the performance summary at the end of a Norne run which are printed by
`flow_ebos` now looks like this on my machine:
```
Total time (seconds): 773.757
Solver time (seconds): 753.349
Assembly time (seconds): 377.218 (Failed: 23.537; 6.23965%)
Linear solve time (seconds): 352.022 (Failed: 23.2757; 6.61201%)
Update time (seconds): 16.3658 (Failed: 1.13149; 6.91375%)
Output write time (seconds): 22.5991
Overall Well Iterations: 870 (Failed: 35; 4.02299%)
Overall Linearizations: 2098 (Failed: 136; 6.48236%)
Overall Newton Iterations: 1756 (Failed: 136; 7.74487%)
Overall Linear Iterations: 26572 (Failed: 1786; 6.72136%)
```
for the flow_legacy family, nothing changes.
For cells with swat == 1 Ecl outputs; rs = rsSat and rv=rvSat, in all
but the initial step where it outputs rs and rv values calculated by the
initialization. To be compatible we overwrite rs and rv with the values
passed by the localState. Volume factors and densities needs to be
recalculated with the updated rs and rv values.
All simulators now use SimulationDataContainer to store intermediate data that
is passed to the output Solution container. This is in cases not the most
efficient way, but it's unified to avoid errors from code duplication.
this makes the RateConverter stuff independent of Eigen and it
simplifies some things because the the old PVT API is designed as a
"bulk-with-derivatives" API while the rate converter code used it in
"single shot" mode without derivatives.
this code mostly used the Eigen vectors as arrays anyway, so let's use
`std::vector`.
also, this patch only "mostly eliminates" Eigen from from these parts
of the code because the source files of the VFP code still use
AutoDiffBlock; Unfortunately this cannot easily be changed because
`flow_legacy` depends on these methods. (`flow_ebos` does not use the
incriminating methods.)
1) changes dp_max_rel default to 0.2
2) introduces a dbhp_max_rel paramter to restrict the bhp update in the
updateWellState() (instead of using the dp_max_rel) Default is set to
1.0
3) Restrict rs and rv between 0,and the satruation value
4) Set rs and rv to zero for the water only cases
5) Guard against zero rs and rv when calcuating the maximum allowed rs
and rv change.
Tested on norne, model 2 and model 2.2
Number of problems for the different models with and without this fix
Case
this PR master
Norne
10
45
Model 2
21
78
Model 2.2
200
248
* master:
changed: drop usage of python based comparison script in spe integration tests
changed: drop usage of python based comparison script in polymer integration test
Remove weak enum Opm::Phase
This weak enum is really just an alias for four other constants which in
turn alias another enum. Since they're mostly used for indexing they're
relaxed to constexpr ints.
* master: (42 commits)
Let only one rank write to step_timing.txt
Do not refer users to issue tracker if multiple procs log.
Remove unused variable.
Use vector instead of VLA, also add missing includes.
changed: bundle eigen3 in the original tarball for debian
update redhat6 packaging
Bugfix parallel computation of weighted pressure etc.
Fixed uninitialized bug, and added logging/comment
Removed superfluous std::move
Refactoring
Initial version of summary data
Do not store collective communication in the wells object.
Make sure that updateWellControls is called on each process.
Make WellSwitchingLogger work with DUNE 2.3
Schedule::getGroup returns reference, not pointer
Removed warning in WellSwitchLogger::calculateMessageSize
Correctly initialize MPI for multisegment wells test
Changed some names in WellSwitchingLogger
Use speaking name for bool in getCellData
Whitespace and other formatting changes
...
Its first implementation computed wrong results in parallel. With this commit
we noe have completely parallelized the computations and the results seem correct
for parallel runs with norne.
almost all of them were caused by recent changes in the master
branch:
- there were methods added which depend on the types `V` and
`DataBlock`. these do not make much sense in the context of the
frankenstein simulator. Also, these types are defined globally for the
whole Opm namespace in `BlackoilModelBase_impl.hpp` (which should be
prosecuted as a fellony IMO)! Besides this, their names are useless;
'V' is the letter which comes after `U` in the alphabet and when it
comes to computers basically everything can be seen as a chunk of data
(i.e., a `DataBlock`).
- it seems like the new and shiny dense-AD based well model was never
compiled with assertations enabled, at least some asserts referenced
non-existing variables.
- the recent output-related API changes were pretty unfortunate
because they had the effect of tying the (sub-optimal, IMO) internal
structure of the model even closer to the output code: as far as I can
see, `rq` does only make sense if the model works *exactly* like
BlackoilModelBase and friends. (for flow_ebos, this could be
replicated, but first it would be another unnecessary conversion step
and second, most of the quantities in `rq` are of type `ADB` and much
of the "frankenstein" excercise is devoted to getting rid of these.) I
thus reverted back to an old version of the output code and created a
`frankenstein` branch in my personal `opm-output` github fork.
i.e., the contents of the Opm::details namespace, the IterationReport
and the DefaultBlackoilSolutionState classes. the purpose of this is
to share the code between the existing flow variants and flow_ebos.
models may need a more detailed picture of where they are in the
simulation. Note that since the timer objects are available at every
call site, this is also not a very deep change.