- when an episode/report step is over, the next is started by endEpisode()
- the problem does not deal with updating the simulation time anymore
- rename `episodeIdx` in to `reportStepIdx` the 'EclWriter' because
this variable is -- and always has been -- the report step number
used by some parts of `opm-output`'s ECL writing code (the report
step number is equivalent to the episode index plus 1). IMO, the
output and parser code should be made more consistent in regard of
whether it expects 0-based or 1-based indices, but this is a story
for another day.
before patch, setting the `EnableEclOutput` parameter to `false`
resulted in the `eclWriter_` not to be allocated; yet it was used in
some places. this resulted in segfaults.
medium term, the output and restart file writing should be refactored:
the simulator does not need to be aware of this because it can be
accomplised in the problem's endTimeStep() method.
the only thing which this does so far is to introduce the respective
property and `ebos` will abort the run if the deck requests API tracking.
As usual for experimental features, `flow` is unaffected.
the idea is to compensate the residual of the final solution of a time
step by means of an opposing source term in the next time step.
This patch has been developed as a joint project with [at]totto82 and
[at]osae.
(`flow` is unaffected by this because for now drift compensation is an
experimental feature and thus disabled within the production
simulator.)
this bitrot a bit because it was never seen by the compiler. (I still
did not check if `ebos` compiles and works if `CpGrid` is replaced by
dune-alugrid or `PolyhedralGrid`.)
the convergence behaviour can now be understood and the report step
information is printed, too. This does not affect `flow`, becase it
implements its own newton and time stepping routines.
Usage
BCRATE
1 1 1 1 1 10 X WATER 1e-7 /
This will inject 1e-7 of water (mass/time/length/length) on the x side of the
boundary cells with cartesian index [1 1 1] to [1 1 10]
this is a compile time switch with the intention to be able to more
easily turn experimental features that are not yet considered to be
production quality on and off. DUNE has a similar mechanism (i.e., the
`DUNE_GRID_EXPERIMENTAL_GRID_EXTENSIONS` macro), but it relies on
the preprocessor.
For now, the property does not have any effect.
this hopefully makes the purpose of `ebos` clear in its
description. this prose should be interpreted as "if you use ebos in
production, you are on your own and you should only expect a very
limited amount of support (or even sympathy) if something breaks".
in particular the missing synchronization after restarts was very
nasty to find. thanks a ton for pointing this out!
also, IIRC changing DR[SV]DT in the schedule section has been working
properly for a while, so the comment which stated the opposite is
removed as well.
Some time loop stuff was missing in the doobly-doo, the init() method
of the well model was not called and there was the slightly deeper
issue that the initial solutions where not calculated on restarts
which breaks everything that relies on them. (at the moment, that's
everything which is related to non-trivial boundary contitions.)
the purpose of this was a hack to be able to manipulate the Jacobian
matrix directly from outside code. Since `flow` has been converted to
the eWoms wells API, this is not required anymore.
the parameter is called `EclNewtonSumToleranceExponent`. if it is set
to 1, the specified tolerance will be used directly. (this is not
desireable in the general case though, because at the same result
quality, the sum error for large reservoirs can be larger than for
small ones.)