Files
LBPM/common/Domain.h

634 lines
20 KiB
C
Raw Normal View History

2013-09-03 14:46:57 -04:00
// Created by James McClure
// Copyright 2008-2013
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <fstream>
#include <math.h>
#include <time.h>
#include <exception> // std::exception
#include <stdexcept>
2014-06-25 20:49:37 -04:00
#include <mpi.h>
2014-02-21 15:08:49 -05:00
#include "common/Utilities.h"
2013-09-03 14:46:57 -04:00
using namespace std;
2014-06-25 16:35:53 -04:00
struct Domain{
Domain(int nx, int ny, int nz, int rnk, int npx, int npy, int npz,
double lx, double ly, double lz){
2014-06-25 16:45:42 -04:00
Nx = nx+2; Ny = ny+2; Nz = nz+2;
2014-06-25 16:35:53 -04:00
Lx = lx, Ly = ly, Lz = lz;
rank = rnk;
nprocx=npx; nprocy=npy; nprocz=npz;
N = Nx*Ny*Nz;
2014-06-25 20:38:43 -04:00
id = new char [N];
2014-06-25 16:35:53 -04:00
Blobs.New(Nx,Ny,Nz);
}
// Basic domain information
int Nx,Ny,Nz,N;
int iproc,jproc,kproc;
int nprocx,nprocy,nprocz;
double Lx,Ly,Lz;
int rank;
//**********************************
// MPI ranks for all 18 neighbors
//**********************************
int rank_x,rank_y,rank_z,rank_X,rank_Y,rank_Z;
int rank_xy,rank_XY,rank_xY,rank_Xy;
int rank_xz,rank_XZ,rank_xZ,rank_Xz;
int rank_yz,rank_YZ,rank_yZ,rank_Yz;
//**********************************
//......................................................................................
// Get the actual D3Q19 communication counts (based on location of solid phase)
// Discrete velocity set symmetry implies the sendcount = recvcount
//......................................................................................
int sendCount_x, sendCount_y, sendCount_z, sendCount_X, sendCount_Y, sendCount_Z;
int sendCount_xy, sendCount_yz, sendCount_xz, sendCount_Xy, sendCount_Yz, sendCount_xZ;
int sendCount_xY, sendCount_yZ, sendCount_Xz, sendCount_XY, sendCount_YZ, sendCount_XZ;
//......................................................................................
int *sendList_x, *sendList_y, *sendList_z, *sendList_X, *sendList_Y, *sendList_Z;
int *sendList_xy, *sendList_yz, *sendList_xz, *sendList_Xy, *sendList_Yz, *sendList_xZ;
int *sendList_xY, *sendList_yZ, *sendList_Xz, *sendList_XY, *sendList_YZ, *sendList_XZ;
//......................................................................................
int *sendBuf_x, *sendBuf_y, *sendBuf_z, *sendBuf_X, *sendBuf_Y, *sendBuf_Z;
int *sendBuf_xy, *sendBuf_yz, *sendBuf_xz, *sendBuf_Xy, *sendBuf_Yz, *sendBuf_xZ;
int *sendBuf_xY, *sendBuf_yZ, *sendBuf_Xz, *sendBuf_XY, *sendBuf_YZ, *sendBuf_XZ;
2014-06-25 20:49:37 -04:00
//......................................................................................
int recvCount_x, recvCount_y, recvCount_z, recvCount_X, recvCount_Y, recvCount_Z;
int recvCount_xy, recvCount_yz, recvCount_xz, recvCount_Xy, recvCount_Yz, recvCount_xZ;
int recvCount_xY, recvCount_yZ, recvCount_Xz, recvCount_XY, recvCount_YZ, recvCount_XZ;
//......................................................................................
int *recvBuf_x, *recvBuf_y, *recvBuf_z, *recvBuf_X, *recvBuf_Y, *recvBuf_Z;
int *recvBuf_xy, *recvBuf_yz, *recvBuf_xz, *recvBuf_Xy, *recvBuf_Yz, *recvBuf_xZ;
int *recvBuf_xY, *recvBuf_yZ, *recvBuf_Xz, *recvBuf_XY, *recvBuf_YZ, *recvBuf_XZ;
//......................................................................................
2014-06-25 16:35:53 -04:00
// Solid indicator function
char *id;
2014-06-25 16:35:53 -04:00
// Blob information
IntArray Blobs;
void InitializeRanks();
void CommInit();
2014-06-25 16:35:53 -04:00
private:
int getRankForBlock( int i, int j, int k )
{
int i2 = (i+nprocx)%nprocx;
int j2 = (j+nprocy)%nprocy;
int k2 = (k+nprocz)%nprocz;
return i2 + j2*nprocx + k2*nprocx*nprocy;
}
};
void Domain::InitializeRanks()
{
// map the rank to the block index
iproc = rank%nprocx;
jproc = (rank/nprocx)%nprocy;
kproc = rank/(nprocx*nprocy);
// set up the neighbor ranks
int i = iproc;
int j = jproc;
int k = kproc;
rank_X = getRankForBlock(i+1,j,k);
rank_x = getRankForBlock(i-1,j,k);
rank_Y = getRankForBlock(i,j+1,k);
rank_y = getRankForBlock(i,j-1,k);
rank_Z = getRankForBlock(i,j,k+1);
rank_z = getRankForBlock(i,j,k-1);
rank_XY = getRankForBlock(i+1,j+1,k);
rank_xy = getRankForBlock(i-1,j-1,k);
rank_Xy = getRankForBlock(i+1,j-1,k);
rank_xY = getRankForBlock(i-1,j+1,k);
rank_XZ = getRankForBlock(i+1,j,k+1);
rank_xz = getRankForBlock(i-1,j,k-1);
rank_Xz = getRankForBlock(i+1,j,k-1);
rank_xZ = getRankForBlock(i-1,j,k+1);
rank_YZ = getRankForBlock(i,j+1,k+1);
rank_yz = getRankForBlock(i,j-1,k-1);
rank_Yz = getRankForBlock(i,j+1,k-1);
rank_yZ = getRankForBlock(i,j-1,k+1);
}
void Domain::CommInit(){
int i,j,k,n;
sendCount_x = sendCount_y = sendCount_z = sendCount_X = sendCount_Y = sendCount_Z = 0;
sendCount_xy = sendCount_yz = sendCount_xz = sendCount_Xy = sendCount_Yz = sendCount_xZ = 0;
sendCount_xY = sendCount_yZ = sendCount_Xz = sendCount_XY = sendCount_YZ = sendCount_XZ = 0;
//......................................................................................
for (k=0; k<Nz; k++){
for (j=0; j<Ny; j++){
for (i=0; i<Nx; i++){
// Check the phase ID
if (id[k*Nx*Ny+j*Nx+i] != 0){
// Counts for the six faces
if (i==1) sendCount_x++;
if (j==1) sendCount_y++;
if (k==1) sendCount_z++;
if (i==Nx-2) sendCount_X++;
if (j==Ny-2) sendCount_Y++;
if (k==Nz-2) sendCount_Z++;
// Counts for the twelve edges
if (i==1 && j==1) sendCount_xy++;
if (i==1 && j==Ny-2) sendCount_xY++;
if (i==Nx-2 && j==1) sendCount_Xy++;
if (i==Nx-2 && j==Ny-2) sendCount_XY++;
if (i==1 && k==1) sendCount_xz++;
if (i==1 && k==Nz-2) sendCount_xZ++;
if (i==Nx-2 && k==1) sendCount_Xz++;
if (i==Nx-2 && k==Nz-2) sendCount_XZ++;
if (j==1 && k==1) sendCount_yz++;
if (j==1 && k==Nz-2) sendCount_yZ++;
if (j==Ny-2 && k==1) sendCount_Yz++;
if (j==Ny-2 && k==Nz-2) sendCount_YZ++;
}
}
}
}
// allocate send lists
sendList_x = new int [sendCount_x];
sendList_y = new int [sendCount_y];
sendList_z = new int [sendCount_z];
sendList_X = new int [sendCount_X];
sendList_Y = new int [sendCount_Y];
sendList_Z = new int [sendCount_Z];
sendList_xy = new int [sendCount_xy];
sendList_yz = new int [sendCount_yz];
sendList_xz = new int [sendCount_xz];
sendList_Xy = new int [sendCount_Xy];
sendList_Yz = new int [sendCount_Yz];
sendList_xZ = new int [sendCount_xZ];
sendList_xY = new int [sendCount_xY];
sendList_yZ = new int [sendCount_yZ];
sendList_Xz = new int [sendCount_Xz];
sendList_XY = new int [sendCount_XY];
sendList_YZ = new int [sendCount_YZ];
sendList_XZ = new int [sendCount_XZ];
// Populate the send list
sendCount_x = sendCount_y = sendCount_z = sendCount_X = sendCount_Y = sendCount_Z = 0;
sendCount_xy = sendCount_yz = sendCount_xz = sendCount_Xy = sendCount_Yz = sendCount_xZ = 0;
sendCount_xY = sendCount_yZ = sendCount_Xz = sendCount_XY = sendCount_YZ = sendCount_XZ = 0;
for (k=0; k<Nz; k++){
for (j=0; j<Ny; j++){
for (i=0; i<Nx; i++){
// Local value to send
n = k*Nx*Ny+j*Nx+i;
if (id[n] != 0){
// Counts for the six faces
if (i==1) sendList_x[sendCount_x++]=n;
if (j==1) sendList_y[sendCount_y++]=n;
if (k==1) sendList_z[sendCount_z++]=n;
if (i==Nx-2) sendList_X[sendCount_X++]=n;
if (j==Ny-2) sendList_Y[sendCount_Y++]=n;
if (k==Nz-2) sendList_Z[sendCount_Z++]=n;
// Counts for the twelve edges
if (i==1 && j==1) sendList_xy[sendCount_xy++]=n;
if (i==1 && j==Ny-2) sendList_xY[sendCount_xY++]=n;
if (i==Nx-2 && j==1) sendList_Xy[sendCount_Xy++]=n;
if (i==Nx-2 && j==Ny-2) sendList_XY[sendCount_XY++]=n;
if (i==1 && k==1) sendList_xz[sendCount_xz++]=n;
if (i==1 && k==Nz-2) sendList_xZ[sendCount_xZ++]=n;
if (i==Nx-2 && k==1) sendList_Xz[sendCount_Xz++]=n;
if (i==Nx-2 && k==Nz-2) sendList_XZ[sendCount_XZ++]=n;
if (j==1 && k==1) sendList_yz[sendCount_yz++]=n;
if (j==1 && k==Nz-2) sendList_yZ[sendCount_yZ++]=n;
if (j==Ny-2 && k==1) sendList_Yz[sendCount_Yz++]=n;
if (j==Ny-2 && k==Nz-2) sendList_YZ[sendCount_YZ++]=n;
}
}
}
}
// allocate send buffers
sendBuf_x = new int [sendCount_x];
sendBuf_y = new int [sendCount_y];
sendBuf_z = new int [sendCount_z];
sendBuf_X = new int [sendCount_X];
sendBuf_Y = new int [sendCount_Y];
sendBuf_Z = new int [sendCount_Z];
sendBuf_xy = new int [sendCount_xy];
sendBuf_yz = new int [sendCount_yz];
sendBuf_xz = new int [sendCount_xz];
sendBuf_Xy = new int [sendCount_Xy];
sendBuf_Yz = new int [sendCount_Yz];
sendBuf_xZ = new int [sendCount_xZ];
sendBuf_xY = new int [sendCount_xY];
sendBuf_yZ = new int [sendCount_yZ];
sendBuf_Xz = new int [sendCount_Xz];
sendBuf_XY = new int [sendCount_XY];
sendBuf_YZ = new int [sendCount_YZ];
sendBuf_XZ = new int [sendCount_XZ];
}
2013-09-03 14:46:57 -04:00
inline void ReadSpherePacking(int nspheres, double *List_cx, double *List_cy, double *List_cz, double *List_rad)
{
// Read in the full sphere pack
//...... READ IN THE SPHERES...................................
cout << "Reading the packing file..." << endl;
FILE *fid = fopen("pack.out","rb");
2014-02-21 15:36:05 -05:00
INSIST(fid!=NULL,"Error opening pack.out");
2013-09-03 14:46:57 -04:00
//.........Trash the header lines..........
char * line = new char[100];
fgets(line, 100, fid);
fgets(line, 100, fid);
fgets(line, 100, fid);
fgets(line, 100, fid);
fgets(line, 100, fid);
2013-09-03 14:46:57 -04:00
//........read the spheres..................
// We will read until a blank like or end-of-file is reached
int count = 0;
while ( !feof(fid) && fgets(line,100,fid)>0 ) {
char* line2 = line;
List_cx[count] = strtod(line2,&line2);
List_cy[count] = strtod(line2,&line2);
List_cz[count] = strtod(line2,&line2);
List_rad[count] = strtod(line2,&line2);
2013-09-03 14:46:57 -04:00
count++;
}
cout << "Number of spheres extracted is: " << count << endl;
2014-02-21 15:36:05 -05:00
INSIST( count==nspheres, "Specified number of spheres is probably incorrect!" );
2013-09-03 14:46:57 -04:00
// .............................................................
}
inline void AssignLocalSolidID(char *ID, int nspheres, double *List_cx, double *List_cy, double *List_cz, double *List_rad,
double Lx, double Ly, double Lz, int Nx, int Ny, int Nz,
int iproc, int jproc, int kproc, int nprocx, int nprocy, int nprocz)
{
// Use sphere lists to determine which nodes are in porespace
// Write out binary file for nodes
char value;
int N = Nx*Ny*Nz; // Domain size, including the halo
double hx,hy,hz;
double x,y,z;
double cx,cy,cz,r;
int imin,imax,jmin,jmax,kmin,kmax;
int p,i,j,k,n;
//............................................
double min_x,min_y,min_z;
// double max_x,max_y,max_z;
//............................................
// Lattice spacing for the entire domain
// It should generally be true that hx=hy=hz
// Otherwise, you will end up with ellipsoids
hx = Lx/(Nx*nprocx-1);
hy = Ly/(Ny*nprocy-1);
hz = Lz/(Nz*nprocz-1);
//............................................
// Get maximum and minimum for this domain
// Halo is included !
min_x = double(iproc*Nx-1)*hx;
min_y = double(jproc*Ny-1)*hy;
min_z = double(kproc*Nz-1)*hz;
// max_x = ((iproc+1)*Nx+1)*hx;
// max_y = ((jproc+1)*Ny+1)*hy;
// max_z = ((kproc+1)*Nz+1)*hz;
//............................................
//............................................
// Pre-initialize local ID
for (n=0;n<N;n++){
ID[n]=1;
}
//............................................
//............................................
// .........Loop over the spheres.............
for (p=0;p<nspheres;p++){
// Get the sphere from the list, map to local min
cx = List_cx[p] - min_x;
cy = List_cy[p] - min_y;
cz = List_cz[p] - min_z;
r = List_rad[p];
// Check if
// Range for this sphere in global indexing
imin = int ((cx-r)/hx)-1;
imax = int ((cx+r)/hx)+1;
jmin = int ((cy-r)/hy)-1;
jmax = int ((cy+r)/hy)+1;
kmin = int ((cz-r)/hz)-1;
kmax = int ((cz+r)/hz)+1;
// Obviously we have to do something at the edges
if (imin<0) imin = 0;
if (imin>Nx) imin = Nx;
if (imax<0) imax = 0;
if (imax>Nx) imax = Nx;
if (jmin<0) jmin = 0;
if (jmin>Ny) jmin = Ny;
if (jmax<0) jmax = 0;
if (jmax>Ny) jmax = Ny;
if (kmin<0) kmin = 0;
if (kmin>Nz) kmin = Nz;
if (kmax<0) kmax = 0;
if (kmax>Nz) kmax = Nz;
// Loop over the domain for this sphere (may be null)
for (i=imin;i<imax;i++){
for (j=jmin;j<jmax;j++){
for (k=kmin;k<kmax;k++){
// Initialize ID value to 'fluid (=1)'
x = i*hx;
y = j*hy;
z = k*hz;
value = 1;
// if inside sphere, set to zero
if ( (cx-x)*(cx-x)+(cy-y)*(cy-y)+(cz-z)*(cz-z) < r*r){
value=0;
}
// get the position in the list
n = k*Nx*Ny+j*Nx+i;
if ( ID[n] != 0 ){
ID[n] = value;
}
}
}
}
}
}
2013-10-08 22:29:21 -04:00
inline void SignedDistance(double *Distance, int nspheres, double *List_cx, double *List_cy, double *List_cz, double *List_rad,
double Lx, double Ly, double Lz, int Nx, int Ny, int Nz,
int iproc, int jproc, int kproc, int nprocx, int nprocy, int nprocz)
{
// Use sphere lists to determine which nodes are in porespace
// Write out binary file for nodes
int N = Nx*Ny*Nz; // Domain size, including the halo
double hx,hy,hz;
double x,y,z;
double cx,cy,cz,r;
int imin,imax,jmin,jmax,kmin,kmax;
int p,i,j,k,n;
//............................................
double min_x,min_y,min_z;
double distance;
//............................................
// Lattice spacing for the entire domain
// It should generally be true that hx=hy=hz
// Otherwise, you will end up with ellipsoids
hx = Lx/((Nx-2)*nprocx-1);
hy = Ly/((Ny-2)*nprocy-1);
hz = Lz/((Nz-2)*nprocz-1);
//............................................
// Get maximum and minimum for this domain
// Halo is included !
min_x = double(iproc*(Nx-2)-1)*hx;
min_y = double(jproc*(Ny-2)-1)*hy;
min_z = double(kproc*(Nz-2)-1)*hz;
//............................................
//............................................
// Pre-initialize Distance
for (n=0;n<N;n++){
Distance[n]=100.0;
}
//............................................
//............................................
// .........Loop over the spheres.............
for (p=0;p<nspheres;p++){
// Get the sphere from the list, map to local min
cx = List_cx[p] - min_x;
cy = List_cy[p] - min_y;
cz = List_cz[p] - min_z;
r = List_rad[p];
// Check if
// Range for this sphere in global indexing
imin = int ((cx-r)/hx);
imax = int ((cx+r)/hx)+2;
jmin = int ((cy-r)/hy);
jmax = int ((cy+r)/hy)+2;
kmin = int ((cz-r)/hz);
kmax = int ((cz+r)/hz)+2;
// Obviously we have to do something at the edges
if (imin<0) imin = 0;
if (imin>Nx) imin = Nx;
if (imax<0) imax = 0;
if (imax>Nx) imax = Nx;
if (jmin<0) jmin = 0;
if (jmin>Ny) jmin = Ny;
if (jmax<0) jmax = 0;
if (jmax>Ny) jmax = Ny;
if (kmin<0) kmin = 0;
if (kmin>Nz) kmin = Nz;
if (kmax<0) kmax = 0;
if (kmax>Nz) kmax = Nz;
// Loop over the domain for this sphere (may be null)
for (i=imin;i<imax;i++){
for (j=jmin;j<jmax;j++){
for (k=kmin;k<kmax;k++){
// x,y,z is distance in physical units
x = i*hx;
y = j*hy;
z = k*hz;
// if inside sphere, set to zero
// get the position in the list
n = k*Nx*Ny+j*Nx+i;
// Compute the distance
distance = sqrt((cx-x)*(cx-x)+(cy-y)*(cy-y)+(cz-z)*(cz-z)) - r;
// Assign the minimum distance
if (distance < Distance[n]) Distance[n] = distance;
}
}
}
}
// Map the distance to lattice units
for (n=0; n<N; n++) Distance[n] = Distance[n]/hx;
}
2013-09-03 14:46:57 -04:00
inline void GenerateResidual(char *ID, int Nx, int Ny, int Nz, double Saturation)
{
//.......................................................................
int i,j,k,n,Number,N;
int x,y,z,ii,jj,kk;
int sizeX,sizeY,sizeZ;
int *SizeX, *SizeY, *SizeZ;
#ifdef NORANDOM
2013-09-03 14:46:57 -04:00
srand(10009);
#else
srand(time(NULL));
#endif
2013-09-03 14:46:57 -04:00
// float bin;
//.......................................................................
N = Nx*Ny*Nz;
int bin, binCount;
ifstream Dist("BlobSize.in");
Dist >> binCount;
2014-05-21 20:51:42 -04:00
// printf("Number of blob sizes: %i \n",binCount);
2013-09-03 14:46:57 -04:00
SizeX = new int [binCount];
SizeY = new int [binCount];
SizeZ = new int [binCount];
for (bin=0; bin<binCount; bin++){
2013-09-03 14:46:57 -04:00
Dist >> SizeX[bin];
Dist >> SizeY[bin];
Dist >> SizeZ[bin];
2014-05-21 20:51:42 -04:00
// printf("Blob %i dimension: %i x %i x %i \n",bin, SizeX[bin], SizeY[bin], SizeZ[bin]);
2013-09-03 14:46:57 -04:00
}
Dist.close();
//.......................................................................
2013-09-03 14:46:57 -04:00
// cout << "Generating blocks... " << endl;
// Count for the total number of oil nodes
int count = 0;
// Count the total number of non-solid nodes
int total = 0;
for (i=0;i<N;i++){
if (ID[i] != 0) total++;
}
float sat = 0.f;
Number = 0; // number of features
while (sat < Saturation){
Number++;
// Randomly generate a point in the domain
x = Nx*float(rand())/float(RAND_MAX);
y = Ny*float(rand())/float(RAND_MAX);
z = Nz*float(rand())/float(RAND_MAX);
bin = int(floor(binCount*float(rand())/float(RAND_MAX)));
sizeX = SizeX[bin];
sizeY = SizeY[bin];
sizeZ = SizeZ[bin];
2013-09-03 14:46:57 -04:00
// cout << "Sampling from bin no. " << floor(bin) << endl;
// cout << "Feature size is: " << sizeX << "x" << sizeY << "x" << sizeZ << endl;
for (k=z;k<z+sizeZ;k++){
for (j=y;j<y+sizeY;j++){
for (i=x;i<x+sizeX;i++){
// Identify nodes in the domain (periodic BC)
ii = i;
jj = j;
kk = k;
if (ii < 1) ii+=(Nx-2);
if (jj < 1) jj+=(Ny-2);
if (kk < 1) kk+=(Nz-2);
if (!(ii < Nx-1)) ii-=(Nx-2);
if (!(jj < Ny-1)) jj-=(Ny-2);
if (!(kk < Nz-1)) kk-=(Nz-2);
n = kk*Nx*Ny+jj*Nx+ii;
if (ID[n] == 2){
ID[n] = 1;
2013-09-03 14:46:57 -04:00
count++;
}
}
}
}
sat = float(count)/total;
}
//.......................................................................
}
inline void FlipID(char *ID, int N)
{
for (int n=0; n<N; n++){
if (ID[n] == 1) ID[n] = 2;
else if (ID[n] == 2) ID[n] = 1;
}
}
2013-09-03 14:46:57 -04:00
inline void WriteLocalSolidID(char *FILENAME, char *ID, int N)
{
char value;
ofstream File(FILENAME,ios::binary);
for (int n=0; n<N; n++){
value = ID[n];
File.write((char*) &value, sizeof(value));
}
File.close();
}
2013-10-08 22:29:21 -04:00
inline void WriteLocalSolidDistance(char *FILENAME, double *Distance, int N)
{
double value;
ofstream File(FILENAME,ios::binary);
for (int n=0; n<N; n++){
value = Distance[n];
File.write((char*) &value, sizeof(value));
}
File.close();
}
2013-11-19 00:57:48 -05:00
inline void WriteCheckpoint(char *FILENAME, double *cDen, double *cDistEven, double *cDistOdd, int N)
{
int q,n;
double value;
ofstream File(FILENAME,ios::binary);
for (n=0; n<N; n++){
// Write the two density values
value = cDen[2*n];
File.write((char*) &value, sizeof(value));
value = cDen[2*n+1];
File.write((char*) &value, sizeof(value));
// Write the even distributions
for (q=0; q<10; q++){
value = cDistEven[q*N+n];
File.write((char*) &value, sizeof(value));
}
// Write the odd distributions
for (q=0; q<9; q++){
value = cDistOdd[q*N+n];
File.write((char*) &value, sizeof(value));
}
}
File.close();
}
inline void ReadCheckpoint(char *FILENAME, double *cDen, double *cDistEven, double *cDistOdd, int N)
{
int q,n;
double value;
ifstream File(FILENAME,ios::binary);
for (n=0; n<N; n++){
// Write the two density values
File.read((char*) &value, sizeof(value));
cDen[2*n] = value;
// if (n== 66276) printf("Density a = %f \n",value);
File.read((char*) &value, sizeof(value));
cDen[2*n+1] = value;
// if (n== 66276) printf("Density b = %f \n",value);
// Read the even distributions
for (q=0; q<10; q++){
File.read((char*) &value, sizeof(value));
cDistEven[q*N+n] = value;
// if (n== 66276) printf("dist even %i = %f \n",q,value);
}
// Read the odd distributions
for (q=0; q<9; q++){
File.read((char*) &value, sizeof(value));
cDistOdd[q*N+n] = value;
// if (n== 66276) printf("dist even %i = %f \n",q,value);
}
}
File.close();
}
2014-01-27 11:43:24 -05:00
inline void ReadBinaryFile(char *FILENAME, double *Data, int N)
{
int n;
double value;
ifstream File(FILENAME,ios::binary);
for (n=0; n<N; n++){
// Write the two density values
File.read((char*) &value, sizeof(value));
Data[n] = value;
}
File.close();
}