opm-simulators/ebos/eclwriter.hh
Bård Skaflestad ecec83349b Capture Bulk Connection Fluxes to Accumlate Inter-Region Flows
This commit adds a new grid traversal that computes fluxes-presently
surface level component fluxes-for all bulk connections on the
current MPI rank.  We aggregate those fluxes, if applicable, into a
container for inter-region flows, but this support could be extended
to capturing the full 3D vector flow rates for restart output if
needed.
2022-02-18 10:29:56 +01:00

485 lines
21 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::EclWriter
*/
#ifndef EWOMS_ECL_WRITER_HH
#define EWOMS_ECL_WRITER_HH
#include "collecttoiorank.hh"
#include "ecloutputblackoilmodule.hh"
#include <opm/input/eclipse/Units/UnitSystem.hpp>
#include <opm/simulators/utils/ParallelRestart.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <ebos/eclgenericwriter.hh>
#include <dune/grid/common/partitionset.hh>
#include <functional>
#include <limits>
#include <string>
namespace Opm::Properties {
template<class TypeTag, class MyTypeTag>
struct EnableEclOutput {
using type = UndefinedProperty;
};
template<class TypeTag, class MyTypeTag>
struct EnableAsyncEclOutput {
using type = UndefinedProperty;
};
template<class TypeTag, class MyTypeTag>
struct EclOutputDoublePrecision {
using type = UndefinedProperty;
};
template<class TypeTag, class MyTypeTag>
struct EnableEsmry {
using type = UndefinedProperty;
};
} // namespace Opm::Properties
namespace Opm {
namespace Action { class State; }
class EclipseIO;
class UDQState;
/*!
* \ingroup EclBlackOilSimulator
*
* \brief Collects necessary output values and pass it to opm-output.
*
* Caveats:
* - For this class to do do anything meaningful, you will have to
* have the OPM module opm-output.
* - The only DUNE grid which is currently supported is Dune::CpGrid
* from the OPM module "opm-grid". Using another grid won't
* fail at compile time but you will provoke a fatal exception as
* soon as you try to write an ECL output file.
* - This class requires to use the black oil model with the element
* centered finite volume discretization.
*/
template <class TypeTag>
class EclWriter : public EclGenericWriter<GetPropType<TypeTag, Properties::Grid>,
GetPropType<TypeTag, Properties::EquilGrid>,
GetPropType<TypeTag, Properties::GridView>,
GetPropType<TypeTag, Properties::ElementMapper>,
GetPropType<TypeTag, Properties::Scalar>>
{
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Vanguard = GetPropType<TypeTag, Properties::Vanguard>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Grid = GetPropType<TypeTag, Properties::Grid>;
using EquilGrid = GetPropType<TypeTag, Properties::EquilGrid>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Element = typename GridView::template Codim<0>::Entity;
using ElementMapper = GetPropType<TypeTag, Properties::ElementMapper>;
using ElementIterator = typename GridView::template Codim<0>::Iterator;
using BaseType = EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>;
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
enum { enableTemperature = getPropValue<TypeTag, Properties::EnableTemperature>() };
enum { enableSolvent = getPropValue<TypeTag, Properties::EnableSolvent>() };
public:
static void registerParameters()
{
EclOutputBlackOilModule<TypeTag>::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableAsyncEclOutput,
"Write the ECL-formated results in a non-blocking way (i.e., using a separate thread).");
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableEsmry,
"Write ESMRY file for fast loading of summary data.");
}
// The Simulator object should preferably have been const - the
// only reason that is not the case is due to the SummaryState
// object owned deep down by the vanguard.
EclWriter(Simulator& simulator)
: BaseType(simulator.vanguard().schedule(),
simulator.vanguard().eclState(),
simulator.vanguard().summaryConfig(),
simulator.vanguard().grid(),
simulator.vanguard().grid().comm().rank() == 0 ? &simulator.vanguard().equilGrid() : nullptr,
simulator.vanguard().gridView(),
simulator.vanguard().cartesianIndexMapper(),
simulator.vanguard().grid().comm().rank() == 0 ? &simulator.vanguard().equilCartesianIndexMapper() : nullptr,
EWOMS_GET_PARAM(TypeTag, bool, EnableAsyncEclOutput), EWOMS_GET_PARAM(TypeTag, bool, EnableEsmry))
, simulator_(simulator)
{
this->eclOutputModule_ = std::make_unique<EclOutputBlackOilModule<TypeTag>>(simulator, this->wbp_index_list_, this->collectToIORank_);
this->wbp_index_list_.clear();
}
~EclWriter()
{ }
const EquilGrid& globalGrid() const
{
return simulator_.vanguard().equilGrid();
}
/*!
* \brief collect and pass data and pass it to eclIO writer
*/
void evalSummaryState(bool isSubStep)
{
const int reportStepNum = simulator_.episodeIndex() + 1;
/*
The summary data is not evaluated for timestep 0, that is
implemented with a:
if (time_step == 0)
return;
check somewhere in the summary code. When the summary code was
split in separate methods Summary::eval() and
Summary::add_timestep() it was necessary to pull this test out
here to ensure that the well and group related keywords in the
restart file, like XWEL and XGRP were "correct" also in the
initial report step.
"Correct" in this context means unchanged behavior, might very
well be more correct to actually remove this if test.
*/
if (reportStepNum == 0)
return;
const Scalar curTime = simulator_.time() + simulator_.timeStepSize();
const Scalar totalCpuTime =
simulator_.executionTimer().realTimeElapsed() +
simulator_.setupTimer().realTimeElapsed() +
simulator_.vanguard().externalSetupTime();
const auto localWellData = simulator_.problem().wellModel().wellData();
const auto localGroupAndNetworkData = simulator_.problem().wellModel()
.groupAndNetworkData(reportStepNum);
const auto localAquiferData = simulator_.problem().aquiferModel().aquiferData();
const auto localWellTestState = simulator_.problem().wellModel().wellTestState();
this->prepareLocalCellData(isSubStep, reportStepNum);
this->captureLocalFluxData();
if (this->collectToIORank_.isParallel())
this->collectToIORank_.collect({},
eclOutputModule_->getBlockData(),
eclOutputModule_->getWBPData(),
localWellData,
localGroupAndNetworkData,
localAquiferData,
localWellTestState);
std::map<std::string, double> miscSummaryData;
std::map<std::string, std::vector<double>> regionData;
auto inplace = eclOutputModule_->outputFipLog(miscSummaryData, regionData, isSubStep, simulator_.gridView().comm());
eclOutputModule_->outputFipresvLog(miscSummaryData, regionData, isSubStep, simulator_.gridView().comm());
bool forceDisableProdOutput = false;
bool forceDisableInjOutput = false;
bool forceDisableCumOutput = false;
// Add TCPU
if (totalCpuTime != 0.0) {
miscSummaryData["TCPU"] = totalCpuTime;
}
if (this->sub_step_report_.total_newton_iterations != 0) {
miscSummaryData["NEWTON"] = this->sub_step_report_.total_newton_iterations;
}
if (this->sub_step_report_.total_linear_iterations != 0) {
miscSummaryData["MLINEARS"] = this->sub_step_report_.total_linear_iterations;
}
if (this->sub_step_report_.total_newton_iterations != 0) {
miscSummaryData["NLINEARS"] = static_cast<float>(this->sub_step_report_.total_linear_iterations) / this->sub_step_report_.total_newton_iterations;
}
if (this->sub_step_report_.min_linear_iterations != std::numeric_limits<unsigned int>::max()) {
miscSummaryData["NLINSMIN"] = this->sub_step_report_.min_linear_iterations;
}
if (this->sub_step_report_.max_linear_iterations != 0) {
miscSummaryData["NLINSMAX"] = this->sub_step_report_.max_linear_iterations;
}
if (this->simulation_report_.success.total_newton_iterations != 0) {
miscSummaryData["MSUMLINS"] = this->simulation_report_.success.total_linear_iterations;
}
if (this->simulation_report_.success.total_newton_iterations != 0) {
miscSummaryData["MSUMNEWT"] = this->simulation_report_.success.total_newton_iterations;
}
this->evalSummary(reportStepNum, curTime,
this->collectToIORank_.isParallel() ?
this->collectToIORank_.globalWBPData() :
this->eclOutputModule_->getWBPData(),
localWellData,
localGroupAndNetworkData,
localAquiferData,
this->collectToIORank_.isParallel() ?
this->collectToIORank_.globalBlockData() :
this->eclOutputModule_->getBlockData(),
miscSummaryData, regionData,
summaryState(), udqState(),
inplace,
eclOutputModule_->initialInplace());
eclOutputModule_->outputProdLog(reportStepNum, isSubStep, forceDisableProdOutput);
eclOutputModule_->outputInjLog(reportStepNum, isSubStep, forceDisableInjOutput);
eclOutputModule_->outputCumLog(reportStepNum, isSubStep, forceDisableCumOutput);
}
void writeOutput(bool isSubStep)
{
const int reportStepNum = simulator_.episodeIndex() + 1;
this->prepareLocalCellData(isSubStep, reportStepNum);
this->eclOutputModule_->outputErrorLog(simulator_.gridView().comm());
// output using eclWriter if enabled
auto localWellData = simulator_.problem().wellModel().wellData();
auto localGroupAndNetworkData = simulator_.problem().wellModel()
.groupAndNetworkData(reportStepNum);
auto localAquiferData = simulator_.problem().aquiferModel().aquiferData();
auto localWellTestState = simulator_.problem().wellModel().wellTestState();
data::Solution localCellData = {};
if (! isSubStep) {
this->eclOutputModule_->assignToSolution(localCellData);
// add cell data to perforations for Rft output
this->eclOutputModule_->addRftDataToWells(localWellData, reportStepNum);
}
if (this->collectToIORank_.isParallel()) {
this->collectToIORank_.collect(localCellData,
eclOutputModule_->getBlockData(),
eclOutputModule_->getWBPData(),
localWellData,
localGroupAndNetworkData,
localAquiferData,
localWellTestState);
}
if (this->collectToIORank_.isIORank()) {
const Scalar curTime = simulator_.time() + simulator_.timeStepSize();
const Scalar nextStepSize = simulator_.problem().nextTimeStepSize();
this->doWriteOutput(reportStepNum, isSubStep,
std::move(localCellData),
std::move(localWellData),
std::move(localGroupAndNetworkData),
std::move(localAquiferData),
std::move(localWellTestState),
this->actionState(),
this->udqState(),
this->summaryState(),
simulator_.problem().thresholdPressure().data(),
curTime, nextStepSize,
EWOMS_GET_PARAM(TypeTag, bool, EclOutputDoublePrecision));
}
}
void beginRestart()
{
bool enableHysteresis = simulator_.problem().materialLawManager()->enableHysteresis();
bool enableSwatinit = simulator_.vanguard().eclState().fieldProps().has_double("SWATINIT");
bool opm_rst_file = EWOMS_GET_PARAM(TypeTag, bool, EnableOpmRstFile);
bool read_temp = enableEnergy || (opm_rst_file && enableTemperature);
std::vector<RestartKey> solutionKeys{
{"PRESSURE", UnitSystem::measure::pressure},
{"SWAT", UnitSystem::measure::identity, static_cast<bool>(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx))},
{"SGAS", UnitSystem::measure::identity, static_cast<bool>(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx))},
{"TEMP" , UnitSystem::measure::temperature, read_temp},
{"SSOLVENT" , UnitSystem::measure::identity, enableSolvent},
{"RS", UnitSystem::measure::gas_oil_ratio, FluidSystem::enableDissolvedGas()},
{"RV", UnitSystem::measure::oil_gas_ratio, FluidSystem::enableVaporizedOil()},
{"SOMAX", UnitSystem::measure::identity, simulator_.problem().vapparsActive(simulator_.episodeIndex())},
{"PCSWM_OW", UnitSystem::measure::identity, enableHysteresis},
{"KRNSW_OW", UnitSystem::measure::identity, enableHysteresis},
{"PCSWM_GO", UnitSystem::measure::identity, enableHysteresis},
{"KRNSW_GO", UnitSystem::measure::identity, enableHysteresis},
{"PPCW", UnitSystem::measure::pressure, enableSwatinit}
};
const auto& inputThpres = eclState().getSimulationConfig().getThresholdPressure();
std::vector<RestartKey> extraKeys = {{"OPMEXTRA", UnitSystem::measure::identity, false},
{"THRESHPR", UnitSystem::measure::pressure, inputThpres.active()}};
{
const auto& tracers = simulator_.vanguard().eclState().tracer();
for (const auto& tracer : tracers)
solutionKeys.emplace_back(tracer.fname(), UnitSystem::measure::identity, true);
}
// The episodeIndex is rewined one back before beginRestart is called
// and can not be used here.
// We just ask the initconfig directly to be sure that we use the correct
// index.
const auto& initconfig = simulator_.vanguard().eclState().getInitConfig();
int restartStepIdx = initconfig.getRestartStep();
const auto& gridView = simulator_.vanguard().gridView();
unsigned numElements = gridView.size(/*codim=*/0);
eclOutputModule_->allocBuffers(numElements, restartStepIdx, /*isSubStep=*/false, /*log=*/false, /*isRestart*/ true);
{
SummaryState& summaryState = simulator_.vanguard().summaryState();
Action::State& actionState = simulator_.vanguard().actionState();
auto restartValues = loadParallelRestart(this->eclIO_.get(), actionState, summaryState, solutionKeys, extraKeys,
gridView.grid().comm());
for (unsigned elemIdx = 0; elemIdx < numElements; ++elemIdx) {
unsigned globalIdx = this->collectToIORank_.localIdxToGlobalIdx(elemIdx);
eclOutputModule_->setRestart(restartValues.solution, elemIdx, globalIdx);
}
auto& tracer_model = simulator_.problem().tracerModel();
for (int tracer_index = 0; tracer_index < tracer_model.numTracers(); tracer_index++) {
const auto& tracer_name = tracer_model.fname(tracer_index);
const auto& tracer_solution = restartValues.solution.data(tracer_name);
for (unsigned elemIdx = 0; elemIdx < numElements; ++elemIdx) {
unsigned globalIdx = this->collectToIORank_.localIdxToGlobalIdx(elemIdx);
tracer_model.setTracerConcentration(tracer_index, globalIdx, tracer_solution[globalIdx]);
}
}
if (inputThpres.active()) {
Simulator& mutableSimulator = const_cast<Simulator&>(simulator_);
auto& thpres = mutableSimulator.problem().thresholdPressure();
const auto& thpresValues = restartValues.getExtra("THRESHPR");
thpres.setFromRestart(thpresValues);
}
restartTimeStepSize_ = restartValues.getExtra("OPMEXTRA")[0];
// initialize the well model from restart values
simulator_.problem().wellModel().initFromRestartFile(restartValues);
if (!restartValues.aquifer.empty())
simulator_.problem().mutableAquiferModel().initFromRestart(restartValues.aquifer);
}
}
void endRestart()
{}
const EclOutputBlackOilModule<TypeTag>& eclOutputModule() const
{ return *eclOutputModule_; }
Scalar restartTimeStepSize() const
{ return restartTimeStepSize_; }
private:
static bool enableEclOutput_()
{ return EWOMS_GET_PARAM(TypeTag, bool, EnableEclOutput); }
const EclipseState& eclState() const
{ return simulator_.vanguard().eclState(); }
SummaryState& summaryState()
{ return simulator_.vanguard().summaryState(); }
Action::State& actionState()
{ return simulator_.vanguard().actionState(); }
UDQState& udqState()
{ return simulator_.vanguard().udqState(); }
const Schedule& schedule() const
{ return simulator_.vanguard().schedule(); }
void prepareLocalCellData(const bool isSubStep,
const int reportStepNum)
{
const auto& gridView = simulator_.vanguard().gridView();
const int numElements = gridView.size(/*codim=*/0);
const bool log = this->collectToIORank_.isIORank();
eclOutputModule_->allocBuffers(numElements, reportStepNum,
isSubStep, log, /*isRestart*/ false);
ElementContext elemCtx(simulator_);
ElementIterator elemIt = gridView.template begin</*codim=*/0>();
const ElementIterator& elemEndIt = gridView.template end</*codim=*/0>();
OPM_BEGIN_PARALLEL_TRY_CATCH();
for (; elemIt != elemEndIt; ++elemIt) {
const Element& elem = *elemIt;
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
eclOutputModule_->processElement(elemCtx);
}
OPM_END_PARALLEL_TRY_CATCH("EclWriter::prepareLocalCellData() failed: ", simulator_.vanguard().grid().comm())
}
void captureLocalFluxData()
{
const auto& gridView = this->simulator_.vanguard().gridView();
const auto timeIdx = 0u;
auto elemCtx = ElementContext { this->simulator_ };
const auto elemMapper = ElementMapper { gridView, Dune::mcmgElementLayout() };
const auto activeIndex = [&elemMapper](const Element& e)
{
return elemMapper.index(e);
};
const auto cartesianIndex = [this](const int elemIndex)
{
return this->cartMapper_.cartesianIndex(elemIndex);
};
this->eclOutputModule_->initializeFluxData();
OPM_BEGIN_PARALLEL_TRY_CATCH();
for (const auto& elem : elements(gridView, Dune::Partitions::interiorBorder)) {
elemCtx.updateStencil(elem);
elemCtx.updateIntensiveQuantities(timeIdx);
elemCtx.updateExtensiveQuantities(timeIdx);
this->eclOutputModule_->processFluxes(elemCtx, activeIndex, cartesianIndex);
}
OPM_END_PARALLEL_TRY_CATCH("EclWriter::captureLocalFluxData() failed: ",
this->simulator_.vanguard().grid().comm())
this->eclOutputModule_->finalizeFluxData();
}
Simulator& simulator_;
std::unique_ptr<EclOutputBlackOilModule<TypeTag>> eclOutputModule_;
Scalar restartTimeStepSize_;
};
} // namespace Opm
#endif