opm-simulators/opm/autodiff/StandardWellsDense_impl.hpp

3196 lines
121 KiB
C++
Raw Normal View History

#include <opm/autodiff/StandardWell.hpp>
namespace Opm {
template<typename TypeTag>
StandardWellsDense<TypeTag>::
StandardWellsDense(const Wells* wells_arg,
WellCollection* well_collection,
const std::vector< const Well* >& wells_ecl,
const ModelParameters& param,
const RateConverterType& rate_converter,
const bool terminal_output,
const int current_timeIdx)
: wells_active_(wells_arg!=nullptr)
, wells_(wells_arg)
, wells_ecl_(wells_ecl)
, well_container_(createWellContainer(wells_ecl, wells_arg, current_timeIdx) )
, well_collection_(well_collection)
, param_(param)
, terminal_output_(terminal_output)
, has_solvent_(GET_PROP_VALUE(TypeTag, EnableSolvent))
, has_polymer_(GET_PROP_VALUE(TypeTag, EnablePolymer))
, current_timeIdx_(current_timeIdx)
, rate_converter_(rate_converter)
, well_perforation_efficiency_factors_((wells_!=nullptr ? wells_->well_connpos[wells_->number_of_wells] : 0), 1.0)
, well_perforation_densities_( wells_ ? wells_arg->well_connpos[wells_arg->number_of_wells] : 0)
, well_perforation_pressure_diffs_( wells_ ? wells_arg->well_connpos[wells_arg->number_of_wells] : 0)
, wellVariables_( wells_ ? (wells_arg->number_of_wells * numWellEq) : 0)
, F0_(wells_ ? (wells_arg->number_of_wells * numWellEq) : 0 )
{
if( wells_ )
{
invDuneD_.setBuildMode( Mat::row_wise );
duneC_.setBuildMode( Mat::row_wise );
duneB_.setBuildMode( Mat::row_wise );
}
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
init(const PhaseUsage phase_usage_arg,
const std::vector<bool>& active_arg,
const double gravity_arg,
const std::vector<double>& depth_arg,
const std::vector<double>& pv_arg,
long int global_nc,
const Grid& grid)
{
// has to be set always for the convergence check!
global_nc_ = global_nc;
if ( ! localWellsActive() ) {
return;
}
phase_usage_ = phase_usage_arg;
active_ = active_arg;
gravity_ = gravity_arg;
cell_depths_ = extractPerfData(depth_arg);
pv_ = pv_arg;
calculateEfficiencyFactors();
// setup sparsity pattern for the matrices
//[A B^T [x = [ res
// C D] x_well] res_well]
const int nw = wells().number_of_wells;
const int nperf = wells().well_connpos[nw];
const int nc = numCells();
#ifndef NDEBUG
const auto pu = phase_usage_;
const int np = pu.num_phases;
// assumes the gas fractions are stored after water fractions
// WellVariablePositions needs to be changed for 2p runs
assert (np == 3 || (np == 2 && !pu.phase_used[Gas]) );
#endif
// set invDuneD
invDuneD_.setSize( nw, nw, nw );
// set duneC
duneC_.setSize( nw, nc, nperf );
// set duneB
duneB_.setSize( nw, nc, nperf );
for (auto row=invDuneD_.createbegin(), end = invDuneD_.createend(); row!=end; ++row) {
// Add nonzeros for diagonal
row.insert(row.index());
}
for (auto row = duneC_.createbegin(), end = duneC_.createend(); row!=end; ++row) {
// Add nonzeros for diagonal
for (int perf = wells().well_connpos[row.index()] ; perf < wells().well_connpos[row.index()+1]; ++perf) {
const int cell_idx = wells().well_cells[perf];
row.insert(cell_idx);
}
}
// make the B^T matrix
for (auto row = duneB_.createbegin(), end = duneB_.createend(); row!=end; ++row) {
for (int perf = wells().well_connpos[row.index()] ; perf < wells().well_connpos[row.index()+1]; ++perf) {
const int cell_idx = wells().well_cells[perf];
row.insert(cell_idx);
}
}
resWell_.resize( nw );
// resize temporary class variables
Cx_.resize( duneC_.N() );
invDrw_.resize( invDuneD_.N() );
if (has_polymer_)
{
if (PolymerModule::hasPlyshlog()) {
computeRepRadiusPerfLength(grid);
}
}
// do the initialization work
// do the initialization for all the wells
// TODO: to see whether we can postpone of the intialization of the well containers to
// optimize the usage of the following several member variables
for (auto& well : well_container_) {
well->init(&phase_usage_, &active_, vfp_properties_, gravity_, nc);
}
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
setVFPProperties(const VFPProperties* vfp_properties_arg)
{
vfp_properties_ = vfp_properties_arg;
}
template<typename TypeTag>
std::vector<std::shared_ptr<WellInterface<TypeTag> > >
StandardWellsDense<TypeTag>::
createWellContainer(const std::vector<const Well*>& wells_ecl,
const Wells* wells_arg,
const int time_step)
{
std::vector<std::shared_ptr<WellInterface<TypeTag> > > wells_container;
// There might be no wells in the process
if (localWellsActive()) {
const int nw = wells_arg->number_of_wells;
wells_container.reserve(nw);
// With the following way, it will have the same order with wells struct
// Hopefully, it can generate the same residual history with master branch
for (int w = 0; w < nw; ++w) {
const std::string well_name = std::string(wells_arg->name[w]);
// finding the location of the well in wells_ecl
const int nw_wells_ecl = wells_ecl.size();
int index_well = 0;
for (; index_well < nw_wells_ecl; ++index_well) {
if (well_name == wells_ecl[index_well]->name()) {
break;
}
}
// It should be able to find in wells_ecl.
if (index_well == nw_wells_ecl) {
OPM_THROW(std::logic_error, "Could not find well " << well_name << " in wells_ecl ");
}
const Well* well_ecl = wells_ecl[index_well];
if (well_ecl->getStatus(time_step) == WellCommon::SHUT) {
continue;
}
if (well_ecl->isMultiSegment(time_step)) {
OPM_THROW(Opm::NumericalProblem, "Not handling Multisegment Wells for now");
}
// Basically, we are handling all the wells as StandardWell for the moment
// TODO: to be changed when we begin introducing MultisegmentWell
wells_container.push_back(std::make_shared<StandardWell<TypeTag> >(well_ecl, time_step, wells_arg) );
}
}
return wells_container;
}
template<typename TypeTag>
SimulatorReport
StandardWellsDense<TypeTag>::
assemble(Simulator& ebosSimulator,
const int iterationIdx,
const double dt,
WellState& well_state)
{
if (iterationIdx == 0) {
prepareTimeStep(ebosSimulator, well_state);
}
SimulatorReport report;
if ( ! wellsActive() ) {
return report;
}
updateWellControls(well_state);
// Set the primary variables for the wells
setWellVariables(well_state);
if (iterationIdx == 0) {
computeWellConnectionPressures(ebosSimulator, well_state);
computeAccumWells();
}
if (param_.solve_welleq_initially_ && iterationIdx == 0) {
// solve the well equations as a pre-processing step
report = solveWellEq(ebosSimulator, dt, well_state);
}
assembleWellEq(ebosSimulator, dt, well_state, false);
report.converged = true;
return report;
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
assembleWellEq(Simulator& ebosSimulator,
const double dt,
WellState& well_state,
bool only_wells)
{
const int nw = wells().number_of_wells;
const int numComp = numComponents();
const int np = numPhases();
// clear all entries
duneB_ = 0.0;
duneC_ = 0.0;
invDuneD_ = 0.0;
resWell_ = 0.0;
auto& ebosJac = ebosSimulator.model().linearizer().matrix();
auto& ebosResid = ebosSimulator.model().linearizer().residual();
const double volume = 0.002831684659200; // 0.1 cu ft;
for (int w = 0; w < nw; ++w) {
bool allow_cf = allow_cross_flow(w, ebosSimulator);
const EvalWell& bhp = getBhp(w);
for (int perf = wells().well_connpos[w] ; perf < wells().well_connpos[w+1]; ++perf) {
const int cell_idx = wells().well_cells[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
std::vector<EvalWell> cq_s(numComp,0.0);
std::vector<EvalWell> mob(numComp, 0.0);
getMobility(ebosSimulator, w, perf, cell_idx, mob);
computeWellFlux(w, wells().WI[perf], intQuants, mob, bhp, wellPerforationPressureDiffs()[perf], allow_cf, cq_s);
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
// the cq_s entering mass balance equations need to consider the efficiency factors.
const EvalWell cq_s_effective = cq_s[componentIdx] * well_perforation_efficiency_factors_[perf];
if (!only_wells) {
// subtract sum of component fluxes in the reservoir equation.
// need to consider the efficiency factor
ebosResid[cell_idx][flowPhaseToEbosCompIdx(componentIdx)] -= cq_s_effective.value();
}
// subtract sum of phase fluxes in the well equations.
2017-06-23 03:51:34 -05:00
resWell_[w][componentIdx] -= cq_s[componentIdx].value();
// assemble the jacobians
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
2017-06-23 03:51:34 -05:00
if (!only_wells) {
// also need to consider the efficiency factor when manipulating the jacobians.
duneB_[w][cell_idx][pvIdx][flowPhaseToEbosCompIdx(componentIdx)] -= cq_s_effective.derivative(pvIdx+numEq); // intput in transformed matrix
}
invDuneD_[w][w][componentIdx][pvIdx] -= cq_s[componentIdx].derivative(pvIdx+numEq);
}
for (int pvIdx = 0; pvIdx < numEq; ++pvIdx) {
if (!only_wells) {
// also need to consider the efficiency factor when manipulating the jacobians.
ebosJac[cell_idx][cell_idx][flowPhaseToEbosCompIdx(componentIdx)][flowToEbosPvIdx(pvIdx)] -= cq_s_effective.derivative(pvIdx);
2017-06-23 03:51:34 -05:00
duneC_[w][cell_idx][componentIdx][flowToEbosPvIdx(pvIdx)] -= cq_s_effective.derivative(pvIdx);
}
}
// add a trivial equation for the dummy phase for 2p cases (Only support water + oil)
if ( numComp < numWellEq ) {
assert(!active_[ Gas ]);
invDuneD_[w][w][Gas][Gas] = 1.0;
}
// Store the perforation phase flux for later usage.
if (has_solvent_ && componentIdx == solventSaturationIdx) {// if (flowPhaseToEbosCompIdx(componentIdx) == Solvent)
well_state.perfRateSolvent()[perf] = cq_s[componentIdx].value();
} else {
well_state.perfPhaseRates()[perf*np + componentIdx] = cq_s[componentIdx].value();
}
}
2017-06-23 03:51:34 -05:00
if (has_polymer_) {
EvalWell cq_s_poly = cq_s[Water];
if (wells().type[w] == INJECTOR) {
cq_s_poly *= wpolymer(w);
} else {
cq_s_poly *= extendEval(intQuants.polymerConcentration() * intQuants.polymerViscosityCorrection());
2017-06-23 03:51:34 -05:00
}
if (!only_wells) {
for (int pvIdx = 0; pvIdx < numEq; ++pvIdx) {
ebosJac[cell_idx][cell_idx][contiPolymerEqIdx][flowToEbosPvIdx(pvIdx)] -= cq_s_poly.derivative(pvIdx);
}
ebosResid[cell_idx][contiPolymerEqIdx] -= cq_s_poly.value();
}
}
// Store the perforation pressure for later usage.
well_state.perfPress()[perf] = well_state.bhp()[w] + wellPerforationPressureDiffs()[perf];
}
// add vol * dF/dt + Q to the well equations;
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
EvalWell resWell_loc = (wellSurfaceVolumeFraction(w, componentIdx) - F0_[w + nw*componentIdx]) * volume / dt;
resWell_loc += getQs(w, componentIdx);
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
invDuneD_[w][w][componentIdx][pvIdx] += resWell_loc.derivative(pvIdx+numEq);
}
resWell_[w][componentIdx] += resWell_loc.value();
}
2017-06-23 03:51:34 -05:00
// add trivial equation for polymer
if (has_polymer_) {
invDuneD_[w][w][contiPolymerEqIdx][polymerConcentrationIdx] = 1.0; //
}
}
2017-06-23 03:51:34 -05:00
// do the local inversion of D.
localInvert( invDuneD_ );
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag >::
getMobility(const Simulator& ebosSimulator, const int w, const int perf, const int cell_idx, std::vector<EvalWell>& mob) const
{
const int np = wells().number_of_phases;
assert (int(mob.size()) == numComponents());
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& materialLawManager = ebosSimulator.problem().materialLawManager();
// either use mobility of the perforation cell or calcualte its own
// based on passing the saturation table index
const int satid = wells().sat_table_id[perf] - 1;
const int satid_elem = materialLawManager->satnumRegionIdx(cell_idx);
if( satid == satid_elem ) { // the same saturation number is used. i.e. just use the mobilty from the cell
for (int phase = 0; phase < np; ++phase) {
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
mob[phase] = extendEval(intQuants.mobility(ebosPhaseIdx));
}
if (has_solvent_) {
2017-06-23 03:51:34 -05:00
mob[solventSaturationIdx] = extendEval(intQuants.solventMobility());
}
} else {
const auto& paramsCell = materialLawManager->connectionMaterialLawParams(satid, cell_idx);
Eval relativePerms[3] = { 0.0, 0.0, 0.0 };
MaterialLaw::relativePermeabilities(relativePerms, paramsCell, intQuants.fluidState());
// reset the satnumvalue back to original
materialLawManager->connectionMaterialLawParams(satid_elem, cell_idx);
// compute the mobility
for (int phase = 0; phase < np; ++phase) {
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
mob[phase] = extendEval(relativePerms[ebosPhaseIdx] / intQuants.fluidState().viscosity(ebosPhaseIdx));
}
// this may not work if viscosity and relperms has been modified?
if (has_solvent_) {
OPM_THROW(std::runtime_error, "individual mobility for wells does not work in combination with solvent");
}
}
// modify the water mobility if polymer is present
if (has_polymer_) {
// assume fully mixture for wells.
EvalWell polymerConcentration = extendEval(intQuants.polymerConcentration());
if (wells().type[w] == INJECTOR) {
const auto& viscosityMultiplier = PolymerModule::plyviscViscosityMultiplierTable(intQuants.pvtRegionIndex());
mob[ Water ] /= (extendEval(intQuants.waterViscosityCorrection()) * viscosityMultiplier.eval(polymerConcentration, /*extrapolate=*/true) );
}
if (PolymerModule::hasPlyshlog()) {
// compute the well water velocity with out shear effects.
const int numComp = numComponents();
bool allow_cf = allow_cross_flow(w, ebosSimulator);
const EvalWell& bhp = getBhp(w);
std::vector<EvalWell> cq_s(numComp,0.0);
computeWellFlux(w, wells().WI[perf], intQuants, mob, bhp, wellPerforationPressureDiffs()[perf], allow_cf, cq_s);
double area = 2 * M_PI * wells_rep_radius_[perf] * wells_perf_length_[perf];
const auto& materialLawManager = ebosSimulator.problem().materialLawManager();
const auto& scaledDrainageInfo =
materialLawManager->oilWaterScaledEpsInfoDrainage(cell_idx);
const Scalar& Swcr = scaledDrainageInfo.Swcr;
const EvalWell poro = extendEval(intQuants.porosity());
const EvalWell Sw = extendEval(intQuants.fluidState().saturation(flowPhaseToEbosPhaseIdx(Water)));
// guard against zero porosity and no water
const EvalWell denom = Opm::max( (area * poro * (Sw - Swcr)), 1e-12);
EvalWell waterVelocity = cq_s[ Water ] / denom * extendEval(intQuants.fluidState().invB(flowPhaseToEbosPhaseIdx(Water)));
if (PolymerModule::hasShrate()) {
// TODO Use the same conversion as for the reservoar equations.
// Need the "permeability" of the well?
// For now use the same formula as in legacy.
waterVelocity *= PolymerModule::shrate( intQuants.pvtRegionIndex() ) / wells_bore_diameter_[perf];
}
EvalWell polymerConcentration = extendEval(intQuants.polymerConcentration());
EvalWell shearFactor = PolymerModule::computeShearFactor(polymerConcentration,
intQuants.pvtRegionIndex(),
waterVelocity);
// modify the mobility with the shear factor and recompute the well fluxes.
mob[ Water ] /= shearFactor;
}
}
}
template<typename TypeTag>
bool
StandardWellsDense<TypeTag>::
allow_cross_flow(const int w, const Simulator& ebosSimulator) const
{
if (wells().allow_cf[w]) {
return true;
}
// check for special case where all perforations have cross flow
// then the wells must allow for cross flow
for (int perf = wells().well_connpos[w] ; perf < wells().well_connpos[w+1]; ++perf) {
const int cell_idx = wells().well_cells[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
EvalWell pressure = extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
EvalWell bhp = getBhp(w);
// Pressure drawdown (also used to determine direction of flow)
EvalWell well_pressure = bhp + wellPerforationPressureDiffs()[perf];
EvalWell drawdown = pressure - well_pressure;
if (drawdown.value() < 0 && wells().type[w] == INJECTOR) {
return false;
}
if (drawdown.value() > 0 && wells().type[w] == PRODUCER) {
return false;
}
}
return true;
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
localInvert(Mat& istlA) const
{
for (auto row = istlA.begin(), rowend = istlA.end(); row != rowend; ++row ) {
for (auto col = row->begin(), colend = row->end(); col != colend; ++col ) {
//std::cout << (*col) << std::endl;
(*col).invert();
}
}
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
print(Mat& istlA) const
{
for (auto row = istlA.begin(), rowend = istlA.end(); row != rowend; ++row ) {
for (auto col = row->begin(), colend = row->end(); col != colend; ++col ) {
std::cout << row.index() << " " << col.index() << "/n \n"<<(*col) << std::endl;
}
}
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
apply( BVector& r) const
{
if ( ! localWellsActive() ) {
return;
}
assert( invDrw_.size() == invDuneD_.N() );
invDuneD_.mv(resWell_,invDrw_);
duneB_.mmtv(invDrw_, r);
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
apply(const BVector& x, BVector& Ax) const
{
if ( ! localWellsActive() ) {
return;
}
assert( Cx_.size() == duneC_.N() );
BVector& invDCx = invDrw_;
assert( invDCx.size() == invDuneD_.N());
duneC_.mv(x, Cx_);
invDuneD_.mv(Cx_, invDCx);
duneB_.mmtv(invDCx,Ax);
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const
{
if ( ! localWellsActive() ) {
return;
}
if( scaleAddRes_.size() != Ax.size() ) {
scaleAddRes_.resize( Ax.size() );
}
scaleAddRes_ = 0.0;
apply( x, scaleAddRes_ );
Ax.axpy( alpha, scaleAddRes_ );
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
recoverVariable(const BVector& x, BVector& xw) const
{
if ( ! localWellsActive() ) {
return;
}
BVector resWell = resWell_;
duneC_.mmv(x, resWell);
invDuneD_.mv(resWell, xw);
}
template<typename TypeTag>
int
StandardWellsDense<TypeTag>::
flowToEbosPvIdx( const int flowPv ) const
{
const int flowToEbos[ 3 ] = {
BlackoilIndices::pressureSwitchIdx,
BlackoilIndices::waterSaturationIdx,
BlackoilIndices::compositionSwitchIdx
};
if (flowPv > 2 )
return flowPv;
return flowToEbos[ flowPv ];
}
template<typename TypeTag>
int
StandardWellsDense<TypeTag>::
flowPhaseToEbosCompIdx( const int phaseIdx ) const
{
const int phaseToComp[ 3 ] = { FluidSystem::waterCompIdx, FluidSystem::oilCompIdx, FluidSystem::gasCompIdx};
if (phaseIdx > 2 )
return phaseIdx;
return phaseToComp[ phaseIdx ];
}
template<typename TypeTag>
int
StandardWellsDense<TypeTag>::
flowPhaseToEbosPhaseIdx( const int phaseIdx ) const
{
assert(phaseIdx < 3);
const int flowToEbos[ 3 ] = { FluidSystem::waterPhaseIdx, FluidSystem::oilPhaseIdx, FluidSystem::gasPhaseIdx };
return flowToEbos[ phaseIdx ];
}
template<typename TypeTag>
std::vector<double>
StandardWellsDense<TypeTag>::
extractPerfData(const std::vector<double>& in) const
{
const int nw = wells().number_of_wells;
const int nperf = wells().well_connpos[nw];
std::vector<double> out(nperf);
for (int w = 0; w < nw; ++w) {
for (int perf = wells().well_connpos[w] ; perf < wells().well_connpos[w+1]; ++perf) {
const int well_idx = wells().well_cells[perf];
out[perf] = in[well_idx];
}
}
return out;
}
template<typename TypeTag>
int
StandardWellsDense<TypeTag>::
numPhases() const
{
return wells().number_of_phases;
}
template<typename TypeTag>
int
StandardWellsDense<TypeTag>::
numCells() const
{
return pv_.size();
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
resetWellControlFromState(const WellState& xw) const
{
const int nw = wells_->number_of_wells;
for (int w = 0; w < nw; ++w) {
WellControls* wc = wells_->ctrls[w];
well_controls_set_current( wc, xw.currentControls()[w]);
}
}
template<typename TypeTag>
const Wells&
StandardWellsDense<TypeTag>::
wells() const
{
assert(wells_ != 0);
return *(wells_);
}
template<typename TypeTag>
const Wells*
StandardWellsDense<TypeTag>::
wellsPointer() const
{
return wells_;
}
template<typename TypeTag>
bool
StandardWellsDense<TypeTag>::
wellsActive() const
{
return wells_active_;
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
setWellsActive(const bool wells_active)
{
wells_active_ = wells_active;
}
template<typename TypeTag>
bool
StandardWellsDense<TypeTag>::
localWellsActive() const
{
return wells_ ? (wells_->number_of_wells > 0 ) : false;
}
template<typename TypeTag>
int
StandardWellsDense<TypeTag>::
numWellVars() const
{
if ( !localWellsActive() ) {
return 0;
}
const int nw = wells().number_of_wells;
return numWellEq * nw;
}
template<typename TypeTag>
const std::vector<double>&
StandardWellsDense<TypeTag>::
wellPerforationDensities() const
{
return well_perforation_densities_;
}
template<typename TypeTag>
const std::vector<double>&
StandardWellsDense<TypeTag>::
wellPerforationPressureDiffs() const
{
return well_perforation_pressure_diffs_;
}
template<typename TypeTag>
typename StandardWellsDense<TypeTag>::EvalWell
StandardWellsDense<TypeTag>::
extendEval(const Eval& in) const {
EvalWell out = 0.0;
out.setValue(in.value());
for(int eqIdx = 0; eqIdx < numEq;++eqIdx) {
out.setDerivative(eqIdx, in.derivative(flowToEbosPvIdx(eqIdx)));
}
return out;
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
setWellVariables(const WellState& xw)
{
const int nw = wells().number_of_wells;
2017-06-26 01:40:30 -05:00
// for two-phase numComp < numWellEq
const int numComp = numComponents();
for (int eqIdx = 0; eqIdx < numComp; ++eqIdx) {
for (int w = 0; w < nw; ++w) {
const unsigned int idx = nw * eqIdx + w;
assert( idx < wellVariables_.size() );
assert( idx < xw.wellSolutions().size() );
EvalWell& eval = wellVariables_[ idx ];
eval = 0.0;
eval.setValue( xw.wellSolutions()[ idx ] );
eval.setDerivative(numEq + eqIdx, 1.0);
}
}
for (auto& well_interface : well_container_) {
well_interface->setWellVariables(xw);
}
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
print(const EvalWell& in) const
{
std::cout << in.value() << std::endl;
for (int i = 0; i < in.size; ++i) {
std::cout << in.derivative(i) << std::endl;
}
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
computeAccumWells()
{
const int nw = wells().number_of_wells;
for (int eqIdx = 0; eqIdx < numWellEq; ++eqIdx) {
for (int w = 0; w < nw; ++w) {
F0_[w + nw * eqIdx] = wellSurfaceVolumeFraction(w, eqIdx).value();
}
}
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
computeWellFlux(const int& w, const double& Tw,
const IntensiveQuantities& intQuants,
const std::vector<EvalWell>& mob_perfcells_dense,
const EvalWell& bhp, const double& cdp,
const bool& allow_cf, std::vector<EvalWell>& cq_s) const
{
const Opm::PhaseUsage& pu = phase_usage_;
const int np = wells().number_of_phases;
const int numComp = numComponents();
std::vector<EvalWell> cmix_s(numComp,0.0);
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
cmix_s[componentIdx] = wellSurfaceVolumeFraction(w, componentIdx);
}
auto& fs = intQuants.fluidState();
EvalWell pressure = extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
EvalWell rs = extendEval(fs.Rs());
EvalWell rv = extendEval(fs.Rv());
std::vector<EvalWell> b_perfcells_dense(numComp, 0.0);
for (int phase = 0; phase < np; ++phase) {
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
b_perfcells_dense[phase] = extendEval(fs.invB(ebosPhaseIdx));
}
if (has_solvent_) {
b_perfcells_dense[solventSaturationIdx] = extendEval(intQuants.solventInverseFormationVolumeFactor());
}
// Pressure drawdown (also used to determine direction of flow)
EvalWell well_pressure = bhp + cdp;
EvalWell drawdown = pressure - well_pressure;
// producing perforations
if ( drawdown.value() > 0 ) {
//Do nothing if crossflow is not allowed
if (!allow_cf && wells().type[w] == INJECTOR) {
return;
}
// compute component volumetric rates at standard conditions
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
const EvalWell cq_p = - Tw * (mob_perfcells_dense[componentIdx] * drawdown);
cq_s[componentIdx] = b_perfcells_dense[componentIdx] * cq_p;
}
if (active_[Oil] && active_[Gas]) {
const int oilpos = pu.phase_pos[Oil];
const int gaspos = pu.phase_pos[Gas];
const EvalWell cq_sOil = cq_s[oilpos];
const EvalWell cq_sGas = cq_s[gaspos];
cq_s[gaspos] += rs * cq_sOil;
cq_s[oilpos] += rv * cq_sGas;
}
} else {
//Do nothing if crossflow is not allowed
if (!allow_cf && wells().type[w] == PRODUCER) {
return;
}
// Using total mobilities
EvalWell total_mob_dense = mob_perfcells_dense[0];
for (int componentIdx = 1; componentIdx < numComp; ++componentIdx) {
total_mob_dense += mob_perfcells_dense[componentIdx];
}
// injection perforations total volume rates
const EvalWell cqt_i = - Tw * (total_mob_dense * drawdown);
// compute volume ratio between connection at standard conditions
EvalWell volumeRatio = 0.0;
if (active_[Water]) {
const int watpos = pu.phase_pos[Water];
volumeRatio += cmix_s[watpos] / b_perfcells_dense[watpos];
}
if (has_solvent_) {
volumeRatio += cmix_s[solventSaturationIdx] / b_perfcells_dense[solventSaturationIdx];
}
if (active_[Oil] && active_[Gas]) {
const int oilpos = pu.phase_pos[Oil];
const int gaspos = pu.phase_pos[Gas];
// Incorporate RS/RV factors if both oil and gas active
const EvalWell d = 1.0 - rv * rs;
if (d.value() == 0.0) {
OPM_THROW(Opm::NumericalProblem, "Zero d value obtained for well " << wells().name[w] << " during flux calcuation"
<< " with rs " << rs << " and rv " << rv);
}
const EvalWell tmp_oil = (cmix_s[oilpos] - rv * cmix_s[gaspos]) / d;
//std::cout << "tmp_oil " <<tmp_oil << std::endl;
volumeRatio += tmp_oil / b_perfcells_dense[oilpos];
const EvalWell tmp_gas = (cmix_s[gaspos] - rs * cmix_s[oilpos]) / d;
//std::cout << "tmp_gas " <<tmp_gas << std::endl;
volumeRatio += tmp_gas / b_perfcells_dense[gaspos];
}
else {
if (active_[Oil]) {
const int oilpos = pu.phase_pos[Oil];
volumeRatio += cmix_s[oilpos] / b_perfcells_dense[oilpos];
}
if (active_[Gas]) {
const int gaspos = pu.phase_pos[Gas];
volumeRatio += cmix_s[gaspos] / b_perfcells_dense[gaspos];
}
}
// injecting connections total volumerates at standard conditions
EvalWell cqt_is = cqt_i/volumeRatio;
//std::cout << "volrat " << volumeRatio << " " << volrat_perf_[perf] << std::endl;
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
cq_s[componentIdx] = cmix_s[componentIdx] * cqt_is; // * b_perfcells_dense[phase];
}
}
}
template<typename TypeTag>
SimulatorReport
StandardWellsDense<TypeTag>::
solveWellEq(Simulator& ebosSimulator,
const double dt,
WellState& well_state)
{
const int nw = wells().number_of_wells;
WellState well_state0 = well_state;
int it = 0;
bool converged;
do {
assembleWellEq(ebosSimulator, dt, well_state, true);
converged = getWellConvergence(ebosSimulator, it);
// checking whether the group targets are converged
if (wellCollection()->groupControlActive()) {
converged = converged && wellCollection()->groupTargetConverged(well_state.wellRates());
}
if (converged) {
break;
}
++it;
if( localWellsActive() )
{
BVector dx_well (nw);
invDuneD_.mv(resWell_, dx_well);
updateWellState(dx_well, well_state);
}
// updateWellControls uses communication
// Therefore the following is executed if there
// are active wells anywhere in the global domain.
if( wellsActive() )
{
updateWellControls(well_state);
setWellVariables(well_state);
}
} while (it < 15);
if (!converged) {
well_state = well_state0;
// also recover the old well controls
for (int w = 0; w < nw; ++w) {
WellControls* wc = wells().ctrls[w];
well_controls_set_current(wc, well_state.currentControls()[w]);
}
}
SimulatorReport report;
report.converged = converged;
report.total_well_iterations = it;
return report;
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
printIf(const int c, const double x, const double y, const double eps, const std::string type) const
{
if (std::abs(x-y) > eps) {
std::cout << type << " " << c << ": "<<x << " " << y << std::endl;
}
}
template<typename TypeTag>
std::vector<double>
StandardWellsDense<TypeTag>::
residual() const
{
if( ! wellsActive() )
{
return std::vector<double>();
}
const int nw = wells().number_of_wells;
const int numComp = numComponents();
std::vector<double> res(numEq*nw, 0.0);
for( int compIdx = 0; compIdx < numComp; ++compIdx) {
for (int wellIdx = 0; wellIdx < nw; ++wellIdx) {
int idx = wellIdx + nw*compIdx;
res[idx] = resWell_[ wellIdx ][ compIdx ];
}
}
return res;
}
template<typename TypeTag>
bool
StandardWellsDense<TypeTag>::
getWellConvergence(Simulator& ebosSimulator,
const int iteration) const
{
typedef double Scalar;
typedef std::vector< Scalar > Vector;
const int np = numPhases();
const int numComp = numComponents();
const double tol_wells = param_.tolerance_wells_;
const double maxResidualAllowed = param_.max_residual_allowed_;
std::vector< Scalar > B_avg( numComp, Scalar() );
std::vector< Scalar > maxNormWell(numComp, Scalar() );
auto& grid = ebosSimulator.gridManager().grid();
const auto& gridView = grid.leafGridView();
ElementContext elemCtx(ebosSimulator);
const auto& elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
elemIt != elemEndIt; ++elemIt)
{
elemCtx.updatePrimaryStencil(*elemIt);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
for ( int phaseIdx = 0; phaseIdx < np; ++phaseIdx )
{
auto& B = B_avg[ phaseIdx ];
const int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phaseIdx);
B += 1 / fs.invB(ebosPhaseIdx).value();
}
if (has_solvent_) {
auto& B = B_avg[ solventSaturationIdx ];
B += 1 / intQuants.solventInverseFormationVolumeFactor().value();
}
}
// compute global average
grid.comm().sum(B_avg.data(), B_avg.size());
for(auto& bval: B_avg)
2017-04-04 02:58:49 -05:00
{
bval/=global_nc_;
2017-04-04 02:58:49 -05:00
}
auto res = residual();
const int nw = res.size() / numComp;
for ( int compIdx = 0; compIdx < numComp; ++compIdx )
{
for ( int w = 0; w < nw; ++w ) {
maxNormWell[compIdx] = std::max(maxNormWell[compIdx], std::abs(res[nw*compIdx + w]));
}
}
grid.comm().max(maxNormWell.data(), maxNormWell.size());
Vector well_flux_residual(numComp);
bool converged_Well = true;
// Finish computation
for ( int compIdx = 0; compIdx < numComp; ++compIdx )
{
well_flux_residual[compIdx] = B_avg[compIdx] * maxNormWell[compIdx];
converged_Well = converged_Well && (well_flux_residual[compIdx] < tol_wells);
}
// if one of the residuals is NaN, throw exception, so that the solver can be restarted
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
const auto& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
if (std::isnan(well_flux_residual[phaseIdx])) {
OPM_THROW(Opm::NumericalProblem, "NaN residual for phase " << phaseName);
}
if (well_flux_residual[phaseIdx] > maxResidualAllowed) {
OPM_THROW(Opm::NumericalProblem, "Too large residual for phase " << phaseName);
}
}
if ( terminal_output_ )
{
// Only rank 0 does print to std::cout
if (iteration == 0) {
std::string msg;
msg = "Iter";
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
const std::string& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
msg += " W-FLUX(" + phaseName + ")";
}
OpmLog::note(msg);
}
std::ostringstream ss;
const std::streamsize oprec = ss.precision(3);
const std::ios::fmtflags oflags = ss.setf(std::ios::scientific);
ss << std::setw(4) << iteration;
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
ss << std::setw(11) << well_flux_residual[compIdx];
}
ss.precision(oprec);
ss.flags(oflags);
OpmLog::note(ss.str());
}
return converged_Well;
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
computeWellConnectionPressures(const Simulator& ebosSimulator,
const WellState& xw)
{
if( ! localWellsActive() ) return ;
// 1. Compute properties required by computeConnectionPressureDelta().
// Note that some of the complexity of this part is due to the function
// taking std::vector<double> arguments, and not Eigen objects.
std::vector<double> b_perf;
std::vector<double> rsmax_perf;
std::vector<double> rvmax_perf;
std::vector<double> surf_dens_perf;
computePropertiesForWellConnectionPressures(ebosSimulator, xw, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
computeWellConnectionDensitesPressures(xw, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf, cell_depths_, gravity_);
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
computePropertiesForWellConnectionPressures(const Simulator& ebosSimulator,
const WellState& xw,
std::vector<double>& b_perf,
std::vector<double>& rsmax_perf,
std::vector<double>& rvmax_perf,
std::vector<double>& surf_dens_perf) const
{
const int nperf = wells().well_connpos[wells().number_of_wells];
const int nw = wells().number_of_wells;
const int numComp = numComponents();
const PhaseUsage& pu = phase_usage_;
b_perf.resize(nperf*numComp);
surf_dens_perf.resize(nperf*numComp);
//rs and rv are only used if both oil and gas is present
if (pu.phase_used[BlackoilPhases::Vapour] && pu.phase_pos[BlackoilPhases::Liquid]) {
rsmax_perf.resize(nperf);
rvmax_perf.resize(nperf);
}
// Compute the average pressure in each well block
for (int w = 0; w < nw; ++w) {
for (int perf = wells().well_connpos[w]; perf < wells().well_connpos[w+1]; ++perf) {
const int cell_idx = wells().well_cells[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
const double p_above = perf == wells().well_connpos[w] ? xw.bhp()[w] : xw.perfPress()[perf - 1];
const double p_avg = (xw.perfPress()[perf] + p_above)/2;
const double temperature = fs.temperature(FluidSystem::oilPhaseIdx).value();
if (pu.phase_used[BlackoilPhases::Aqua]) {
b_perf[ pu.phase_pos[BlackoilPhases::Aqua] + perf * numComp] =
FluidSystem::waterPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
if (pu.phase_used[BlackoilPhases::Vapour]) {
const int gaspos = pu.phase_pos[BlackoilPhases::Vapour] + perf * numComp;
const int gaspos_well = pu.phase_pos[BlackoilPhases::Vapour] + w * pu.num_phases;
if (pu.phase_used[BlackoilPhases::Liquid]) {
const int oilpos_well = pu.phase_pos[BlackoilPhases::Liquid] + w * pu.num_phases;
const double oilrate = std::abs(xw.wellRates()[oilpos_well]); //in order to handle negative rates in producers
rvmax_perf[perf] = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), temperature, p_avg);
if (oilrate > 0) {
const double gasrate = std::abs(xw.wellRates()[gaspos_well]) - xw.solventWellRate(w);
double rv = 0.0;
if (gasrate > 0) {
rv = oilrate / gasrate;
}
rv = std::min(rv, rvmax_perf[perf]);
b_perf[gaspos] = FluidSystem::gasPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rv);
}
else {
b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
} else {
b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
}
if (pu.phase_used[BlackoilPhases::Liquid]) {
const int oilpos = pu.phase_pos[BlackoilPhases::Liquid] + perf * numComp;
const int oilpos_well = pu.phase_pos[BlackoilPhases::Liquid] + w * pu.num_phases;
if (pu.phase_used[BlackoilPhases::Vapour]) {
rsmax_perf[perf] = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), temperature, p_avg);
const int gaspos_well = pu.phase_pos[BlackoilPhases::Vapour] + w * pu.num_phases;
const double gasrate = std::abs(xw.wellRates()[gaspos_well]) - xw.solventWellRate(w);
if (gasrate > 0) {
const double oilrate = std::abs(xw.wellRates()[oilpos_well]);
double rs = 0.0;
if (oilrate > 0) {
rs = gasrate / oilrate;
}
rs = std::min(rs, rsmax_perf[perf]);
b_perf[oilpos] = FluidSystem::oilPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rs);
} else {
b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
} else {
b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
}
// Surface density.
for (int p = 0; p < pu.num_phases; ++p) {
surf_dens_perf[numComp*perf + p] = FluidSystem::referenceDensity( flowPhaseToEbosPhaseIdx( p ), fs.pvtRegionIndex());
}
2017-05-30 07:33:17 -05:00
// We use cell values for solvent injector
if (has_solvent_) {
b_perf[numComp*perf + solventSaturationIdx] = intQuants.solventInverseFormationVolumeFactor().value();
surf_dens_perf[numComp*perf + solventSaturationIdx] = intQuants.solventRefDensity();
}
}
}
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
updateWellState(const BVector& dwells,
WellState& well_state) const
{
if( !localWellsActive() ) return;
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
double dFLimit = dWellFractionMax();
double dBHPLimit = dbhpMaxRel();
std::vector<double> xvar_well_old = well_state.wellSolutions();
for (int w = 0; w < nw; ++w) {
// update the second and third well variable (The flux fractions)
std::vector<double> F(np,0.0);
if (active_[ Water ]) {
2017-06-23 03:51:34 -05:00
const int sign2 = dwells[w][WFrac] > 0 ? 1: -1;
const double dx2_limited = sign2 * std::min(std::abs(dwells[w][WFrac]),dFLimit);
well_state.wellSolutions()[WFrac*nw + w] = xvar_well_old[WFrac*nw + w] - dx2_limited;
}
if (active_[ Gas ]) {
2017-06-23 03:51:34 -05:00
const int sign3 = dwells[w][GFrac] > 0 ? 1: -1;
const double dx3_limited = sign3 * std::min(std::abs(dwells[w][GFrac]),dFLimit);
well_state.wellSolutions()[GFrac*nw + w] = xvar_well_old[GFrac*nw + w] - dx3_limited;
}
if (has_solvent_) {
2017-06-23 03:51:34 -05:00
const int sign4 = dwells[w][SFrac] > 0 ? 1: -1;
const double dx4_limited = sign4 * std::min(std::abs(dwells[w][SFrac]),dFLimit);
well_state.wellSolutions()[SFrac*nw + w] = xvar_well_old[SFrac*nw + w] - dx4_limited;
}
assert(active_[ Oil ]);
F[Oil] = 1.0;
if (active_[ Water ]) {
F[Water] = well_state.wellSolutions()[WFrac*nw + w];
F[Oil] -= F[Water];
}
if (active_[ Gas ]) {
F[Gas] = well_state.wellSolutions()[GFrac*nw + w];
F[Oil] -= F[Gas];
}
double F_solvent = 0.0;
if (has_solvent_) {
F_solvent = well_state.wellSolutions()[SFrac*nw + w];
F[Oil] -= F_solvent;
}
if (active_[ Water ]) {
if (F[Water] < 0.0) {
if (active_[ Gas ]) {
F[Gas] /= (1.0 - F[Water]);
}
if (has_solvent_) {
F_solvent /= (1.0 - F[Water]);
}
F[Oil] /= (1.0 - F[Water]);
F[Water] = 0.0;
}
}
if (active_[ Gas ]) {
if (F[Gas] < 0.0) {
if (active_[ Water ]) {
F[Water] /= (1.0 - F[Gas]);
}
if (has_solvent_) {
F_solvent /= (1.0 - F[Gas]);
}
F[Oil] /= (1.0 - F[Gas]);
F[Gas] = 0.0;
}
}
if (F[Oil] < 0.0) {
if (active_[ Water ]) {
F[Water] /= (1.0 - F[Oil]);
}
if (active_[ Gas ]) {
F[Gas] /= (1.0 - F[Oil]);
}
if (has_solvent_) {
F_solvent /= (1.0 - F[Oil]);
}
F[Oil] = 0.0;
}
if (active_[ Water ]) {
well_state.wellSolutions()[WFrac*nw + w] = F[Water];
}
if (active_[ Gas ]) {
well_state.wellSolutions()[GFrac*nw + w] = F[Gas];
}
if(has_solvent_) {
well_state.wellSolutions()[SFrac*nw + w] = F_solvent;
}
2017-05-30 07:33:17 -05:00
// F_solvent is added to F_gas. This means that well_rate[Gas] also contains solvent.
// More testing is needed to make sure this is correct for well groups and THP.
if (has_solvent_){
F[Gas] += F_solvent;
}
// The interpretation of the first well variable depends on the well control
const WellControls* wc = wells().ctrls[w];
// The current control in the well state overrides
// the current control set in the Wells struct, which
// is instead treated as a default.
const int current = well_state.currentControls()[w];
const double target_rate = well_controls_iget_target(wc, current);
std::vector<double> g = {1,1,0.01};
if (well_controls_iget_type(wc, current) == RESERVOIR_RATE) {
const double* distr = well_controls_iget_distr(wc, current);
for (int p = 0; p < np; ++p) {
if (distr[p] > 0.) { // For injection wells, there only one non-zero distr value
F[p] /= distr[p];
} else {
F[p] = 0.;
}
}
} else {
for (int p = 0; p < np; ++p) {
F[p] /= g[p];
}
}
switch (well_controls_iget_type(wc, current)) {
case THP: // The BHP and THP both uses the total rate as first well variable.
case BHP:
{
2017-06-23 03:51:34 -05:00
well_state.wellSolutions()[nw*XvarWell + w] = xvar_well_old[nw*XvarWell + w] - dwells[w][XvarWell];
switch (wells().type[w]) {
case INJECTOR:
for (int p = 0; p < np; ++p) {
const double comp_frac = wells().comp_frac[np*w + p];
well_state.wellRates()[w*np + p] = comp_frac * well_state.wellSolutions()[nw*XvarWell + w];
}
break;
case PRODUCER:
for (int p = 0; p < np; ++p) {
well_state.wellRates()[w*np + p] = well_state.wellSolutions()[nw*XvarWell + w] * F[p];
}
break;
}
if (well_controls_iget_type(wc, current) == THP) {
// Calculate bhp from thp control and well rates
double aqua = 0.0;
double liquid = 0.0;
double vapour = 0.0;
const Opm::PhaseUsage& pu = phase_usage_;
if (active_[ Water ]) {
aqua = well_state.wellRates()[w*np + pu.phase_pos[ Water ] ];
}
if (active_[ Oil ]) {
liquid = well_state.wellRates()[w*np + pu.phase_pos[ Oil ] ];
}
if (active_[ Gas ]) {
vapour = well_state.wellRates()[w*np + pu.phase_pos[ Gas ] ];
}
const int vfp = well_controls_iget_vfp(wc, current);
const double& thp = well_controls_iget_target(wc, current);
const double& alq = well_controls_iget_alq(wc, current);
//Set *BHP* target by calculating bhp from THP
const WellType& well_type = wells().type[w];
// pick the density in the top layer
const int perf = wells().well_connpos[w];
const double rho = well_perforation_densities_[perf];
if (well_type == INJECTOR) {
const double dp = wellhelpers::computeHydrostaticCorrection(
wells(), w, vfp_properties_->getInj()->getTable(vfp)->getDatumDepth(),
rho, gravity_);
well_state.bhp()[w] = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp;
}
else if (well_type == PRODUCER) {
const double dp = wellhelpers::computeHydrostaticCorrection(
wells(), w, vfp_properties_->getProd()->getTable(vfp)->getDatumDepth(),
rho, gravity_);
well_state.bhp()[w] = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp;
}
else {
OPM_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well");
}
}
}
break;
case SURFACE_RATE: // Both rate controls use bhp as first well variable
case RESERVOIR_RATE:
{
2017-06-23 03:51:34 -05:00
const int sign1 = dwells[w][XvarWell] > 0 ? 1: -1;
const double dx1_limited = sign1 * std::min(std::abs(dwells[w][XvarWell]),std::abs(xvar_well_old[nw*XvarWell + w])*dBHPLimit);
well_state.wellSolutions()[nw*XvarWell + w] = std::max(xvar_well_old[nw*XvarWell + w] - dx1_limited,1e5);
well_state.bhp()[w] = well_state.wellSolutions()[nw*XvarWell + w];
if (well_controls_iget_type(wc, current) == SURFACE_RATE) {
if (wells().type[w]==PRODUCER) {
const double* distr = well_controls_iget_distr(wc, current);
double F_target = 0.0;
for (int p = 0; p < np; ++p) {
F_target += distr[p] * F[p];
}
for (int p = 0; p < np; ++p) {
well_state.wellRates()[np*w + p] = F[p] * target_rate / F_target;
}
} else {
for (int p = 0; p < np; ++p) {
well_state.wellRates()[w*np + p] = wells().comp_frac[np*w + p] * target_rate;
}
}
} else { // RESERVOIR_RATE
for (int p = 0; p < np; ++p) {
well_state.wellRates()[np*w + p] = F[p] * target_rate;
}
}
}
break;
} // end of switch (well_controls_iget_type(wc, current))
} // end of for (int w = 0; w < nw; ++w)
// for the wells having a THP constaint, we should update their thp value
// If it is under THP control, it will be set to be the target value. Otherwise,
// the thp value will be calculated based on the bhp value, assuming the bhp value is correctly calculated.
for (int w = 0; w < nw; ++w) {
const WellControls* wc = wells().ctrls[w];
const int nwc = well_controls_get_num(wc);
// Looping over all controls until we find a THP constraint
int ctrl_index = 0;
for ( ; ctrl_index < nwc; ++ctrl_index) {
if (well_controls_iget_type(wc, ctrl_index) == THP) {
// the current control
const int current = well_state.currentControls()[w];
// If under THP control at the moment
if (current == ctrl_index) {
const double thp_target = well_controls_iget_target(wc, current);
well_state.thp()[w] = thp_target;
} else { // otherwise we calculate the thp from the bhp value
double aqua = 0.0;
double liquid = 0.0;
double vapour = 0.0;
const Opm::PhaseUsage& pu = phase_usage_;
if (active_[ Water ]) {
aqua = well_state.wellRates()[w*np + pu.phase_pos[ Water ] ];
}
if (active_[ Oil ]) {
liquid = well_state.wellRates()[w*np + pu.phase_pos[ Oil ] ];
}
if (active_[ Gas ]) {
vapour = well_state.wellRates()[w*np + pu.phase_pos[ Gas ] ];
}
const double alq = well_controls_iget_alq(wc, ctrl_index);
const int table_id = well_controls_iget_vfp(wc, ctrl_index);
const WellType& well_type = wells().type[w];
const int perf = wells().well_connpos[w]; //first perforation.
if (well_type == INJECTOR) {
const double dp = wellhelpers::computeHydrostaticCorrection(
wells(), w, vfp_properties_->getInj()->getTable(table_id)->getDatumDepth(),
wellPerforationDensities()[perf], gravity_);
const double bhp = well_state.bhp()[w];
well_state.thp()[w] = vfp_properties_->getInj()->thp(table_id, aqua, liquid, vapour, bhp + dp);
} else if (well_type == PRODUCER) {
const double dp = wellhelpers::computeHydrostaticCorrection(
wells(), w, vfp_properties_->getProd()->getTable(table_id)->getDatumDepth(),
wellPerforationDensities()[perf], gravity_);
const double bhp = well_state.bhp()[w];
well_state.thp()[w] = vfp_properties_->getProd()->thp(table_id, aqua, liquid, vapour, bhp + dp, alq);
} else {
OPM_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well");
}
}
// the THP control is found, we leave the loop now
break;
}
} // end of for loop for seaching THP constraints
// no THP constraint found
if (ctrl_index == nwc) { // not finding a THP contstraints
well_state.thp()[w] = 0.0;
}
} // end of for (int w = 0; w < nw; ++w)
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
updateWellControls(WellState& xw) const
{
// Even if there no wells active locally, we cannot
// return as the Destructor of the WellSwitchingLogger
// uses global communication. For no well active globally
// we simply return.
if( !wellsActive() ) return ;
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
// keeping a copy of the current controls, to see whether control changes later.
std::vector<int> old_control_index(nw, 0);
for (int w = 0; w < nw; ++w) {
old_control_index[w] = xw.currentControls()[w];
}
// Find, for each well, if any constraints are broken. If so,
// switch control to first broken constraint.
#pragma omp parallel for schedule(dynamic)
for (int w = 0; w < nw; ++w) {
WellControls* wc = wells().ctrls[w];
// The current control in the well state overrides
// the current control set in the Wells struct, which
// is instead treated as a default.
int current = xw.currentControls()[w];
// Loop over all controls except the current one, and also
// skip any RESERVOIR_RATE controls, since we cannot
// handle those.
const int nwc = well_controls_get_num(wc);
int ctrl_index = 0;
for (; ctrl_index < nwc; ++ctrl_index) {
if (ctrl_index == current) {
// This is the currently used control, so it is
// used as an equation. So this is not used as an
// inequality constraint, and therefore skipped.
continue;
}
if (wellhelpers::constraintBroken(
xw.bhp(), xw.thp(), xw.wellRates(),
w, np, wells().type[w], wc, ctrl_index)) {
// ctrl_index will be the index of the broken constraint after the loop.
break;
}
}
if (ctrl_index != nwc) {
// Constraint number ctrl_index was broken, switch to it.
xw.currentControls()[w] = ctrl_index;
current = xw.currentControls()[w];
well_controls_set_current( wc, current);
}
// update whether well is under group control
if (wellCollection()->groupControlActive()) {
// get well node in the well collection
WellNode& well_node = well_collection_->findWellNode(std::string(wells().name[w]));
// update whehter the well is under group control or individual control
if (well_node.groupControlIndex() >= 0 && current == well_node.groupControlIndex()) {
// under group control
well_node.setIndividualControl(false);
} else {
// individual control
well_node.setIndividualControl(true);
}
}
}
// the new well control indices after all the related updates,
std::vector<int> updated_control_index(nw, 0);
for (int w = 0; w < nw; ++w) {
updated_control_index[w] = xw.currentControls()[w];
}
// checking whether control changed
wellhelpers::WellSwitchingLogger logger;
for (int w = 0; w < nw; ++w) {
const WellControls* wc = wells().ctrls[w];
if (updated_control_index[w] != old_control_index[w]) {
logger.wellSwitched(wells().name[w],
well_controls_iget_type(wc, old_control_index[w]),
well_controls_iget_type(wc, updated_control_index[w]));
}
if (updated_control_index[w] != old_control_index[w] || well_collection_->groupControlActive()) {
updateWellStateWithTarget(wc, updated_control_index[w], w, xw);
}
}
// upate the well targets following group controls
// it will not change the control mode, only update the targets
if (wellCollection()->groupControlActive()) {
applyVREPGroupControl(xw);
wellCollection()->updateWellTargets(xw.wellRates());
for (int w = 0; w < nw; ++w) {
const WellControls* wc = wells().ctrls[w];
updateWellStateWithTarget(wc, updated_control_index[w], w, xw);
}
}
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
updateListEconLimited(const Schedule& schedule,
const int current_step,
const Wells* wells_struct,
const WellState& well_state,
DynamicListEconLimited& list_econ_limited) const
{
// With no wells (on process) wells_struct is a null pointer
const int nw = (wells_struct)? wells_struct->number_of_wells : 0;
for (int w = 0; w < nw; ++w) {
// flag to check if the mim oil/gas rate limit is violated
bool rate_limit_violated = false;
const std::string& well_name = wells_struct->name[w];
const Well* well_ecl = schedule.getWell(well_name);
const WellEconProductionLimits& econ_production_limits = well_ecl->getEconProductionLimits(current_step);
// economic limits only apply for production wells.
if (wells_struct->type[w] != PRODUCER) {
continue;
}
// if no limit is effective here, then continue to the next well
if ( !econ_production_limits.onAnyEffectiveLimit() ) {
continue;
}
// for the moment, we only handle rate limits, not handling potential limits
// the potential limits should not be difficult to add
const WellEcon::QuantityLimitEnum& quantity_limit = econ_production_limits.quantityLimit();
if (quantity_limit == WellEcon::POTN) {
const std::string msg = std::string("POTN limit for well ") + well_name + std::string(" is not supported for the moment. \n")
+ std::string("All the limits will be evaluated based on RATE. ");
OpmLog::warning("NOT_SUPPORTING_POTN", msg);
}
const WellMapType& well_map = well_state.wellMap();
const typename WellMapType::const_iterator i_well = well_map.find(well_name);
assert(i_well != well_map.end()); // should always be found?
const WellMapEntryType& map_entry = i_well->second;
const int well_number = map_entry[0];
if (econ_production_limits.onAnyRateLimit()) {
rate_limit_violated = checkRateEconLimits(econ_production_limits, well_state, well_number);
}
if (rate_limit_violated) {
if (econ_production_limits.endRun()) {
const std::string warning_message = std::string("ending run after well closed due to economic limits is not supported yet \n")
+ std::string("the program will keep running after ") + well_name + std::string(" is closed");
OpmLog::warning("NOT_SUPPORTING_ENDRUN", warning_message);
}
if (econ_production_limits.validFollowonWell()) {
OpmLog::warning("NOT_SUPPORTING_FOLLOWONWELL", "opening following on well after well closed is not supported yet");
}
if (well_ecl->getAutomaticShutIn()) {
list_econ_limited.addShutWell(well_name);
const std::string msg = std::string("well ") + well_name + std::string(" will be shut in due to economic limit");
OpmLog::info(msg);
} else {
list_econ_limited.addStoppedWell(well_name);
const std::string msg = std::string("well ") + well_name + std::string(" will be stopped due to economic limit");
OpmLog::info(msg);
}
// the well is closed, not need to check other limits
continue;
}
// checking for ratio related limits, mostly all kinds of ratio.
bool ratio_limits_violated = false;
RatioCheckTuple ratio_check_return;
if (econ_production_limits.onAnyRatioLimit()) {
ratio_check_return = checkRatioEconLimits(econ_production_limits, well_state, map_entry);
ratio_limits_violated = std::get<0>(ratio_check_return);
}
if (ratio_limits_violated) {
const bool last_connection = std::get<1>(ratio_check_return);
const int worst_offending_connection = std::get<2>(ratio_check_return);
const int perf_start = map_entry[1];
assert((worst_offending_connection >= 0) && (worst_offending_connection < map_entry[2]));
const int cell_worst_offending_connection = wells_struct->well_cells[perf_start + worst_offending_connection];
list_econ_limited.addClosedConnectionsForWell(well_name, cell_worst_offending_connection);
const std::string msg = std::string("Connection ") + std::to_string(worst_offending_connection) + std::string(" for well ")
+ well_name + std::string(" will be closed due to economic limit");
OpmLog::info(msg);
if (last_connection) {
list_econ_limited.addShutWell(well_name);
const std::string msg2 = well_name + std::string(" will be shut due to the last connection closed");
OpmLog::info(msg2);
}
}
} // for (int w = 0; w < nw; ++w)
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
computeWellConnectionDensitesPressures(const WellState& xw,
const std::vector<double>& b_perf,
const std::vector<double>& rsmax_perf,
const std::vector<double>& rvmax_perf,
const std::vector<double>& surf_dens_perf,
const std::vector<double>& depth_perf,
const double grav)
{
// Compute densities
const int nperf = depth_perf.size();
const int numComponent = b_perf.size() / nperf;
const int np = wells().number_of_phases;
std::vector<double> perfRates(b_perf.size(),0.0);
for (int perf = 0; perf < nperf; ++perf) {
for (int phase = 0; phase < np; ++phase) {
perfRates[perf*numComponent + phase] = xw.perfPhaseRates()[perf*np + phase];
}
if(has_solvent_) {
perfRates[perf*numComponent + solventSaturationIdx] = xw.perfRateSolvent()[perf];
}
}
well_perforation_densities_ =
WellDensitySegmented::computeConnectionDensities(
wells(), phase_usage_, perfRates,
b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
// Compute pressure deltas
well_perforation_pressure_diffs_ =
WellDensitySegmented::computeConnectionPressureDelta(
wells(), depth_perf, well_perforation_densities_, grav);
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
computeWellPotentials(const Simulator& ebosSimulator,
const WellState& well_state,
std::vector<double>& well_potentials) const
{
// number of wells and phases
const int nw = wells().number_of_wells;
const int np = wells().number_of_phases;
well_potentials.resize(nw * np, 0.0);
for (int w = 0; w < nw; ++w) {
// get the bhp value based on the bhp constraints
const double bhp = mostStrictBhpFromBhpLimits(w);
// does the well have a THP related constraint?
2017-04-11 08:02:36 -05:00
const bool has_thp_control = wellHasTHPConstraints(w);
std::vector<double> potentials(np);
2017-04-11 08:02:36 -05:00
if ( !has_thp_control ) {
assert(std::abs(bhp) != std::numeric_limits<double>::max());
computeWellRatesWithBhp(ebosSimulator, bhp, w, potentials);
} else { // the well has a THP related constraint
// checking whether a well is newly added, it only happens at the beginning of the report step
if ( !well_state.isNewWell(w) ) {
for (int p = 0; p < np; ++p) {
// This is dangerous for new added well
// since we are not handling the initialization correctly for now
potentials[p] = well_state.wellRates()[w * np + p];
}
} else {
// We need to generate a reasonable rates to start the iteration process
computeWellRatesWithBhp(ebosSimulator, bhp, w, potentials);
for (double& value : potentials) {
// make the value a little safer in case the BHP limits are default ones
// TODO: a better way should be a better rescaling based on the investigation of the VFP table.
2017-04-11 08:02:36 -05:00
const double rate_safety_scaling_factor = 0.00001;
value *= rate_safety_scaling_factor;
}
}
potentials = computeWellPotentialWithTHP(ebosSimulator, w, bhp, potentials);
}
// putting the sucessfully calculated potentials to the well_potentials
for (int p = 0; p < np; ++p) {
well_potentials[w * np + p] = std::abs(potentials[p]);
}
} // end of for (int w = 0; w < nw; ++w)
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
prepareTimeStep(const Simulator& ebos_simulator,
WellState& well_state)
{
const int nw = wells().number_of_wells;
for (int w = 0; w < nw; ++w) {
// after restarting, the well_controls can be modified while
// the well_state still uses the old control index
// we need to synchronize these two.
2017-04-11 08:02:36 -05:00
resetWellControlFromState(well_state);
if (wellCollection()->groupControlActive()) {
WellControls* wc = wells().ctrls[w];
WellNode& well_node = well_collection_->findWellNode(std::string(wells().name[w]));
// handling the situation that wells do not have a valid control
// it happens the well specified with GRUP and restarting due to non-convergencing
// putting the well under group control for this situation
int ctrl_index = well_controls_get_current(wc);
const int group_control_index = well_node.groupControlIndex();
if (group_control_index >= 0 && ctrl_index < 0) {
// put well under group control
well_controls_set_current(wc, group_control_index);
well_state.currentControls()[w] = group_control_index;
}
// Final step, update whehter the well is under group control or individual control
// updated ctrl_index from the well control
ctrl_index = well_controls_get_current(wc);
if (well_node.groupControlIndex() >= 0 && ctrl_index == well_node.groupControlIndex()) {
// under group control
well_node.setIndividualControl(false);
} else {
// individual control
well_node.setIndividualControl(true);
}
}
}
if (well_collection_->groupControlActive()) {
if (well_collection_->requireWellPotentials()) {
// calculate the well potentials
setWellVariables(well_state);
computeWellConnectionPressures(ebos_simulator, well_state);
// To store well potentials for each well
std::vector<double> well_potentials;
computeWellPotentials(ebos_simulator, well_state, well_potentials);
// update/setup guide rates for each well based on the well_potentials
well_collection_->setGuideRatesWithPotentials(wellsPointer(), phase_usage_, well_potentials);
2017-04-06 07:53:44 -05:00
}
applyVREPGroupControl(well_state);
if (!wellCollection()->groupControlApplied()) {
wellCollection()->applyGroupControls();
} else {
wellCollection()->updateWellTargets(well_state.wellRates());
}
}
// since the controls are all updated, we should update well_state accordingly
for (int w = 0; w < nw; ++w) {
WellControls* wc = wells().ctrls[w];
const int control = well_controls_get_current(wc);
well_state.currentControls()[w] = control;
updateWellStateWithTarget(wc, control, w, well_state);
// The wells are not considered to be newly added
// for next time step
if (well_state.isNewWell(w) ) {
well_state.setNewWell(w, false);
}
} // end of for (int w = 0; w < nw; ++w)
}
template<typename TypeTag>
WellCollection*
StandardWellsDense<TypeTag>::
wellCollection() const
{
return well_collection_;
}
template<typename TypeTag>
const std::vector<double>&
StandardWellsDense<TypeTag>::
wellPerfEfficiencyFactors() const
{
return well_perforation_efficiency_factors_;
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
calculateEfficiencyFactors()
{
if ( !localWellsActive() ) {
return;
}
const int nw = wells().number_of_wells;
for (int w = 0; w < nw; ++w) {
const std::string well_name = wells().name[w];
const WellNode& well_node = wellCollection()->findWellNode(well_name);
const double well_efficiency_factor = well_node.getAccumulativeEfficiencyFactor();
// assign the efficiency factor to each perforation related.
for (int perf = wells().well_connpos[w]; perf < wells().well_connpos[w + 1]; ++perf) {
well_perforation_efficiency_factors_[perf] = well_efficiency_factor;
}
}
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
computeWellVoidageRates(const WellState& well_state,
std::vector<double>& well_voidage_rates,
std::vector<double>& voidage_conversion_coeffs) const
{
if ( !localWellsActive() ) {
return;
}
// TODO: for now, we store the voidage rates for all the production wells.
// For injection wells, the rates are stored as zero.
// We only store the conversion coefficients for all the injection wells.
// Later, more delicate model will be implemented here.
// And for the moment, group control can only work for serial running.
const int nw = well_state.numWells();
const int np = well_state.numPhases();
// we calculate the voidage rate for each well, that means the sum of all the phases.
well_voidage_rates.resize(nw, 0);
// store the conversion coefficients, while only for the use of injection wells.
voidage_conversion_coeffs.resize(nw * np, 1.0);
std::vector<double> well_rates(np, 0.0);
std::vector<double> convert_coeff(np, 1.0);
for (int w = 0; w < nw; ++w) {
const bool is_producer = wells().type[w] == PRODUCER;
// not sure necessary to change all the value to be positive
if (is_producer) {
std::transform(well_state.wellRates().begin() + np * w,
well_state.wellRates().begin() + np * (w + 1),
well_rates.begin(), std::negate<double>());
// the average hydrocarbon conditions of the whole field will be used
const int fipreg = 0; // Not considering FIP for the moment.
rate_converter_.calcCoeff(well_rates, fipreg, convert_coeff);
well_voidage_rates[w] = std::inner_product(well_rates.begin(), well_rates.end(),
convert_coeff.begin(), 0.0);
} else {
// TODO: Not sure whether will encounter situation with all zero rates
// and whether it will cause problem here.
std::copy(well_state.wellRates().begin() + np * w,
well_state.wellRates().begin() + np * (w + 1),
well_rates.begin());
// the average hydrocarbon conditions of the whole field will be used
const int fipreg = 0; // Not considering FIP for the moment.
rate_converter_.calcCoeff(well_rates, fipreg, convert_coeff);
std::copy(convert_coeff.begin(), convert_coeff.end(),
voidage_conversion_coeffs.begin() + np * w);
}
}
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
applyVREPGroupControl(WellState& well_state) const
{
if ( wellCollection()->havingVREPGroups() ) {
std::vector<double> well_voidage_rates;
std::vector<double> voidage_conversion_coeffs;
computeWellVoidageRates(well_state, well_voidage_rates, voidage_conversion_coeffs);
wellCollection()->applyVREPGroupControls(well_voidage_rates, voidage_conversion_coeffs);
// for the wells under group control, update the control index for the well_state and well_controls
for (const WellNode* well_node : wellCollection()->getLeafNodes()) {
if (well_node->isInjector() && !well_node->individualControl()) {
const int well_index = well_node->selfIndex();
well_state.currentControls()[well_index] = well_node->groupControlIndex();
WellControls* wc = wells().ctrls[well_index];
well_controls_set_current(wc, well_node->groupControlIndex());
}
}
}
}
template<typename TypeTag>
typename StandardWellsDense<TypeTag>::EvalWell
StandardWellsDense<TypeTag>::
getBhp(const int wellIdx) const {
// return well_container_(wellIdx)->getBhp();
return 0.0; // TODO: for debugging
}
template<typename TypeTag>
typename StandardWellsDense<TypeTag>::EvalWell
StandardWellsDense<TypeTag>::
getQs(const int wellIdx, const int compIdx) const
{
// TODO: incoporate the change from the new PR to the getQs
// in StandardWell
return well_container_(wellIdx)->getQs(compIdx);
}
template<typename TypeTag>
typename StandardWellsDense<TypeTag>::EvalWell
StandardWellsDense<TypeTag>::
wellVolumeFraction(const int wellIdx, const int compIdx) const
{
const int nw = wells().number_of_wells;
if (compIdx == Water) {
return wellVariables_[WFrac * nw + wellIdx];
}
if (compIdx == Gas) {
return wellVariables_[GFrac * nw + wellIdx];
}
if (has_solvent_ && compIdx == solventSaturationIdx) {
return wellVariables_[SFrac * nw + wellIdx];
}
// Oil fraction
EvalWell well_fraction = 1.0;
if (active_[Water]) {
well_fraction -= wellVariables_[WFrac * nw + wellIdx];
}
if (active_[Gas]) {
well_fraction -= wellVariables_[GFrac * nw + wellIdx];
}
if (has_solvent_) {
well_fraction -= wellVariables_[SFrac * nw + wellIdx];
}
return well_fraction;
}
template<typename TypeTag>
typename StandardWellsDense<TypeTag>::EvalWell
StandardWellsDense<TypeTag>::
wellVolumeFractionScaled(const int wellIdx, const int compIdx) const
{
const WellControls* wc = wells().ctrls[wellIdx];
if (well_controls_get_current_type(wc) == RESERVOIR_RATE) {
if (has_solvent_ && compIdx == solventSaturationIdx) {
return wellVolumeFraction(wellIdx, compIdx);
}
const double* distr = well_controls_get_current_distr(wc);
assert(compIdx < 3);
if (distr[compIdx] > 0.) {
return wellVolumeFraction(wellIdx, compIdx) / distr[compIdx];
} else {
// TODO: not sure why return EvalWell(0.) causing problem here
// Probably due to the wrong Jacobians.
return wellVolumeFraction(wellIdx, compIdx);
}
}
std::vector<double> g = {1,1,0.01,0.01};
return (wellVolumeFraction(wellIdx, compIdx) / g[compIdx]);
}
template<typename TypeTag>
typename StandardWellsDense<TypeTag>::EvalWell
StandardWellsDense<TypeTag>::
wellSurfaceVolumeFraction(const int well_index, const int compIdx) const
{
EvalWell sum_volume_fraction_scaled = 0.;
const int numComp = numComponents();
for (int idx = 0; idx < numComp; ++idx) {
sum_volume_fraction_scaled += wellVolumeFractionScaled(well_index, idx);
}
assert(sum_volume_fraction_scaled.value() != 0.);
return wellVolumeFractionScaled(well_index, compIdx) / sum_volume_fraction_scaled;
}
template<typename TypeTag>
bool
StandardWellsDense<TypeTag>::
checkRateEconLimits(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
const int well_number) const
{
const Opm::PhaseUsage& pu = phase_usage_;
const int np = well_state.numPhases();
if (econ_production_limits.onMinOilRate()) {
assert(active_[Oil]);
const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ];
const double min_oil_rate = econ_production_limits.minOilRate();
if (std::abs(oil_rate) < min_oil_rate) {
return true;
}
}
if (econ_production_limits.onMinGasRate() ) {
assert(active_[Gas]);
const double gas_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Gas ] ];
const double min_gas_rate = econ_production_limits.minGasRate();
if (std::abs(gas_rate) < min_gas_rate) {
return true;
}
}
if (econ_production_limits.onMinLiquidRate() ) {
assert(active_[Oil]);
assert(active_[Water]);
const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ];
const double water_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Water ] ];
const double liquid_rate = oil_rate + water_rate;
const double min_liquid_rate = econ_production_limits.minLiquidRate();
if (std::abs(liquid_rate) < min_liquid_rate) {
return true;
}
}
if (econ_production_limits.onMinReservoirFluidRate()) {
OpmLog::warning("NOT_SUPPORTING_MIN_RESERVOIR_FLUID_RATE", "Minimum reservoir fluid production rate limit is not supported yet");
}
return false;
}
template<typename TypeTag>
typename StandardWellsDense<TypeTag>::RatioCheckTuple
StandardWellsDense<TypeTag>::
checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
const WellMapEntryType& map_entry) const
{
// TODO: not sure how to define the worst-offending connection when more than one
// ratio related limit is violated.
// The defintion used here is that we define the violation extent based on the
// ratio between the value and the corresponding limit.
// For each violated limit, we decide the worst-offending connection separately.
// Among the worst-offending connections, we use the one has the biggest violation
// extent.
bool any_limit_violated = false;
bool last_connection = false;
int worst_offending_connection = INVALIDCONNECTION;
double violation_extent = -1.0;
if (econ_production_limits.onMaxWaterCut()) {
const RatioCheckTuple water_cut_return = checkMaxWaterCutLimit(econ_production_limits, well_state, map_entry);
bool water_cut_violated = std::get<0>(water_cut_return);
if (water_cut_violated) {
any_limit_violated = true;
const double violation_extent_water_cut = std::get<3>(water_cut_return);
if (violation_extent_water_cut > violation_extent) {
violation_extent = violation_extent_water_cut;
worst_offending_connection = std::get<2>(water_cut_return);
last_connection = std::get<1>(water_cut_return);
}
}
}
if (econ_production_limits.onMaxGasOilRatio()) {
OpmLog::warning("NOT_SUPPORTING_MAX_GOR", "the support for max Gas-Oil ratio is not implemented yet!");
}
if (econ_production_limits.onMaxWaterGasRatio()) {
OpmLog::warning("NOT_SUPPORTING_MAX_WGR", "the support for max Water-Gas ratio is not implemented yet!");
}
if (econ_production_limits.onMaxGasLiquidRatio()) {
OpmLog::warning("NOT_SUPPORTING_MAX_GLR", "the support for max Gas-Liquid ratio is not implemented yet!");
}
if (any_limit_violated) {
assert(worst_offending_connection >=0);
assert(violation_extent > 1.);
}
return std::make_tuple(any_limit_violated, last_connection, worst_offending_connection, violation_extent);
}
template<typename TypeTag>
typename StandardWellsDense<TypeTag>::RatioCheckTuple
StandardWellsDense<TypeTag>::
checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
const WellMapEntryType& map_entry) const
{
bool water_cut_limit_violated = false;
int worst_offending_connection = INVALIDCONNECTION;
bool last_connection = false;
double violation_extent = -1.0;
const int np = well_state.numPhases();
const Opm::PhaseUsage& pu = phase_usage_;
const int well_number = map_entry[0];
assert(active_[Oil]);
assert(active_[Water]);
const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ];
const double water_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Water ] ];
const double liquid_rate = oil_rate + water_rate;
double water_cut;
if (std::abs(liquid_rate) != 0.) {
water_cut = water_rate / liquid_rate;
} else {
water_cut = 0.0;
}
const double max_water_cut_limit = econ_production_limits.maxWaterCut();
if (water_cut > max_water_cut_limit) {
water_cut_limit_violated = true;
}
if (water_cut_limit_violated) {
// need to handle the worst_offending_connection
const int perf_start = map_entry[1];
const int perf_number = map_entry[2];
std::vector<double> water_cut_perf(perf_number);
for (int perf = 0; perf < perf_number; ++perf) {
const int i_perf = perf_start + perf;
const double oil_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Oil ] ];
const double water_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Water ] ];
const double liquid_perf_rate = oil_perf_rate + water_perf_rate;
if (std::abs(liquid_perf_rate) != 0.) {
water_cut_perf[perf] = water_perf_rate / liquid_perf_rate;
} else {
water_cut_perf[perf] = 0.;
}
}
last_connection = (perf_number == 1);
if (last_connection) {
worst_offending_connection = 0;
violation_extent = water_cut_perf[0] / max_water_cut_limit;
return std::make_tuple(water_cut_limit_violated, last_connection, worst_offending_connection, violation_extent);
}
double max_water_cut_perf = 0.;
for (int perf = 0; perf < perf_number; ++perf) {
if (water_cut_perf[perf] > max_water_cut_perf) {
worst_offending_connection = perf;
max_water_cut_perf = water_cut_perf[perf];
}
}
assert(max_water_cut_perf != 0.);
assert((worst_offending_connection >= 0) && (worst_offending_connection < perf_number));
violation_extent = max_water_cut_perf / max_water_cut_limit;
}
return std::make_tuple(water_cut_limit_violated, last_connection, worst_offending_connection, violation_extent);
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
updateWellStateWithTarget(const WellControls* wc,
const int current,
const int well_index,
WellState& xw) const
{
// number of phases
const int np = wells().number_of_phases;
// Updating well state and primary variables.
// Target values are used as initial conditions for BHP, THP, and SURFACE_RATE
const double target = well_controls_iget_target(wc, current);
const double* distr = well_controls_iget_distr(wc, current);
switch (well_controls_iget_type(wc, current)) {
case BHP:
xw.bhp()[well_index] = target;
2017-03-08 04:33:16 -06:00
// TODO: similar to the way below to handle THP
// we should not something related to thp here when there is thp constraint
break;
case THP: {
2017-03-08 04:33:16 -06:00
xw.thp()[well_index] = target;
double aqua = 0.0;
double liquid = 0.0;
double vapour = 0.0;
const Opm::PhaseUsage& pu = phase_usage_;
if (active_[ Water ]) {
aqua = xw.wellRates()[well_index*np + pu.phase_pos[ Water ] ];
}
if (active_[ Oil ]) {
liquid = xw.wellRates()[well_index*np + pu.phase_pos[ Oil ] ];
}
if (active_[ Gas ]) {
vapour = xw.wellRates()[well_index*np + pu.phase_pos[ Gas ] ];
}
const int vfp = well_controls_iget_vfp(wc, current);
const double& thp = well_controls_iget_target(wc, current);
const double& alq = well_controls_iget_alq(wc, current);
//Set *BHP* target by calculating bhp from THP
const WellType& well_type = wells().type[well_index];
// pick the density in the top layer
const int perf = wells().well_connpos[well_index];
const double rho = well_perforation_densities_[perf];
if (well_type == INJECTOR) {
const double dp = wellhelpers::computeHydrostaticCorrection(
wells(), well_index, vfp_properties_->getInj()->getTable(vfp)->getDatumDepth(),
rho, gravity_);
xw.bhp()[well_index] = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp;
}
else if (well_type == PRODUCER) {
const double dp = wellhelpers::computeHydrostaticCorrection(
wells(), well_index, vfp_properties_->getProd()->getTable(vfp)->getDatumDepth(),
rho, gravity_);
xw.bhp()[well_index] = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp;
}
else {
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
}
break;
}
2017-04-11 08:02:36 -05:00
case RESERVOIR_RATE: // intentional fall-through
case SURFACE_RATE:
// checking the number of the phases under control
int numPhasesWithTargetsUnderThisControl = 0;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
numPhasesWithTargetsUnderThisControl += 1;
}
}
assert(numPhasesWithTargetsUnderThisControl > 0);
const WellType& well_type = wells().type[well_index];
if (well_type == INJECTOR) {
// assign target value as initial guess for injectors
// only handles single phase control at the moment
assert(numPhasesWithTargetsUnderThisControl == 1);
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.) {
xw.wellRates()[np*well_index + phase] = target / distr[phase];
} else {
xw.wellRates()[np * well_index + phase] = 0.;
}
}
} else if (well_type == PRODUCER) {
// update the rates of phases under control based on the target,
// and also update rates of phases not under control to keep the rate ratio,
// assuming the mobility ratio does not change for the production wells
2017-04-11 08:02:36 -05:00
double original_rates_under_phase_control = 0.0;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
2017-04-11 08:02:36 -05:00
original_rates_under_phase_control += xw.wellRates()[np * well_index + phase] * distr[phase];
}
}
2017-04-11 08:02:36 -05:00
if (original_rates_under_phase_control != 0.0 ) {
double scaling_factor = target / original_rates_under_phase_control;
for (int phase = 0; phase < np; ++phase) {
xw.wellRates()[np * well_index + phase] *= scaling_factor;
}
2017-04-11 08:02:36 -05:00
} else { // scaling factor is not well defied when original_rates_under_phase_control is zero
// separating targets equally between phases under control
2017-04-11 08:02:36 -05:00
const double target_rate_divided = target / numPhasesWithTargetsUnderThisControl;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
2017-04-11 08:02:36 -05:00
xw.wellRates()[np * well_index + phase] = target_rate_divided / distr[phase];
} else {
// this only happens for SURFACE_RATE control
2017-04-11 08:02:36 -05:00
xw.wellRates()[np * well_index + phase] = target_rate_divided;
}
}
}
} else {
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
}
break;
} // end of switch
std::vector<double> g = {1.0, 1.0, 0.01};
if (well_controls_iget_type(wc, current) == RESERVOIR_RATE) {
for (int phase = 0; phase < np; ++phase) {
g[phase] = distr[phase];
}
}
// the number of wells
const int nw = wells().number_of_wells;
switch (well_controls_iget_type(wc, current)) {
case THP:
case BHP: {
const WellType& well_type = wells().type[well_index];
xw.wellSolutions()[nw*XvarWell + well_index] = 0.0;
if (well_type == INJECTOR) {
for (int p = 0; p < np; ++p) {
xw.wellSolutions()[nw*XvarWell + well_index] += xw.wellRates()[np*well_index + p] * wells().comp_frac[np*well_index + p];
}
} else {
for (int p = 0; p < np; ++p) {
xw.wellSolutions()[nw*XvarWell + well_index] += g[p] * xw.wellRates()[np*well_index + p];
}
}
break;
}
case RESERVOIR_RATE: // Intentional fall-through
case SURFACE_RATE:
xw.wellSolutions()[nw*XvarWell + well_index] = xw.bhp()[well_index];
break;
} // end of switch
double tot_well_rate = 0.0;
for (int p = 0; p < np; ++p) {
tot_well_rate += g[p] * xw.wellRates()[np*well_index + p];
}
if(std::abs(tot_well_rate) > 0) {
if (active_[ Water ]) {
xw.wellSolutions()[WFrac*nw + well_index] = g[Water] * xw.wellRates()[np*well_index + Water] / tot_well_rate;
}
if (active_[ Gas ]) {
xw.wellSolutions()[GFrac*nw + well_index] = g[Gas] * (xw.wellRates()[np*well_index + Gas] - xw.solventWellRate(well_index)) / tot_well_rate ;
}
if (has_solvent_) {
xw.wellSolutions()[SFrac*nw + well_index] = g[Gas] * xw.solventWellRate(well_index) / tot_well_rate ;
}
} else {
const WellType& well_type = wells().type[well_index];
if (well_type == INJECTOR) {
// only single phase injection handled
if (active_[Water]) {
if (distr[Water] > 0.0) {
xw.wellSolutions()[WFrac * nw + well_index] = 1.0;
} else {
xw.wellSolutions()[WFrac * nw + well_index] = 0.0;
}
}
if (active_[Gas]) {
if (distr[Gas] > 0.0) {
xw.wellSolutions()[GFrac * nw + well_index] = 1.0 - wsolvent(well_index);
if (has_solvent_) {
xw.wellSolutions()[SFrac * nw + well_index] = wsolvent(well_index);
}
} else {
xw.wellSolutions()[GFrac * nw + well_index] = 0.0;
}
}
// TODO: it is possible to leave injector as a oil well,
// when F_w and F_g both equals to zero, not sure under what kind of circumstance
// this will happen.
} else if (well_type == PRODUCER) { // producers
if (active_[Water]) {
xw.wellSolutions()[WFrac * nw + well_index] = 1.0 / np;
}
if (active_[Gas]) {
xw.wellSolutions()[GFrac * nw + well_index] = 1.0 / np;
}
} else {
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
}
}
}
template<typename TypeTag>
bool
StandardWellsDense<TypeTag>::
wellHasTHPConstraints(const int well_index) const
{
const WellControls* well_control = wells().ctrls[well_index];
const int nwc = well_controls_get_num(well_control);
for (int ctrl_index = 0; ctrl_index < nwc; ++ctrl_index) {
if (well_controls_iget_type(well_control, ctrl_index) == THP) {
return true;
}
}
return false;
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
computeWellRatesWithBhp(const Simulator& ebosSimulator,
const EvalWell& bhp,
const int well_index,
std::vector<double>& well_flux) const
{
const int np = wells().number_of_phases;
const int numComp = numComponents();
well_flux.resize(np, 0.0);
const bool allow_cf = allow_cross_flow(well_index, ebosSimulator);
for (int perf = wells().well_connpos[well_index]; perf < wells().well_connpos[well_index + 1]; ++perf) {
const int cell_index = wells().well_cells[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_index, /*timeIdx=*/ 0));
// flux for each perforation
std::vector<EvalWell> cq_s(numComp, 0.0);
std::vector<EvalWell> mob(numComp, 0.0);
getMobility(ebosSimulator, well_index, perf, cell_index, mob);
computeWellFlux(well_index, wells().WI[perf], intQuants, mob, bhp,
wellPerforationPressureDiffs()[perf], allow_cf, cq_s);
for(int p = 0; p < np; ++p) {
well_flux[p] += cq_s[p].value();
}
}
}
template<typename TypeTag>
double
StandardWellsDense<TypeTag>::
mostStrictBhpFromBhpLimits(const int well_index) const
{
double bhp;
// type of the well, INJECTOR or PRODUCER
const WellType& well_type = wells().type[well_index];
// initial bhp value, making the value not usable
switch(well_type) {
case INJECTOR:
bhp = std::numeric_limits<double>::max();
break;
case PRODUCER:
bhp = -std::numeric_limits<double>::max();
break;
default:
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type for well " << wells().name[well_index]);
}
// the well controls
const WellControls* well_control = wells().ctrls[well_index];
// The number of the well controls/constraints
const int nwc = well_controls_get_num(well_control);
for (int ctrl_index = 0; ctrl_index < nwc; ++ctrl_index) {
// finding a BHP constraint
if (well_controls_iget_type(well_control, ctrl_index) == BHP) {
// get the bhp constraint value, it should always be postive assummingly
const double bhp_target = well_controls_iget_target(well_control, ctrl_index);
switch(well_type) {
case INJECTOR: // using the lower bhp contraint from Injectors
if (bhp_target < bhp) {
bhp = bhp_target;
}
break;
case PRODUCER:
if (bhp_target > bhp) {
bhp = bhp_target;
}
break;
default:
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type for well " << wells().name[well_index]);
} // end of switch
}
}
return bhp;
}
template<typename TypeTag>
std::vector<double>
StandardWellsDense<TypeTag>::
computeWellPotentialWithTHP(const Simulator& ebosSimulator,
const int well_index,
const double initial_bhp, // bhp from BHP constraints
const std::vector<double>& initial_potential) const
{
// TODO: pay attention to the situation that finally the potential is calculated based on the bhp control
// TODO: should we consider the bhp constraints during the iterative process?
const int np = wells().number_of_phases;
assert( np == int(initial_potential.size()) );
std::vector<double> potentials = initial_potential;
std::vector<double> old_potentials = potentials; // keeping track of the old potentials
double bhp = initial_bhp;
double old_bhp = bhp;
bool converged = false;
const int max_iteration = 1000;
const double bhp_tolerance = 1000.; // 1000 pascal
int iteration = 0;
while ( !converged && iteration < max_iteration ) {
2017-04-11 08:02:36 -05:00
// for each iteration, we calculate the bhp based on the rates/potentials with thp constraints
// with considering the bhp value from the bhp limits. At the beginning of each iteration,
// we initialize the bhp to be the bhp value from the bhp limits. Then based on the bhp values calculated
// from the thp constraints, we decide the effective bhp value for well potential calculation.
bhp = initial_bhp;
// the well controls
const WellControls* well_control = wells().ctrls[well_index];
// The number of the well controls/constraints
const int nwc = well_controls_get_num(well_control);
for (int ctrl_index = 0; ctrl_index < nwc; ++ctrl_index) {
if (well_controls_iget_type(well_control, ctrl_index) == THP) {
double aqua = 0.0;
double liquid = 0.0;
double vapour = 0.0;
const Opm::PhaseUsage& pu = phase_usage_;
if (active_[ Water ]) {
aqua = potentials[pu.phase_pos[ Water ] ];
}
if (active_[ Oil ]) {
liquid = potentials[pu.phase_pos[ Oil ] ];
}
if (active_[ Gas ]) {
vapour = potentials[pu.phase_pos[ Gas ] ];
}
const int vfp = well_controls_iget_vfp(well_control, ctrl_index);
2017-04-11 08:02:36 -05:00
const double thp = well_controls_iget_target(well_control, ctrl_index);
const double alq = well_controls_iget_alq(well_control, ctrl_index);
// Calculating the BHP value based on THP
2017-04-11 08:02:36 -05:00
// TODO: check whether it is always correct to do calculation based on the depth of the first perforation.
const int first_perf = wells().well_connpos[well_index]; //first perforation
const WellType& well_type = wells().type[well_index];
if (well_type == INJECTOR) {
const double dp = wellhelpers::computeHydrostaticCorrection(
wells(), well_index, vfp_properties_->getInj()->getTable(vfp)->getDatumDepth(),
wellPerforationDensities()[first_perf], gravity_);
const double bhp_calculated = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp;
// apply the strictest of the bhp controlls i.e. smallest bhp for injectors
if (bhp_calculated < bhp) {
bhp = bhp_calculated;
}
}
else if (well_type == PRODUCER) {
const double dp = wellhelpers::computeHydrostaticCorrection(
wells(), well_index, vfp_properties_->getProd()->getTable(vfp)->getDatumDepth(),
wellPerforationDensities()[first_perf], gravity_);
const double bhp_calculated = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp;
// apply the strictest of the bhp controlls i.e. largest bhp for producers
if (bhp_calculated > bhp) {
bhp = bhp_calculated;
}
} else {
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
}
}
}
// there should be always some available bhp/thp constraints there
if (std::isinf(bhp) || std::isnan(bhp)) {
OPM_THROW(std::runtime_error, "Unvalid bhp value obtained during the potential calculation for well " << wells().name[well_index]);
}
converged = std::abs(old_bhp - bhp) < bhp_tolerance;
computeWellRatesWithBhp(ebosSimulator, bhp, well_index, potentials);
// checking whether the potentials have valid values
for (const double value : potentials) {
if (std::isinf(value) || std::isnan(value)) {
OPM_THROW(std::runtime_error, "Unvalid potential value obtained during the potential calculation for well " << wells().name[well_index]);
}
}
if (!converged) {
old_bhp = bhp;
for (int p = 0; p < np; ++p) {
// TODO: improve the interpolation, will it always be valid with the way below?
// TODO: finding better paramters, better iteration strategy for better convergence rate.
2017-04-11 08:02:36 -05:00
const double potential_update_damping_factor = 0.001;
potentials[p] = potential_update_damping_factor * potentials[p] + (1.0 - potential_update_damping_factor) * old_potentials[p];
old_potentials[p] = potentials[p];
}
}
++iteration;
}
if (!converged) {
OPM_THROW(std::runtime_error, "Failed in getting converged for the potential calculation for well " << wells().name[well_index]);
}
return potentials;
}
template<typename TypeTag>
double
StandardWellsDense<TypeTag>::
wsolvent(const int well_index) const {
if (!has_solvent_) {
return 0.0;
}
// loop over all wells until we find the well with the matching name
for (const auto& well : wells_ecl_) {
if (well->getStatus( current_timeIdx_ ) == WellCommon::SHUT) {
continue;
}
WellInjectionProperties injection = well->getInjectionProperties(current_timeIdx_);
if (injection.injectorType == WellInjector::GAS) {
double solventFraction = well->getSolventFraction(current_timeIdx_);
// Look until we find the correct well
if (well->name() == wells().name[well_index]) {
return solventFraction;
}
}
}
// we didn't find it return 0;
2017-05-30 07:33:17 -05:00
assert(false);
return 0.0;
}
template<typename TypeTag>
double
StandardWellsDense<TypeTag>::
wpolymer(const int well_index) const {
if (!has_polymer_) {
return 0.0;
}
// loop over all wells until we find the well with the matching name
for (const auto& well : wells_ecl_) {
if (well->getStatus( current_timeIdx_ ) == WellCommon::SHUT) {
continue;
}
WellInjectionProperties injection = well->getInjectionProperties(current_timeIdx_);
WellPolymerProperties polymer = well->getPolymerProperties(current_timeIdx_);
if (injection.injectorType == WellInjector::WATER) {
double polymerFraction = polymer.m_polymerConcentration;
// Look until we find the correct well
if (well->name() == wells().name[well_index]) {
return polymerFraction;
}
}
}
// we didn't find it return 0;
assert(false);
return 0.0;
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
setupCompressedToCartesian(const int* global_cell, int number_of_cells, std::map<int,int>& cartesian_to_compressed ) const
{
if (global_cell) {
for (int i = 0; i < number_of_cells; ++i) {
cartesian_to_compressed.insert(std::make_pair(global_cell[i], i));
}
}
else {
for (int i = 0; i < number_of_cells; ++i) {
cartesian_to_compressed.insert(std::make_pair(i, i));
}
}
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
computeRepRadiusPerfLength(const Grid& grid)
{
// TODO, the function does not work for parallel running
// to be fixed later.
int number_of_cells = Opm::UgGridHelpers::numCells(grid);
const int* global_cell = Opm::UgGridHelpers::globalCell(grid);
const int* cart_dims = Opm::UgGridHelpers::cartDims(grid);
auto cell_to_faces = Opm::UgGridHelpers::cell2Faces(grid);
auto begin_face_centroids = Opm::UgGridHelpers::beginFaceCentroids(grid);
if (wells_ecl_.size() == 0) {
OPM_MESSAGE("No wells specified in Schedule section, "
"initializing no wells");
return;
}
const int nw = wells().number_of_wells;
const int nperf = wells().well_connpos[nw];
const size_t timeStep = current_timeIdx_;
wells_rep_radius_.clear();
wells_perf_length_.clear();
wells_bore_diameter_.clear();
wells_rep_radius_.reserve(nperf);
wells_perf_length_.reserve(nperf);
wells_bore_diameter_.reserve(nperf);
std::map<int,int> cartesian_to_compressed;
setupCompressedToCartesian(global_cell, number_of_cells,
cartesian_to_compressed);
int well_index = 0;
for (auto wellIter= wells_ecl_.begin(); wellIter != wells_ecl_.end(); ++wellIter) {
const auto* well = (*wellIter);
if (well->getStatus(timeStep) == WellCommon::SHUT) {
continue;
}
{ // COMPDAT handling
const auto& completionSet = well->getCompletions(timeStep);
for (size_t c=0; c<completionSet.size(); c++) {
const auto& completion = completionSet.get(c);
if (completion.getState() == WellCompletion::OPEN) {
int i = completion.getI();
int j = completion.getJ();
int k = completion.getK();
const int* cpgdim = cart_dims;
int cart_grid_indx = i + cpgdim[0]*(j + cpgdim[1]*k);
std::map<int, int>::const_iterator cgit = cartesian_to_compressed.find(cart_grid_indx);
if (cgit == cartesian_to_compressed.end()) {
OPM_THROW(std::runtime_error, "Cell with i,j,k indices " << i << ' ' << j << ' '
<< k << " not found in grid (well = " << well->name() << ')');
}
int cell = cgit->second;
{
double radius = 0.5*completion.getDiameter();
if (radius <= 0.0) {
radius = 0.5*unit::feet;
OPM_MESSAGE("**** Warning: Well bore internal radius set to " << radius);
}
const std::array<double, 3> cubical =
WellsManagerDetail::getCubeDim<3>(cell_to_faces, begin_face_centroids, cell);
WellCompletion::DirectionEnum direction = completion.getDirection();
double re; // area equivalent radius of the grid block
double perf_length; // the length of the well perforation
switch (direction) {
case Opm::WellCompletion::DirectionEnum::X:
re = std::sqrt(cubical[1] * cubical[2] / M_PI);
perf_length = cubical[0];
break;
case Opm::WellCompletion::DirectionEnum::Y:
re = std::sqrt(cubical[0] * cubical[2] / M_PI);
perf_length = cubical[1];
break;
case Opm::WellCompletion::DirectionEnum::Z:
re = std::sqrt(cubical[0] * cubical[1] / M_PI);
perf_length = cubical[2];
break;
default:
OPM_THROW(std::runtime_error, " Dirtecion of well is not supported ");
}
double repR = std::sqrt(re * radius);
wells_rep_radius_.push_back(repR);
wells_perf_length_.push_back(perf_length);
wells_bore_diameter_.push_back(2. * radius);
}
} else {
if (completion.getState() != WellCompletion::SHUT) {
OPM_THROW(std::runtime_error, "Completion state: " << WellCompletion::StateEnum2String( completion.getState() ) << " not handled");
}
}
}
}
well_index++;
}
}
} // namespace Opm