Capture Bulk Connection Fluxes to Accumlate Inter-Region Flows

This commit adds a new grid traversal that computes fluxes-presently
surface level component fluxes-for all bulk connections on the
current MPI rank.  We aggregate those fluxes, if applicable, into a
container for inter-region flows, but this support could be extended
to capturing the full 3D vector flow rates for restart output if
needed.
This commit is contained in:
Bård Skaflestad
2022-02-14 12:30:32 +01:00
parent 1e121799c8
commit ecec83349b
4 changed files with 263 additions and 3 deletions

View File

@@ -18,6 +18,7 @@
*/
#include <config.h>
#include <ebos/eclgenericoutputblackoilmodule.hh>
#include <opm/common/OpmLog/OpmLog.hpp>
@@ -33,11 +34,16 @@
#include <opm/input/eclipse/Units/Units.hpp>
#include <cassert>
#include <fmt/format.h>
#include <cstddef>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <sstream>
#include <stdexcept>
#include <string>
#include <vector>
#include <fmt/format.h>
namespace {
@@ -59,6 +65,24 @@ std::string EclString(Opm::Inplace::Phase phase) {
}
}
std::size_t numCells(const Opm::EclipseState& eclState)
{
return eclState.fieldProps().get_int("FIPNUM").size();
}
std::vector<Opm::EclInterRegFlowMap::SingleRegion>
defineInterRegionFlowArrays(const Opm::EclipseState& eclState,
const Opm::SummaryConfig& summaryConfig)
{
auto regions = std::vector<Opm::EclInterRegFlowMap::SingleRegion>{};
const auto& fprops = eclState.fieldProps();
for (const auto& arrayName : summaryConfig.fip_regions_interreg_flow()) {
regions.push_back({ arrayName, std::cref(fprops.get_int(arrayName)) });
}
return regions;
}
}
namespace Opm {
@@ -82,6 +106,7 @@ EclGenericOutputBlackoilModule(const EclipseState& eclState,
, schedule_(schedule)
, summaryConfig_(summaryConfig)
, summaryState_(summaryState)
, interRegionFlows_(numCells(eclState), defineInterRegionFlowArrays(eclState, summaryConfig))
, enableEnergy_(enableEnergy)
, enableTemperature_(enableTemperature)
, enableSolvent_(enableSolvent)

View File

@@ -43,6 +43,8 @@
#endif
#include <dune/common/parallel/mpihelper.hh>
#include <ebos/eclinterregflows.hh>
namespace Opm {
namespace data { class Solution; }
@@ -370,6 +372,9 @@ protected:
const Schedule& schedule_;
const SummaryConfig& summaryConfig_;
const SummaryState& summaryState_;
EclInterRegFlowMap interRegionFlows_;
bool enableEnergy_;
bool enableTemperature_;

View File

@@ -31,6 +31,8 @@
#include <numeric>
#include <optional>
#include <stdexcept>
#include <type_traits>
#include <utility>
#include <opm/models/blackoil/blackoilproperties.hh>
@@ -576,6 +578,94 @@ public:
}
}
/*!
* \brief Capture connection fluxes, particularly to account for inter-region flows.
*
* \tparam ActiveIndex Callable type, typically a lambda, that enables
* retrieving the active index, on the local MPI rank, of a
* particular cell/element. Must support a function call operator of
* the form
\code
int operator()(const Element& elem) const
\endcode
*
* \tparam CartesianIndex Callable type, typically a lambda, that
* enables retrieving the globally unique Cartesian index of a
* particular cell/element given its active index on the local MPI
* rank. Must support a function call operator of the form
\code
int operator()(const int activeIndex) const
\endcode
*
* \param[in] elemCtx Primary lookup structure for per-cell/element
* dynamic information.
*
* \param[in] activeIndex Mapping from cell/elements to linear indices
* on local MPI rank.
*
* \param[in] cartesianIndex Mapping from active index on local MPI rank
* to globally unique Cartesian cell/element index.
*/
template <class ActiveIndex, class CartesianIndex>
void processFluxes(const ElementContext& elemCtx,
ActiveIndex&& activeIndex,
CartesianIndex&& cartesianIndex)
{
const auto identifyCell = [&activeIndex, &cartesianIndex](const Element& elem)
-> EclInterRegFlowMap::Cell
{
const auto cellIndex = activeIndex(elem);
return {
cellIndex,
cartesianIndex(cellIndex),
elem.partitionType() == Dune::InteriorEntity
};
};
const auto timeIdx = 0u;
const auto& stencil = elemCtx.stencil(timeIdx);
const auto numInteriorFaces = elemCtx.numInteriorFaces(timeIdx);
for (auto scvfIdx = 0*numInteriorFaces; scvfIdx < numInteriorFaces; ++scvfIdx) {
const auto& face = stencil.interiorFace(scvfIdx);
const auto left = identifyCell(stencil.element(face.interiorIndex()));
const auto right = identifyCell(stencil.element(face.exteriorIndex()));
const auto rates = this->
getComponentSurfaceRates(elemCtx, face.area(), scvfIdx, timeIdx);
this->interRegionFlows_.addConnection(left, right, rates);
}
}
/*!
* \brief Prepare for capturing connection fluxes, particularly to
* account for inter-region flows.
*/
void initializeFluxData()
{
// Inter-region flow rates. Note: ".clear()" prepares to accumulate
// contributions per bulk connection between FIP regions.
this->interRegionFlows_.clear();
}
/*!
* \brief Finalize capturing connection fluxes.
*/
void finalizeFluxData()
{
this->interRegionFlows_.compress();
}
/*!
* \brief Get read-only access to collection of inter-region flows.
*/
const EclInterRegFlowMap& getInterRegFlows() const
{
return this->interRegionFlows_;
}
template <class FluidState>
void assignToFluidState(FluidState& fs, unsigned elemIdx) const
{
@@ -772,6 +862,106 @@ private:
}
}
/*!
* \brief Compute surface level component flow rates across a single
* intersection.
*
* \param[in] elemCtx Primary lookup structure for per-cell/element
* dynamic information.
*
* \param[in] scvfIdx Linear index of current interior bulk connection.
*
* \param[in] timeIdx Historical time-point at which to evaluate dynamic
* quantities (e.g., reciprocal FVF or dissolved gas concentration).
* Zero for the current time.
*
* \return Surface level component flow rates.
*/
data::InterRegFlowMap::FlowRates
getComponentSurfaceRates(const ElementContext& elemCtx,
const Scalar faceArea,
const std::size_t scvfIdx,
const std::size_t timeIdx) const
{
using Component = data::InterRegFlowMap::Component;
auto rates = data::InterRegFlowMap::FlowRates{};
const auto& extQuant = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
const auto alpha = getValue(extQuant.extrusionFactor()) * faceArea;
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
const auto& up = elemCtx
.intensiveQuantities(extQuant.upstreamIndex(oilPhaseIdx), timeIdx);
using FluidState = std::remove_cv_t<std::remove_reference_t<
decltype(up.fluidState())>>;
const auto pvtReg = up.pvtRegionIndex();
const auto bO = getValue(getInvB_<FluidSystem, FluidState, Scalar>
(up.fluidState(), oilPhaseIdx, pvtReg));
const auto qO = alpha * bO * getValue(extQuant.volumeFlux(oilPhaseIdx));
rates[Component::Oil] += qO;
if (FluidSystem::phaseIsActive(gasPhaseIdx)) {
const auto Rs = getValue(
BlackOil::getRs_<FluidSystem, FluidState, Scalar>
(up.fluidState(), pvtReg));
rates[Component::Gas] += qO * Rs;
rates[Component::Disgas] += qO * Rs;
}
}
if (FluidSystem::phaseIsActive(gasPhaseIdx)) {
const auto& up = elemCtx
.intensiveQuantities(extQuant.upstreamIndex(gasPhaseIdx), timeIdx);
using FluidState = std::remove_cv_t<std::remove_reference_t<
decltype(up.fluidState())>>;
const auto pvtReg = up.pvtRegionIndex();
const auto bG = getValue(getInvB_<FluidSystem, FluidState, Scalar>
(up.fluidState(), gasPhaseIdx, pvtReg));
const auto qG = alpha * bG * getValue(extQuant.volumeFlux(gasPhaseIdx));
rates[Component::Gas] += qG;
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
const auto Rv = getValue(
BlackOil::getRv_<FluidSystem, FluidState, Scalar>
(up.fluidState(), pvtReg));
rates[Component::Oil] += qG * Rv;
rates[Component::Vapoil] += qG * Rv;
}
}
if (FluidSystem::phaseIsActive(waterPhaseIdx)) {
const auto& up = elemCtx
.intensiveQuantities(extQuant.upstreamIndex(waterPhaseIdx), timeIdx);
using FluidState = std::remove_cv_t<std::remove_reference_t<
decltype(up.fluidState())>>;
const auto pvtReg = up.pvtRegionIndex();
const auto bW = getValue(getInvB_<FluidSystem, FluidState, Scalar>
(up.fluidState(), waterPhaseIdx, pvtReg));
rates[Component::Water] +=
alpha * bW * getValue(extQuant.volumeFlux(waterPhaseIdx));
}
return rates;
}
const Simulator& simulator_;
};

View File

@@ -38,8 +38,11 @@
#include <ebos/eclgenericwriter.hh>
#include <string>
#include <dune/grid/common/partitionset.hh>
#include <functional>
#include <limits>
#include <string>
namespace Opm::Properties {
@@ -181,11 +184,12 @@ public:
const auto localGroupAndNetworkData = simulator_.problem().wellModel()
.groupAndNetworkData(reportStepNum);
const auto localAquiferData = simulator_.problem().aquiferModel().aquiferData();
const auto localWellTestState = simulator_.problem().wellModel().wellTestState();
this->prepareLocalCellData(isSubStep, reportStepNum);
this->captureLocalFluxData();
if (this->collectToIORank_.isParallel())
this->collectToIORank_.collect({},
eclOutputModule_->getBlockData(),
@@ -435,6 +439,42 @@ private:
OPM_END_PARALLEL_TRY_CATCH("EclWriter::prepareLocalCellData() failed: ", simulator_.vanguard().grid().comm())
}
void captureLocalFluxData()
{
const auto& gridView = this->simulator_.vanguard().gridView();
const auto timeIdx = 0u;
auto elemCtx = ElementContext { this->simulator_ };
const auto elemMapper = ElementMapper { gridView, Dune::mcmgElementLayout() };
const auto activeIndex = [&elemMapper](const Element& e)
{
return elemMapper.index(e);
};
const auto cartesianIndex = [this](const int elemIndex)
{
return this->cartMapper_.cartesianIndex(elemIndex);
};
this->eclOutputModule_->initializeFluxData();
OPM_BEGIN_PARALLEL_TRY_CATCH();
for (const auto& elem : elements(gridView, Dune::Partitions::interiorBorder)) {
elemCtx.updateStencil(elem);
elemCtx.updateIntensiveQuantities(timeIdx);
elemCtx.updateExtensiveQuantities(timeIdx);
this->eclOutputModule_->processFluxes(elemCtx, activeIndex, cartesianIndex);
}
OPM_END_PARALLEL_TRY_CATCH("EclWriter::captureLocalFluxData() failed: ",
this->simulator_.vanguard().grid().comm())
this->eclOutputModule_->finalizeFluxData();
}
Simulator& simulator_;
std::unique_ptr<EclOutputBlackOilModule<TypeTag>> eclOutputModule_;
Scalar restartTimeStepSize_;