Similar to the previous commit b25f489, run() is here refactored in
preparation for the implementation of a Python step() function in a
later commit. Currently run() is called from runSimulatorInitOrRun() in
FlowMainEbos.hpp using the runSimulatorRunCallback_(). Later, there
will be other callbacks like runSimulatorStepInitCallback_(), and
runSimulatorStepCallback_(), that will need to call different parts of
the code in run(). The run() function is thus refactored into run(),
runInit(), runStep(), and runLastStep(). Also, some of the local
variables in run() have to be made persistent between calls to
runStep(), this applies to variables report, stepReport, solverTimer,
totalTimer, and adaptiveTimeStepping, which are made private class
variables.
Open Porous Media Simulators and Automatic Differentiation Library
CONTENT
opm-simulators contains simulator programs for porous media flow. It also contains a small library for automatic differentiation built on the Eigen linear algebra package which is used by many of the simulators to handle the building of Jacobians. The most important (and tested) part is the Flow reservoir simulator, which is a fully implicit black-oil simulator that also supports solvent and polymer options. It is built using automatic differentiation, using the local AD class Evaluation from opm-material.
LICENSE
The library is distributed under the GNU General Public License, version 3 or later (GPLv3+).
PLATFORMS
The opm-simulators module is designed to run on Linux platforms. It is also regularly run on Mac OS X. No efforts have been made to ensure that the code will compile and run on windows platforms.
REQUIREMENTS
opm-simulators requires several other OPM modules, see http://opm-project.org/?page_id=274. In addition, opm-simulators requires the Dune module dune-istl and Eigen, version 3.1 (has not been tested with later versions).
DOWNLOADING
For a read-only download: git clone git://github.com/OPM/opm-simulators.git
If you want to contribute, fork OPM/opm-simulators on github.
BUILDING
See build instructions at http://opm-project.org/?page_id=36
DOCUMENTATION
Efforts have been made to document the code with Doxygen. In order to build the documentation, enter the command
make doc
in the topmost directory. The class AutoDiffBlock is the most important and most well-documented.
REPORTING ISSUES
Issues can be reported in the Git issue tracker online at:
https://github.com/OPM/opm-simulators/issues
To help diagnose build errors, please provide a link to a build log together with the issue description.
You can capture such a log from the build using the `script' utility, e.g.:
LOGFILE=$(date +%Y%m%d-%H%M-)build.log ;
cmake -E cmake_echo_color --cyan --bold "Log file: $LOGFILE" ;
script -q $LOGFILE -c 'cmake ../opm-core -DCMAKE_BUILD_TYPE=Debug' &&
script -q $LOGFILE -a -c 'ionice nice make -j 4 -l 3' ||
cat CMakeCache.txt CMakeFiles/CMake*.log >> $LOGFILE
The resulting file can be uploaded to for instance gist.github.com.