = NonlinearSolver<TypeTag, Model>;
using ModelParameters = typename Model::ModelParameters;
using SolverParameters = typename Solver::SolverParameters;
using WellModel = BlackoilWellModel<TypeTag>;
/// Initialise from parameters and objects to observe.
/// \param[in] param parameters, this class accepts the following:
/// parameter (default) effect
/// -----------------------------------------------------------
/// output (true) write output to files?
/// output_dir ("output") output directoty
/// output_interval (1) output every nth step
/// nl_pressure_residual_tolerance (0.0) pressure solver residual tolerance (in Pascal)
/// nl_pressure_change_tolerance (1.0) pressure solver change tolerance (in Pascal)
/// nl_pressure_maxiter (10) max nonlinear iterations in pressure
/// nl_maxiter (30) max nonlinear iterations in transport
/// nl_tolerance (1e-9) transport solver absolute residual tolerance
/// num_transport_substeps (1) number of transport steps per pressure step
/// use_segregation_split (false) solve for gravity segregation (if false,
/// segregation is ignored).
///
/// \param[in] props fluid and rock properties
/// \param[in] linsolver linear solver
/// \param[in] eclipse_state the object which represents an internalized ECL deck
/// \param[in] output_writer
/// \param[in] threshold_pressures_by_face if nonempty, threshold pressures that inhibit flow
SimulatorFullyImplicitBlackoil(Simulator& simulator)
: simulator_(simulator)
, serializer_(*this,
FlowGenericVanguard::comm(),
simulator_.vanguard().eclState().getIOConfig(),
Parameters::Get<Parameters::SaveStep>(),
Parameters::Get<Parameters::LoadStep>(),
Parameters::Get<Parameters::SaveFile>(),
Parameters::Get<Parameters::LoadFile>())
{
phaseUsage_ = phaseUsageFromDeck(eclState());
// Only rank 0 does print to std::cout, and only if specifically requested.
this->terminalOutput_ = false;
if (this->grid().comm().rank() == 0) {
this->terminalOutput_ = Parameters::Get<Parameters::EnableTerminalOutput>();
this->startConvergenceOutputThread(Parameters::Get<Parameters::OutputExtraConvergenceInfo>(),
R"(OutputExtraConvergenceInfo (--output-extra-convergence-info))");
}
}
~SimulatorFullyImplicitBlackoil()
{
// Safe to call on all ranks, not just the I/O rank.
this->endConvergenceOutputThread();
}
static void registerParameters()
{
ModelParameters::registerParameters();
SolverParameters::registerParameters();
TimeStepper::registerParameters();
Parameters::Register<Parameters::EnableTerminalOutput>
("Print high-level information about the simulation's progress to the terminal");
Parameters::Register<Parameters::EnableAdaptiveTimeStepping>
("Use adaptive time stepping between report steps");
Parameters::Register<Parameters::OutputExtraConvergenceInfo>
("Provide additional convergence output "
"files for diagnostic purposes. "
"\"none\" gives no extra output and "
"overrides all other options, "
"\"steps\" generates an INFOSTEP file, "
"\"iterations\" generates an INFOITER file. "
"Combine options with commas, e.g., "
"\"steps,iterations\" for multiple outputs.");
Parameters::Register<Parameters::SaveStep>
("Save serialized state to .OPMRST file. "
"Either a specific report step, \"all\" to save "
"all report steps or \":x\" to save every x'th step."
"Use negative values of \"x\" to keep only the last "
"written step, or \"last\" to save every step, keeping "
"only the last.");
Parameters::Register<Parameters::LoadStep>
("Load serialized state from .OPMRST file. "
"Either a specific report step, or 0 to load last "
"stored report step.");
Parameters::Register<Parameters::SaveFile>
("FileName for .OPMRST file used for saving serialized state. "
"If empty, CASENAME.OPMRST is used.");
Parameters::Hide<Parameters::SaveFile>();
Parameters::Register<Parameters::LoadFile>
("FileName for .OPMRST file used to load serialized state. "
"If empty, CASENAME.OPMRST is used.");
Parameters::Hide<Parameters::LoadFile>();
}
/// Run the simulation.
/// This will run succesive timesteps until timer.done() is true. It will
/// modify the reservoir and well states.
/// \param[in,out] timer governs the requested reporting timesteps
/// \param[in,out] state state of reservoir: pressure, fluxes
/// \return simulation report, with timing data
2017-12-04 03:35:13 -06:00
SimulatorReport run(SimulatorTimer& timer)
{
init(timer);
// Make cache up to date. No need for updating it in elementCtx.
// NB! Need to be at the correct step in case of restart
simulator_.setEpisodeIndex(timer.currentStepNum());
simulator_.model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0);
// Main simulation loop.
while (!timer.done()) {
2024-09-23 07:03:53 -05:00
simulator_.problem().writeReports(timer);
bool continue_looping = runStep(timer);
if (!continue_looping) break;
}
2024-09-23 07:03:53 -05:00
simulator_.problem().writeReports(timer);
return finalize();
}
void init(SimulatorTimer &timer)
{
simulator_.setEpisodeIndex(-1);
// Create timers and file for writing timing info.
solverTimer_ = std::make_unique<time::StopWatch>();
totalTimer_ = std::make_unique<time::StopWatch>();
totalTimer_->start();
// adaptive time stepping
bool enableAdaptive = Parameters::Get<Parameters::EnableAdaptiveTimeStepping>();
bool enableTUNING = Parameters::Get<Parameters::EnableTuning>();
if (enableAdaptive) {
const UnitSystem& unitSystem = this->simulator_.vanguard().eclState().getUnits();
const auto& sched_state = schedule()[timer.currentStepNum()];
auto max_next_tstep = sched_state.max_next_tstep(enableTUNING);
if (enableTUNING) {
adaptiveTimeStepping_ = std::make_unique<TimeStepper>(max_next_tstep,
sched_state.tuning(),
unitSystem, terminalOutput_);
}
else {
adaptiveTimeStepping_ = std::make_unique<TimeStepper>(unitSystem, max_next_tstep, terminalOutput_);
}
if (isRestart()) {
// For restarts the simulator may have gotten some information
2019-10-01 07:30:11 -05:00
// about the next timestep size from the OPMEXTRA field
adaptiveTimeStepping_->setSuggestedNextStep(simulator_.timeStepSize());
}
}
}
void updateTUNING(const Tuning& tuning)
{
modelParam_.tolerance_mb_ = tuning.XXXMBE;
if (terminalOutput_) {
OpmLog::debug(fmt::format("Setting SimulatorFullyImplicitBlackoil mass balance limit (XXXMBE) to {:.2e}", tuning.XXXMBE));
2023-05-03 06:17:20 -05:00
}
}
bool runStep(SimulatorTimer& timer)
{
if (schedule().exitStatus().has_value()) {
if (terminalOutput_) {
OpmLog::info("Stopping simulation since EXIT was triggered by an action keyword.");
}
report_.success.exit_status = schedule().exitStatus().value();
return false;
}
if (serializer_.shouldLoad()) {
serializer_.loadTimerInfo(timer);
}
// Report timestep.
if (terminalOutput_) {
std::ostringstream ss;
timer.report(ss);
OpmLog::debug(ss.str());
}
if (terminalOutput_) {
details::outputReportStep(timer);
}
// write the inital state at the report stage
if (timer.initialStep()) {
Dune::Timer perfTimer;
perfTimer.start();
simulator_.setEpisodeIndex(-1);
simulator_.setEpisodeLength(0.0);
simulator_.setTimeStepSize(0.0);
wellModel_().beginReportStep(timer.currentStepNum());
simulator_.problem().writeOutput(true);
report_.success.output_write_time += perfTimer.stop();
}
// Run a multiple steps of the solver depending on the time step control.
solverTimer_->start();
if (!solver_) {
solver_ = createSolver(wellModel_());
}
simulator_.startNextEpisode(
simulator_.startTime()
+ schedule().seconds(timer.currentStepNum()),
timer.currentStepLength());
simulator_.setEpisodeIndex(timer.currentStepNum());
if (serializer_.shouldLoad()) {
wellModel_().prepareDeserialize(serializer_.loadStep() - 1);
serializer_.loadState();
simulator_.model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0);
}
this->solver_->model().beginReportStep();
const bool enableTUNING = Parameters::Get<Parameters::EnableTuning>();
2017-11-21 04:12:16 -06:00
// If sub stepping is enabled allow the solver to sub cycle
// in case the report steps are too large for the solver to converge
//
// \Note: The report steps are met in any case
// \Note: The sub stepping will require a copy of the state variables
if (adaptiveTimeStepping_) {
auto tuningUpdater = [enableTUNING, this, reportStep = timer.currentStepNum()]()
{
auto& schedule = this->simulator_.vanguard().schedule();
auto& events = this->schedule()[reportStep].events();
if (events.hasEvent(ScheduleEvents::TUNING_CHANGE)) {
// Unset the event to not trigger it again on the next sub step
schedule.clear_event(ScheduleEvents::TUNING_CHANGE, reportStep);
const auto& sched_state = schedule[reportStep];
const auto& max_next_tstep = sched_state.max_next_tstep(enableTUNING);
const auto& tuning = sched_state.tuning();
if (enableTUNING) {
adaptiveTimeStepping_->updateTUNING(max_next_tstep, tuning);
// \Note: Assumes TUNING is only used with adaptive time-stepping
// \Note: Need to update both solver (model) and simulator since solver is re-created each report step.
solver_->model().updateTUNING(tuning);
this->updateTUNING(tuning);
} else {
this->adaptiveTimeStepping_->updateNEXTSTEP(max_next_tstep);
}
return max_next_tstep >0;
}
return false;
};
tuningUpdater();
const auto& events = schedule()[timer.currentStepNum()].events();
2021-01-10 14:46:45 -06:00
bool event = events.hasEvent(ScheduleEvents::NEW_WELL) ||
2021-04-16 06:38:56 -05:00
events.hasEvent(ScheduleEvents::INJECTION_TYPE_CHANGED) ||
events.hasEvent(ScheduleEvents::WELL_SWITCHED_INJECTOR_PRODUCER) ||
events.hasEvent(ScheduleEvents::PRODUCTION_UPDATE) ||
events.hasEvent(ScheduleEvents::INJECTION_UPDATE) ||
2021-01-10 14:46:45 -06:00
events.hasEvent(ScheduleEvents::WELL_STATUS_CHANGE);
auto stepReport = adaptiveTimeStepping_->step(timer, *solver_, event, nullptr, tuningUpdater);
report_ += stepReport;
//Pass simulation report to eclwriter for summary output
simulator_.problem().setSimulationReport(report_);
} else {
// solve for complete report step
auto stepReport = solver_->step(timer);
report_ += stepReport;
if (terminalOutput_) {
std::ostringstream ss;
stepReport.reportStep(ss);
OpmLog::info(ss.str());
}
}
2016-08-08 07:58:25 -05:00
// write simulation state at the report stage
Dune::Timer perfTimer;
perfTimer.start();
const double nextstep = adaptiveTimeStepping_ ? adaptiveTimeStepping_->suggestedNextStep() : -1.0;
simulator_.problem().setNextTimeStepSize(nextstep);
simulator_.problem().writeOutput(true);
report_.success.output_write_time += perfTimer.stop();
solver_->model().endReportStep();
// take time that was used to solve system for this reportStep
solverTimer_->stop();
// update timing.
report_.success.solver_time += solverTimer_->secsSinceStart();
2016-12-22 06:45:31 -06:00
if (this->grid().comm().rank() == 0) {
// Grab the step convergence reports that are new since last we
// were here.
const auto& reps = this->solver_->model().stepReports();
auto reports = std::vector<StepReport> {
reps.begin() + this->already_reported_steps_, reps.end()
};
this->writeConvergenceOutput(std::move(reports));
this->already_reported_steps_ = reps.size();
}
// Increment timer, remember well state.
++timer;
if (terminalOutput_) {
std::string msg =
"Time step took " + std::to_string(solverTimer_->secsSinceStart()) + " seconds; "
"total solver time " + std::to_string(report_.success.solver_time) + " seconds.";
OpmLog::debug(msg);
}
serializer_.save(timer);
return true;
}
SimulatorReport finalize()
{
// make sure all output is written to disk before run is finished
{
Dune::Timer finalOutputTimer;
finalOutputTimer.start();
simulator_.problem().finalizeOutput();
report_.success.output_write_time += finalOutputTimer.stop();
}
// Stop timer and create timing report
totalTimer_->stop();
report_.success.total_time = totalTimer_->secsSinceStart();
report_.success.converged = true;
return report_;
}
const Grid& grid() const
{ return simulator_.vanguard().grid(); }
template<class Serializer>
void serializeOp(Serializer& serializer)
{
serializer(simulator_);
serializer(report_);
serializer(adaptiveTimeStepping_);
}
const Model& model() const
{ return solver_->model(); }
protected:
//! \brief Load simulator state from hdf5 serializer.
void loadState([[maybe_unused]] HDF5Serializer& serializer,
[[maybe_unused]] const std::string& groupName) override
{
#if HAVE_HDF5
serializer.read(*this, groupName, "simulator_data");
#endif
}
//! \brief Save simulator state using hdf5 serializer.
void saveState([[maybe_unused]] HDF5Serializer& serializer,
[[maybe_unused]] const std::string& groupName) const override
{
#if HAVE_HDF5
serializer.write(*this, groupName, "simulator_data");
#endif
}
//! \brief Returns header data
std::array<std::string,5> getHeader() const override
{
std::ostringstream str;
Parameters::printValues(str);
return {"OPM Flow",
moduleVersion(),
compileTimestamp(),
simulator_.vanguard().caseName(),
str.str()};
}
//! \brief Returns local-to-global cell mapping.
const std::vector<int>& getCellMapping() const override
{
return simulator_.vanguard().globalCell();
}
std::unique_ptr<Solver> createSolver(WellModel& wellModel)
{
auto model = std::make_unique<Model>(simulator_,
2020-09-02 08:35:39 -05:00
modelParam_,
wellModel,
terminalOutput_);
if (this->modelParam_.write_partitions_) {
const auto& iocfg = this->eclState().cfg().io();
const auto odir = iocfg.getOutputDir()
/ std::filesystem::path { "partition" }
/ iocfg.getBaseName();
if (this->grid().comm().rank() == 0) {
create_directories(odir);
}
this->grid().comm().barrier();
model->writePartitions(odir);
this->modelParam_.write_partitions_ = false;
}
2020-09-02 08:35:39 -05:00
return std::make_unique<Solver>(solverParam_, std::move(model));
}
const EclipseState& eclState() const
{ return simulator_.vanguard().eclState(); }
2017-10-29 15:06:19 -05:00
const Schedule& schedule() const
{ return simulator_.vanguard().schedule(); }
2017-10-29 15:06:19 -05:00
bool isRestart() const
{
const auto& initconfig = eclState().getInitConfig();
return initconfig.restartRequested();
}
WellModel& wellModel_()
{ return simulator_.problem().wellModel(); }
const WellModel& wellModel_() const
{ return simulator_.problem().wellModel(); }
void startConvergenceOutputThread(std::string_view convOutputOptions,
std::string_view optionName)
{
const auto config = ConvergenceOutputConfiguration {
convOutputOptions, optionName
};
if (! config.want(ConvergenceOutputConfiguration::Option::Iterations)) {
return;
}
auto getPhaseName = ConvergenceOutputThread::ComponentToPhaseName {
[compNames = typename Model::ComponentName{}](const int compIdx)
{ return std::string_view { compNames.name(compIdx) }; }
};
auto convertTime = ConvergenceOutputThread::ConvertToTimeUnits {
[usys = this->eclState().getUnits()](const double time)
{ return usys.from_si(UnitSystem::measure::time, time); }
};
this->convergenceOutputQueue_.emplace();
this->convergenceOutputObject_.emplace
(this->eclState().getIOConfig().getOutputDir(),
this->eclState().getIOConfig().getBaseName(),
std::move(getPhaseName),
std::move(convertTime),
config, *this->convergenceOutputQueue_);
this->convergenceOutputThread_
.emplace(&ConvergenceOutputThread::writeASynchronous,
&this->convergenceOutputObject_.value());
}
void writeConvergenceOutput(std::vector<StepReport>&& reports)
{
if (! this->convergenceOutputThread_.has_value()) {
return;
}
auto requests = std::vector<ConvergenceReportQueue::OutputRequest>{};
requests.reserve(reports.size());
for (auto&& report : reports) {
requests.push_back({ report.report_step, report.current_step, std::move(report.report) });
}
this->convergenceOutputQueue_->enqueue(std::move(requests));
}
void endConvergenceOutputThread()
{
if (! this->convergenceOutputThread_.has_value()) {
return;
}
this->convergenceOutputQueue_->signalLastOutputRequest();
this->convergenceOutputThread_->join();
}
// Data.
Simulator& simulator_;
ModelParameters modelParam_;
SolverParameters solverParam_;
std::unique_ptr<Solver> solver_;
// Observed objects.
PhaseUsage phaseUsage_;
// Misc. data
bool terminalOutput_;
SimulatorReport report_;
std::size_t already_reported_steps_ = 0;
std::unique_ptr<time::StopWatch> solverTimer_;
std::unique_ptr<time::StopWatch> totalTimer_;
std::unique_ptr<TimeStepper> adaptiveTimeStepping_;
std::optional<ConvergenceReportQueue> convergenceOutputQueue_{};
std::optional<ConvergenceOutputThread> convergenceOutputObject_{};
std::optional<std::thread> convergenceOutputThread_{};
SimulatorSerializer serializer_;
};
} // namespace Opm
#endif // OPM_SIMULATOR_FULLY_IMPLICIT_BLACKOIL_HEADER_INCLUDED