opm-simulators/opm/simulators/flow/SimulatorFullyImplicitBlackoilEbos.hpp

746 lines
28 KiB
C++
Raw Normal View History

/*
Copyright 2013, 2015, 2020 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2015 Andreas Lauser
2017-11-21 04:12:16 -06:00
Copyright 2017 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_SIMULATORFULLYIMPLICITBLACKOILEBOS_HEADER_INCLUDED
#define OPM_SIMULATORFULLYIMPLICITBLACKOILEBOS_HEADER_INCLUDED
#include <dune/common/hash.hh>
2023-05-03 06:17:20 -05:00
#include <fmt/format.h>
#include <opm/simulators/flow/BlackoilModelEbos.hpp>
#include <opm/simulators/flow/BlackoilModelParametersEbos.hpp>
#include <opm/simulators/flow/ConvergenceOutputConfiguration.hpp>
#include <opm/simulators/flow/ExtraConvergenceOutputThread.hpp>
#include <opm/simulators/flow/NonlinearSolverEbos.hpp>
#include <opm/simulators/aquifers/BlackoilAquiferModel.hpp>
#include <opm/simulators/timestepping/AdaptiveTimeSteppingEbos.hpp>
#include <opm/simulators/timestepping/ConvergenceReport.hpp>
#include <opm/simulators/utils/moduleVersion.hpp>
#include <opm/simulators/wells/WellState.hpp>
2018-02-09 06:42:16 -06:00
#include <opm/grid/utility/StopWatch.hpp>
#include <opm/input/eclipse/Units/UnitSystem.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <boost/date_time/gregorian/gregorian.hpp>
#include <memory>
#include <optional>
#include <string>
#include <string_view>
#include <thread>
#include <utility>
#include <vector>
#if HAVE_HDF5
#include <ebos/hdf5serializer.hh>
#endif
namespace Opm::Properties {
template<class TypeTag, class MyTypeTag>
struct EnableAdaptiveTimeStepping {
using type = UndefinedProperty;
};
template<class TypeTag, class MyTypeTag>
struct EnableTuning {
using type = UndefinedProperty;
};
template <class TypeTag, class MyTypeTag>
struct OutputExtraConvergenceInfo
{
using type = UndefinedProperty;
};
template <class TypeTag, class MyTypeTag>
struct SaveStep
{
using type = UndefinedProperty;
};
template <class TypeTag, class MyTypeTag>
struct LoadStep
{
using type = UndefinedProperty;
};
template <class TypeTag, class MyTypeTag>
struct SaveFile
{
using type = UndefinedProperty;
};
template<class TypeTag>
struct EnableTerminalOutput<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = true;
};
template<class TypeTag>
struct EnableAdaptiveTimeStepping<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = true;
};
template<class TypeTag>
struct EnableTuning<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = false;
};
template <class TypeTag>
struct OutputExtraConvergenceInfo<TypeTag, TTag::EclFlowProblem>
{
static constexpr auto* value = "none";
};
template <class TypeTag>
struct SaveStep<TypeTag, TTag::EclFlowProblem>
{
static constexpr auto* value = "";
};
template <class TypeTag>
struct SaveFile<TypeTag, TTag::EclFlowProblem>
{
static constexpr auto* value = "";
};
template <class TypeTag>
struct LoadStep<TypeTag, TTag::EclFlowProblem>
{
static constexpr int value = -1;
};
} // namespace Opm::Properties
namespace Opm {
void outputReportStep(const SimulatorTimer& timer);
void outputTimestampFIP(const SimulatorTimer& timer,
const std::string& title,
const std::string& version);
void checkSerializedCmdLine(const std::string& current,
const std::string& stored);
/// a simulator for the blackoil model
template<class TypeTag>
class SimulatorFullyImplicitBlackoilEbos
{
public:
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Grid = GetPropType<TypeTag, Properties::Grid>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using BlackoilIndices = GetPropType<TypeTag, Properties::Indices>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
2021-12-01 07:00:21 -06:00
using AquiferModel = GetPropType<TypeTag, Properties::EclAquiferModel>;
typedef AdaptiveTimeSteppingEbos<TypeTag> TimeStepper;
typedef BlackOilPolymerModule<TypeTag> PolymerModule;
typedef BlackOilMICPModule<TypeTag> MICPModule;
typedef BlackoilModelEbos<TypeTag> Model;
typedef NonlinearSolverEbos<TypeTag, Model> Solver;
typedef typename Model::ModelParameters ModelParameters;
typedef typename Solver::SolverParameters SolverParameters;
typedef BlackoilWellModel<TypeTag> WellModel;
/// Initialise from parameters and objects to observe.
/// \param[in] param parameters, this class accepts the following:
/// parameter (default) effect
/// -----------------------------------------------------------
/// output (true) write output to files?
/// output_dir ("output") output directoty
/// output_interval (1) output every nth step
/// nl_pressure_residual_tolerance (0.0) pressure solver residual tolerance (in Pascal)
/// nl_pressure_change_tolerance (1.0) pressure solver change tolerance (in Pascal)
/// nl_pressure_maxiter (10) max nonlinear iterations in pressure
/// nl_maxiter (30) max nonlinear iterations in transport
/// nl_tolerance (1e-9) transport solver absolute residual tolerance
/// num_transport_substeps (1) number of transport steps per pressure step
/// use_segregation_split (false) solve for gravity segregation (if false,
/// segregation is ignored).
///
/// \param[in] props fluid and rock properties
/// \param[in] linsolver linear solver
/// \param[in] eclipse_state the object which represents an internalized ECL deck
/// \param[in] output_writer
/// \param[in] threshold_pressures_by_face if nonempty, threshold pressures that inhibit flow
2018-11-12 04:03:54 -06:00
SimulatorFullyImplicitBlackoilEbos(Simulator& ebosSimulator)
: ebosSimulator_(ebosSimulator)
{
phaseUsage_ = phaseUsageFromDeck(eclState());
// Only rank 0 does print to std::cout, and only if specifically requested.
this->terminalOutput_ = false;
if (this->grid().comm().rank() == 0) {
this->terminalOutput_ = EWOMS_GET_PARAM(TypeTag, bool, EnableTerminalOutput);
this->startConvergenceOutputThread(EWOMS_GET_PARAM(TypeTag, std::string,
OutputExtraConvergenceInfo),
R"(OutputExtraConvergenceInfo (--output-extra-convergence-info))");
}
const std::string saveSpec = EWOMS_GET_PARAM(TypeTag, std::string, SaveStep);
if (saveSpec == "all") {
saveStride_ = 1;
} else if (!saveSpec.empty() && saveSpec[0] == ':') {
saveStride_ = std::atoi(saveSpec.c_str()+1);
} else if (!saveSpec.empty()) {
saveStep_ = std::atoi(saveSpec.c_str());
}
loadStep_ = EWOMS_GET_PARAM(TypeTag, int, LoadStep);
saveFile_ = EWOMS_GET_PARAM(TypeTag, std::string, SaveFile);
if (saveFile_.empty()) {
const auto& ioconfig = ebosSimulator_.vanguard().eclState().getIOConfig();
saveFile_ = ioconfig.fullBasePath() + ".OPMRST";
if (loadStep_ != -1 && !std::filesystem::exists(saveFile_)) {
std::filesystem::path path(ioconfig.getInputDir() + "/");
path.replace_filename(ioconfig.getBaseName() + ".OPMRST");
saveFile_ = path;
if (!std::filesystem::exists(saveFile_)) {
OPM_THROW(std::runtime_error, "Error locating serialized restart file");
}
}
}
}
~SimulatorFullyImplicitBlackoilEbos()
{
// Safe to call on all ranks, not just the I/O rank.
this->endConvergenceOutputThread();
}
static void registerParameters()
{
ModelParameters::registerParameters();
SolverParameters::registerParameters();
TimeStepper::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableTerminalOutput,
"Print high-level information about the simulation's progress to the terminal");
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableAdaptiveTimeStepping,
"Use adaptive time stepping between report steps");
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableTuning,
"Honor some aspects of the TUNING keyword.");
EWOMS_REGISTER_PARAM(TypeTag, std::string, OutputExtraConvergenceInfo,
"Provide additional convergence output "
"files for diagnostic purposes. "
"\"none\" gives no extra output and "
"overrides all other options, "
"\"steps\" generates an INFOSTEP file, "
"\"iterations\" generates an INFOITER file. "
"Combine options with commas, e.g., "
"\"steps,iterations\" for multiple outputs.");
EWOMS_REGISTER_PARAM(TypeTag, std::string, SaveStep,
"Save serialized state to .OPMRST file. "
"Either a specific report step, \"all\" to save "
"all report steps or \":x\" to save every x'th step.");
EWOMS_REGISTER_PARAM(TypeTag, int, LoadStep,
"Load serialized state from .OPMRST file. "
"Either a specific report step, or 0 to load last "
"stored report step.");
EWOMS_REGISTER_PARAM(TypeTag, std::string, SaveFile,
"FileName for .OPMRST file used for serialized state. "
"If empty, CASENAME.OPMRST is used.");
EWOMS_HIDE_PARAM(TypeTag, SaveFile);
}
/// Run the simulation.
/// This will run succesive timesteps until timer.done() is true. It will
/// modify the reservoir and well states.
/// \param[in,out] timer governs the requested reporting timesteps
/// \param[in,out] state state of reservoir: pressure, fluxes
/// \return simulation report, with timing data
2017-12-04 03:35:13 -06:00
SimulatorReport run(SimulatorTimer& timer)
{
init(timer);
// Make cache up to date. No need for updating it in elementCtx.
ebosSimulator_.model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0);
// Main simulation loop.
while (!timer.done()) {
bool continue_looping = runStep(timer);
if (!continue_looping) break;
}
return finalize();
}
void init(SimulatorTimer &timer)
{
ebosSimulator_.setEpisodeIndex(-1);
// Create timers and file for writing timing info.
solverTimer_ = std::make_unique<time::StopWatch>();
totalTimer_ = std::make_unique<time::StopWatch>();
totalTimer_->start();
// adaptive time stepping
bool enableAdaptive = EWOMS_GET_PARAM(TypeTag, bool, EnableAdaptiveTimeStepping);
bool enableTUNING = EWOMS_GET_PARAM(TypeTag, bool, EnableTuning);
if (enableAdaptive) {
const UnitSystem& unitSystem = this->ebosSimulator_.vanguard().eclState().getUnits();
if (enableTUNING) {
const auto& sched_state = schedule()[timer.currentStepNum()];
auto max_next_tstep = sched_state.max_next_tstep();
adaptiveTimeStepping_ = std::make_unique<TimeStepper>(max_next_tstep,
sched_state.tuning(),
unitSystem, terminalOutput_);
}
else {
adaptiveTimeStepping_ = std::make_unique<TimeStepper>(unitSystem, terminalOutput_);
}
if (isRestart()) {
2019-10-01 07:30:11 -05:00
// For restarts the ebosSimulator may have gotten some information
// about the next timestep size from the OPMEXTRA field
adaptiveTimeStepping_->setSuggestedNextStep(ebosSimulator_.timeStepSize());
}
}
}
2023-05-03 06:17:20 -05:00
void updateTUNING(const Tuning& tuning) {
modelParam_.tolerance_mb_ = tuning.XXXMBE;
if (terminalOutput_) {
2023-05-03 06:17:20 -05:00
OpmLog::debug(fmt::format("Setting SimulatorFullyImplicitBlackoilEbos mass balance limit (XXXMBE) to {:.2e}", tuning.XXXMBE));
}
}
bool runStep(SimulatorTimer& timer)
{
if (schedule().exitStatus().has_value()) {
if (terminalOutput_) {
OpmLog::info("Stopping simulation since EXIT was triggered by an action keyword.");
}
report_.success.exit_status = schedule().exitStatus().value();
return false;
}
if (loadStep_ > -1) {
loadTimerInfo(timer);
}
// Report timestep.
if (terminalOutput_) {
std::ostringstream ss;
timer.report(ss);
OpmLog::debug(ss.str());
}
if (terminalOutput_) {
outputReportStep(timer);
}
// write the inital state at the report stage
if (timer.initialStep()) {
Dune::Timer perfTimer;
perfTimer.start();
ebosSimulator_.setEpisodeIndex(-1);
ebosSimulator_.setEpisodeLength(0.0);
ebosSimulator_.setTimeStepSize(0.0);
wellModel_().beginReportStep(timer.currentStepNum());
ebosSimulator_.problem().writeOutput();
report_.success.output_write_time += perfTimer.stop();
}
// Run a multiple steps of the solver depending on the time step control.
solverTimer_->start();
if (!solver_) {
solver_ = createSolver(wellModel_());
}
ebosSimulator_.startNextEpisode(
ebosSimulator_.startTime()
+ schedule().seconds(timer.currentStepNum()),
timer.currentStepLength());
ebosSimulator_.setEpisodeIndex(timer.currentStepNum());
if (loadStep_> -1) {
wellModel_().prepareDeserialize(loadStep_ - 1);
loadSimulatorState();
loadStep_ = -1;
ebosSimulator_.model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0);
}
solver_->model().beginReportStep();
bool enableTUNING = EWOMS_GET_PARAM(TypeTag, bool, EnableTuning);
2017-11-21 04:12:16 -06:00
// If sub stepping is enabled allow the solver to sub cycle
// in case the report steps are too large for the solver to converge
//
// \Note: The report steps are met in any case
// \Note: The sub stepping will require a copy of the state variables
if (adaptiveTimeStepping_) {
2021-01-10 14:46:45 -06:00
const auto& events = schedule()[timer.currentStepNum()].events();
if (enableTUNING) {
2021-01-10 14:46:45 -06:00
if (events.hasEvent(ScheduleEvents::TUNING_CHANGE)) {
const auto& sched_state = schedule()[timer.currentStepNum()];
const auto& tuning = sched_state.tuning();
const auto& max_next_tstep = sched_state.max_next_tstep();
adaptiveTimeStepping_->updateTUNING(max_next_tstep, tuning);
2023-05-03 06:17:20 -05:00
// \Note: Assumes TUNING is only used with adaptive time-stepping
// \Note: Need to update both solver (model) and simulator since solver is re-created each report step.
solver_->model().updateTUNING(tuning);
2023-05-03 06:17:20 -05:00
this->updateTUNING(tuning);
}
}
2021-01-10 14:46:45 -06:00
bool event = events.hasEvent(ScheduleEvents::NEW_WELL) ||
2021-04-16 06:38:56 -05:00
events.hasEvent(ScheduleEvents::INJECTION_TYPE_CHANGED) ||
events.hasEvent(ScheduleEvents::WELL_SWITCHED_INJECTOR_PRODUCER) ||
2021-01-10 14:46:45 -06:00
events.hasEvent(ScheduleEvents::WELL_STATUS_CHANGE);
auto stepReport = adaptiveTimeStepping_->step(timer, *solver_, event, nullptr);
report_ += stepReport;
//Pass simulation report to eclwriter for summary output
ebosSimulator_.problem().setSimulationReport(report_);
} else {
// solve for complete report step
auto stepReport = solver_->step(timer);
report_ += stepReport;
if (terminalOutput_) {
std::ostringstream ss;
stepReport.reportStep(ss);
OpmLog::info(ss.str());
}
}
2016-08-08 07:58:25 -05:00
// write simulation state at the report stage
Dune::Timer perfTimer;
perfTimer.start();
const double nextstep = adaptiveTimeStepping_ ? adaptiveTimeStepping_->suggestedNextStep() : -1.0;
ebosSimulator_.problem().setNextTimeStepSize(nextstep);
ebosSimulator_.problem().writeOutput();
report_.success.output_write_time += perfTimer.stop();
solver_->model().endReportStep();
// take time that was used to solve system for this reportStep
solverTimer_->stop();
// update timing.
report_.success.solver_time += solverTimer_->secsSinceStart();
2016-12-22 06:45:31 -06:00
if (this->grid().comm().rank() == 0) {
// Grab the step convergence reports that are new since last we were here.
const auto& reps = solver_->model().stepReports();
this->writeConvergenceOutput(std::vector<StepReport>{reps.begin() + already_reported_steps_, reps.end()});
already_reported_steps_ = reps.size();
}
// Increment timer, remember well state.
++timer;
if (terminalOutput_) {
if (!timer.initialStep()) {
const std::string version = moduleVersionName();
outputTimestampFIP(timer, eclState().getTitle(), version);
2018-01-12 08:32:04 -06:00
}
std::string msg =
"Time step took " + std::to_string(solverTimer_->secsSinceStart()) + " seconds; "
"total solver time " + std::to_string(report_.success.solver_time) + " seconds.";
OpmLog::debug(msg);
}
handleSave(timer);
return true;
}
SimulatorReport finalize()
{
// make sure all output is written to disk before run is finished
{
Dune::Timer finalOutputTimer;
finalOutputTimer.start();
ebosSimulator_.problem().finalizeOutput();
report_.success.output_write_time += finalOutputTimer.stop();
}
// Stop timer and create timing report
totalTimer_->stop();
report_.success.total_time = totalTimer_->secsSinceStart();
report_.success.converged = true;
return report_;
}
const Grid& grid() const
{ return ebosSimulator_.vanguard().grid(); }
template<class Serializer>
void serializeOp(Serializer& serializer)
{
serializer(ebosSimulator_);
serializer(report_);
serializer(adaptiveTimeStepping_);
}
const Model& model() const
{ return solver_->model(); }
protected:
std::unique_ptr<Solver> createSolver(WellModel& wellModel)
{
2020-09-02 08:35:39 -05:00
auto model = std::make_unique<Model>(ebosSimulator_,
modelParam_,
wellModel,
terminalOutput_);
2020-09-02 08:35:39 -05:00
return std::make_unique<Solver>(solverParam_, std::move(model));
}
const EclipseState& eclState() const
{ return ebosSimulator_.vanguard().eclState(); }
2017-10-29 15:06:19 -05:00
const Schedule& schedule() const
{ return ebosSimulator_.vanguard().schedule(); }
2017-10-29 15:06:19 -05:00
bool isRestart() const
{
const auto& initconfig = eclState().getInitConfig();
return initconfig.restartRequested();
}
WellModel& wellModel_()
{ return ebosSimulator_.problem().wellModel(); }
const WellModel& wellModel_() const
{ return ebosSimulator_.problem().wellModel(); }
void startConvergenceOutputThread(std::string_view convOutputOptions,
std::string_view optionName)
{
const auto config = ConvergenceOutputConfiguration {
convOutputOptions, optionName
};
if (! config.want(ConvergenceOutputConfiguration::Option::Iterations)) {
return;
}
auto getPhaseName = ConvergenceOutputThread::ComponentToPhaseName {
[compNames = typename Model::ComponentName{}](const int compIdx)
{ return std::string_view { compNames.name(compIdx) }; }
};
auto convertTime = ConvergenceOutputThread::ConvertToTimeUnits {
[usys = this->eclState().getUnits()](const double time)
{ return usys.from_si(UnitSystem::measure::time, time); }
};
this->convergenceOutputQueue_.emplace();
this->convergenceOutputObject_.emplace
(this->eclState().getIOConfig().getOutputDir(),
this->eclState().getIOConfig().getBaseName(),
std::move(getPhaseName),
std::move(convertTime),
config, *this->convergenceOutputQueue_);
this->convergenceOutputThread_
.emplace(&ConvergenceOutputThread::writeASynchronous,
&this->convergenceOutputObject_.value());
}
void writeConvergenceOutput(std::vector<StepReport>&& reports)
{
if (! this->convergenceOutputThread_.has_value()) {
return;
}
auto requests = std::vector<ConvergenceReportQueue::OutputRequest>{};
requests.reserve(reports.size());
for (auto&& report : reports) {
requests.push_back({ report.report_step, report.current_step, std::move(report.report) });
}
this->convergenceOutputQueue_->enqueue(std::move(requests));
}
void endConvergenceOutputThread()
{
if (! this->convergenceOutputThread_.has_value()) {
return;
}
this->convergenceOutputQueue_->signalLastOutputRequest();
this->convergenceOutputThread_->join();
}
//! \brief Serialization of simulator data to .OPMRST files at end of report steps.
void handleSave(SimulatorTimer& timer)
{
if (saveStride_ == -1 && saveStep_ == -1) {
return;
}
OPM_BEGIN_PARALLEL_TRY_CATCH();
int nextStep = timer.currentStepNum();
if ((saveStep_ != -1 && nextStep == saveStep_) ||
(saveStride_ != -1 && (nextStep % saveStride_) == 0)) {
#if !HAVE_HDF5
OpmLog::error("Saving of serialized state requested, but no HDF5 support available.");
#else
const std::string groupName = "/report_step/" + std::to_string(nextStep);
if (nextStep == saveStride_ || nextStep == saveStep_) {
std::filesystem::remove(saveFile_);
}
HDF5Serializer writer(saveFile_,
HDF5File::OpenMode::APPEND,
EclGenericVanguard::comm());
if (nextStep == saveStride_ || nextStep == saveStep_) {
std::ostringstream str;
Parameters::printValues<TypeTag>(str);
writer.writeHeader("OPM Flow",
moduleVersion(),
compileTimestamp(),
ebosSimulator_.vanguard().caseName(),
str.str(),
EclGenericVanguard::comm().size());
if (EclGenericVanguard::comm().size() > 1) {
const auto& cellMapping = ebosSimulator_.vanguard().globalCell();
std::size_t hash = Dune::hash_range(cellMapping.begin(), cellMapping.end());
writer.write(hash, "/", "grid_checksum");
}
}
writer.write(*this, groupName, "simulator_data");
writer.write(timer, groupName, "simulator_timer",
HDF5File::DataSetMode::ROOT_ONLY);
OpmLog::info("Serialized state written for report step " + std::to_string(nextStep));
#endif
}
OPM_END_PARALLEL_TRY_CATCH("Error saving serialized state: ",
EclGenericVanguard::comm());
}
//! \brief Load timer info from serialized state.
void loadTimerInfo([[maybe_unused]] SimulatorTimer& timer)
{
#if !HAVE_HDF5
OpmLog::error("Loading of serialized state requested, but no HDF5 support available.");
loadStep_ = -1;
#else
OPM_BEGIN_PARALLEL_TRY_CATCH();
HDF5Serializer reader(saveFile_,
HDF5File::OpenMode::READ,
EclGenericVanguard::comm());
if (loadStep_ == 0) {
loadStep_ = reader.lastReportStep();
}
OpmLog::info("Loading serialized state for report step " + std::to_string(loadStep_));
const std::string groupName = "/report_step/" + std::to_string(loadStep_);
reader.read(timer, groupName, "simulator_timer", HDF5File::DataSetMode::ROOT_ONLY);
std::tuple<std::array<std::string,5>,int> header;
reader.read(header, "/", "simulator_info", HDF5File::DataSetMode::ROOT_ONLY);
const auto& [strings, procs] = header;
if (EclGenericVanguard::comm().size() != procs) {
throw std::runtime_error("Number of processes (procs=" +
std::to_string(EclGenericVanguard::comm().size()) +
") does not match .OPMRST file (procs=" +
std::to_string(procs) + ")");
}
if (EclGenericVanguard::comm().size() > 1) {
std::size_t stored_hash;
reader.read(stored_hash, "/", "grid_checksum");
const auto& cellMapping = ebosSimulator_.vanguard().globalCell();
std::size_t hash = Dune::hash_range(cellMapping.begin(), cellMapping.end());
if (hash != stored_hash) {
2023-04-25 08:07:31 -05:00
throw std::runtime_error("Grid hash mismatch, .OPMRST file cannot be used");
}
}
if (EclGenericVanguard::comm().rank() == 0) {
std::ostringstream str;
Parameters::printValues<TypeTag>(str);
checkSerializedCmdLine(str.str(), strings[4]);
}
OPM_END_PARALLEL_TRY_CATCH("Error loading serialized state: ",
EclGenericVanguard::comm());
#endif
}
//! \brief Load simulator state from serialized state.
void loadSimulatorState()
{
#if HAVE_HDF5
OPM_BEGIN_PARALLEL_TRY_CATCH();
HDF5Serializer reader(saveFile_,
HDF5File::OpenMode::READ,
EclGenericVanguard::comm());
const std::string groupName = "/report_step/" + std::to_string(loadStep_);
reader.read(*this, groupName, "simulator_data");
OPM_END_PARALLEL_TRY_CATCH("Error loading serialized state: ",
EclGenericVanguard::comm());
#endif
}
// Data.
Simulator& ebosSimulator_;
ModelParameters modelParam_;
SolverParameters solverParam_;
std::unique_ptr<Solver> solver_;
// Observed objects.
PhaseUsage phaseUsage_;
// Misc. data
bool terminalOutput_;
SimulatorReport report_;
std::size_t already_reported_steps_ = 0;
std::unique_ptr<time::StopWatch> solverTimer_;
std::unique_ptr<time::StopWatch> totalTimer_;
std::unique_ptr<TimeStepper> adaptiveTimeStepping_;
std::optional<ConvergenceReportQueue> convergenceOutputQueue_{};
std::optional<ConvergenceOutputThread> convergenceOutputObject_{};
std::optional<std::thread> convergenceOutputThread_{};
int saveStride_ = -1; //!< Stride to save serialized state at
int saveStep_ = -1; //!< Specific step to save serialized state at
int loadStep_ = -1; //!< Step to load serialized state from
std::string saveFile_; //!< File to load/save serialized state from/to
};
} // namespace Opm
#endif // OPM_SIMULATOR_FULLY_IMPLICIT_BLACKOIL_EBOS_HPP