it is not used anymore. A lot of related implementation has been moved
to WellTestState.
Its existence makes some logic rather confusing and some new development
not easy.
This allows (re)moving of the following files
opm/autodiff/RateConverter.hpp
opm/autodiff/Compat.cpp
opm/autodiff/Compat.hpp
opm/core/props/BlackoilPropertiesInterface.hpp
opm/core/simulator/BlackoilState.cpp
opm/core/simulator/BlackoilState.hpp
opm/core/simulator/BlackoilStateToFluidState.hpp
opm/core/utility/initHydroCarbonState.hpp
opm/polymer/PolymerBlackoilState.cpp
opm/polymer/PolymerBlackoilState.hpp
tests/test_blackoilstate.cpp
No templates involved, no reason to keep it in header. This also makes
building more robust by only invoking HAVE_MPI in the cpp file, after
including config.h.
so far, the actual specializations of the simulator were compiled into
the `libopmsimulators` library and the build of the glue code
(`flow.cpp`) thus needed to be deferred until the library was fully
built. Since the compilation of the glue code requires a full property
hierarchy for handling command line parameters, this arrangement
significantly increases the build time for systems with a sufficient
number of parallel build processes. ("sufficient" here means 8 or more
threads, i.e., a quadcore system with hyperthreading is sufficient
provided that it has enough main memory.)
the new approach is not to include these objects in
`libopmsimulators`, but to directly deal with them in the `flow`
binary. this allows all of them and the glue code to be compiled in
parallel.
compilation time on my machine before this change:
```
> touch ../opm/autodiff/BlackoilModelEbos.hpp; time make -j32 flow 2> /dev/null
Scanning dependencies of target opmsimulators
[ 2%] Building CXX object CMakeFiles/opmsimulators.dir/opm/simulators/flow_ebos_gasoil.cpp.o
[ 2%] Building CXX object CMakeFiles/opmsimulators.dir/opm/simulators/flow_ebos_oilwater.cpp.o
[ 2%] Building CXX object CMakeFiles/opmsimulators.dir/opm/simulators/flow_ebos_blackoil.cpp.o
[ 2%] Building CXX object CMakeFiles/opmsimulators.dir/opm/simulators/flow_ebos_solvent.cpp.o
[ 4%] Building CXX object CMakeFiles/opmsimulators.dir/opm/simulators/flow_ebos_polymer.cpp.o
[ 6%] Building CXX object CMakeFiles/opmsimulators.dir/opm/simulators/flow_ebos_energy.cpp.o
[ 6%] Building CXX object CMakeFiles/opmsimulators.dir/opm/simulators/flow_ebos_oilwater_polymer.cpp.o
[ 6%] Linking CXX static library lib/libopmsimulators.a
[ 97%] Built target opmsimulators
Scanning dependencies of target flow
[100%] Building CXX object CMakeFiles/flow.dir/examples/flow.cpp.o
[100%] Linking CXX executable bin/flow
[100%] Built target flow
real 1m45.692s
user 8m47.195s
sys 0m11.533s
```
after:
```
> touch ../opm/autodiff/BlackoilModelEbos.hpp; time make -j32 flow 2> /dev/null
[ 91%] Built target opmsimulators
Scanning dependencies of target flow
[ 93%] Building CXX object CMakeFiles/flow.dir/flow/flow.cpp.o
[ 95%] Building CXX object CMakeFiles/flow.dir/flow/flow_ebos_gasoil.cpp.o
[ 97%] Building CXX object CMakeFiles/flow.dir/flow/flow_ebos_oilwater_polymer.cpp.o
[100%] Building CXX object CMakeFiles/flow.dir/flow/flow_ebos_polymer.cpp.o
[100%] Building CXX object CMakeFiles/flow.dir/flow/flow_ebos_oilwater.cpp.o
[100%] Building CXX object CMakeFiles/flow.dir/flow/flow_ebos_solvent.cpp.o
[100%] Building CXX object CMakeFiles/flow.dir/flow/flow_ebos_blackoil.cpp.o
[100%] Building CXX object CMakeFiles/flow.dir/flow/flow_ebos_energy.cpp.o
[100%] Linking CXX executable bin/flow
[100%] Built target flow
real 1m21.597s
user 8m49.476s
sys 0m10.973s
```
(this corresponds to a ~20% reduction of the time spend on waiting for
the compiler.)
this has several advanges:
- a consistent and complete help message is now printed by passing the
-h or --help command line parameters. most notably this allows to
generically implement tab completion of parameters for bash
- the full list of runtime parameters can now be printed before the simulator
has been run.
- all runtime parameters understood by ebos can be specified
- no hacks to marry the two parameter systems anymore
- command parameters now follow the standard unix convention, i.e.,
`--param-name=value` instead of `param_name=value`
on the negative side, some parameters have been renamed and the syntax
has changed so calls to `flow` that specify parameters must adapted.
The energy conservation is enabled by specifying either TEMP or
THERMAL in the deck. The deck also needs to contatin relevant fluid and rock
heat properties.
The blackoil + energy equations are solved fully implicit.
this class is only used by the legacy simulators, `flow` uses the
`EclWriter` class provided by eWoms. In turn, this class uses the
new-and-shiny "tasklet" mechanism.
simulator
1) Don't depend on legacy code for communicating the data::wells
2) Bugfix. Store globalIdx instead localIdx in data::wells::complitions
3) Move ThreadHandle to ebos
This seems to have been forgotten previously. Now the code int CPRPreconditioner.hpp
uses ParallelOverlappingILU0 instead of SeqILU[0n]/BlockPreconditioner which
makes the code more slim.
The approach is inspired by Geiger's system-amg but we use dune-istl
aggregation AMG for it. On the fine level all unknowns attached to a cell
form a matrix block and are treated fully coupled. To form the first
coarse level system we use only the pressure component to guide the aggregation
and neglect all other unknowns on the fine level. All other level are formed
in the usual way by scalar aggregation.
Currently,it has to be requested for flow_ebos manually by passing
"linear_solver_use_amg=true amg_blackoil_system=true" to it.
these files take the longest to compile. moving them to the beginning
speeds things up forn parallel builds because the remaining compile
can be compiled while dealing with the flow_ebos files while the build
stalls if these files are at the bottom of the list because they are
required for the library.
The wells, FIP and initial output of NNCs is still handled
by code in opm-simulators. The plan is to move more of the
functionality to ebos.
All tests pass and MPI restart works