ResInsight/ApplicationLibCode/ModelVisualization/Riv3dWellLogCurveGeometryGenerator.cpp

457 lines
21 KiB
C++
Raw Normal View History

/////////////////////////////////////////////////////////////////////////////////
//
2019-01-09 08:21:38 -06:00
// Copyright (C) 2018- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "Riv3dWellLogCurveGeometryGenerator.h"
#include "RiaCurveDataTools.h"
#include "RigWellPath.h"
#include "RigWellPathGeometryTools.h"
#include "Rim3dWellLogCurve.h"
#include "RimWellPath.h"
#include "RimWellPathCollection.h"
#include "cafDisplayCoordTransform.h"
#include "cafLine.h"
#include "cvfPrimitiveSetIndexedUInt.h"
#include "cvfBoundingBox.h"
#include "cvfMath.h"
#include <algorithm>
2018-03-21 10:22:35 -05:00
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
Riv3dWellLogCurveGeometryGenerator::Riv3dWellLogCurveGeometryGenerator( RimWellPath* wellPath )
: m_wellPath( wellPath )
, m_planeWidth( 0.0 )
2018-03-21 10:22:35 -05:00
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
2020-10-06 05:37:16 -05:00
void Riv3dWellLogCurveGeometryGenerator::createCurveDrawables( gsl::not_null<const caf::DisplayCoordTransform*> displayCoordTransform,
const cvf::BoundingBox& wellPathClipBoundingBox,
gsl::not_null<const Rim3dWellLogCurve*> wellLogCurve,
double planeOffsetFromWellPathCenter,
double planeWidth,
const std::vector<cvf::Vec3d>& drawSurfaceVertices,
int currentTimeStep )
{
// Make sure all drawables are cleared in case we return early to avoid a
// previous drawable being "stuck" when changing result type.
clearCurvePointsAndGeometry();
2020-10-06 05:37:16 -05:00
float curveUIRange = wellLogCurve->maxCurveUIValue() - wellLogCurve->minCurveUIValue();
if ( curveUIRange < 1.0e-6f )
{
return;
}
std::vector<double> resultValues;
std::vector<double> resultMds;
2020-10-06 05:37:16 -05:00
if ( wellLogCurve->followAnimationTimeStep() )
{
2020-10-06 05:37:16 -05:00
wellLogCurve->curveValuesAndMdsAtTimeStep( &resultValues, &resultMds, currentTimeStep );
}
else
{
2020-10-06 05:37:16 -05:00
wellLogCurve->curveValuesAndMds( &resultValues, &resultMds );
}
m_planeWidth = planeWidth;
2020-10-06 05:37:16 -05:00
auto wellPathGeometry = this->wellPathGeometry();
if ( !wellPathGeometry ) return;
if ( wellPathGeometry->wellPathPoints().empty() ) return;
if ( !wellPathClipBoundingBox.isValid() ) return;
if ( resultValues.empty() ) return;
CVF_ASSERT( resultValues.size() == resultMds.size() );
auto wellPathCollection = m_wellPath->firstAncestorOrThisOfTypeAsserted<RimWellPathCollection>();
2020-10-06 05:37:16 -05:00
cvf::Vec3d clipLocation = wellPathGeometry->wellPathPoints().front();
if ( wellPathCollection->wellPathClip )
{
double clipZDistance = wellPathCollection->wellPathClipZDistance;
clipLocation = wellPathClipBoundingBox.max() + clipZDistance * cvf::Vec3d( 0, 0, 1 );
}
clipLocation = displayCoordTransform->transformToDisplayCoord( clipLocation );
std::vector<cvf::Vec3d> displayCoords = displayCoordTransform->transformToDisplayCoords( wellPathGeometry->wellPathPoints() );
std::vector<cvf::Vec3d> wellPathCurveNormals =
RigWellPathGeometryTools::calculateLineSegmentNormals( displayCoords, wellLogCurve->drawPlaneAngle( wellLogCurve->drawPlane() ) );
std::vector<cvf::Vec3d> interpolatedWellPathPoints;
std::vector<cvf::Vec3d> interpolatedCurveNormals;
2018-03-21 10:22:35 -05:00
// Iterate from bottom of well path and up to be able to stop at given Z max clipping height
for ( auto md = resultMds.rbegin(); md != resultMds.rend(); md++ )
{
2020-10-06 05:37:16 -05:00
cvf::Vec3d point = wellPathGeometry->interpolatedVectorValuesAlongWellPath( displayCoords, *md );
cvf::Vec3d normal = wellPathGeometry->interpolatedVectorValuesAlongWellPath( wellPathCurveNormals, *md );
if ( point.z() > clipLocation.z() ) break;
interpolatedWellPathPoints.push_back( point );
interpolatedCurveNormals.push_back( normal.getNormalized() );
}
if ( interpolatedWellPathPoints.empty() ) return;
// Reverse list, since it was filled in the opposite order
std::reverse( interpolatedWellPathPoints.begin(), interpolatedWellPathPoints.end() );
std::reverse( interpolatedCurveNormals.begin(), interpolatedCurveNormals.end() );
// The result values for the part of the well which is not clipped off, matching interpolatedWellPathPoints size
m_curveValues = std::vector<double>( resultValues.end() - interpolatedWellPathPoints.size(), resultValues.end() );
m_curveMeasuredDepths = std::vector<double>( resultMds.end() - interpolatedWellPathPoints.size(), resultMds.end() );
double maxVisibleResult = -std::numeric_limits<double>::max();
double minVisibleResult = std::numeric_limits<double>::max();
2020-10-06 05:37:16 -05:00
double minCurveValue = wellLogCurve->minCurveUIValue();
double maxCurveValue = wellLogCurve->maxCurveUIValue();
double curveEpsilon = 1.0e-6;
for ( double& result : m_curveValues )
{
if ( !RiaCurveDataTools::isValidValue( result, false ) ) continue;
if ( ( minCurveValue - result ) > curveEpsilon * curveUIRange )
{
result = minCurveValue - curveEpsilon;
}
else if ( ( result - maxCurveValue ) > curveEpsilon * curveUIRange )
{
result = maxCurveValue + curveEpsilon;
}
else
{
maxVisibleResult = std::max( result, maxVisibleResult );
minVisibleResult = std::min( result, minVisibleResult );
}
}
if ( minVisibleResult > maxVisibleResult )
{
return;
}
double plotRangeToResultRangeFactor = planeWidth / curveUIRange;
m_curveVertices.reserve( interpolatedWellPathPoints.size() );
for ( size_t i = 0; i < interpolatedWellPathPoints.size(); i++ )
{
double scaledResult = 0;
if ( RiaCurveDataTools::isValidValue( m_curveValues[i], false ) )
{
scaledResult = planeOffsetFromWellPathCenter + ( m_curveValues[i] - minCurveValue ) * plotRangeToResultRangeFactor;
}
cvf::Vec3d curvePoint( interpolatedWellPathPoints[i] + scaledResult * interpolatedCurveNormals[i] );
m_curveVertices.push_back( curvePoint );
}
m_curveVertices = projectVerticesOntoTriangles( m_curveVertices, drawSurfaceVertices );
createNewVerticesAlongTriangleEdges( drawSurfaceVertices );
{
std::vector<cvf::uint> indices;
indices.reserve( m_curveVertices.size() * 2 );
for ( size_t i = 0; i < m_curveVertices.size() - 1; ++i )
{
if ( RiaCurveDataTools::isValidValue( m_curveValues[i], false ) && RiaCurveDataTools::isValidValue( m_curveValues[i + 1], false ) )
{
if ( cvf::Math::valueInRange( m_curveValues[i], minCurveValue, maxCurveValue ) ||
cvf::Math::valueInRange( m_curveValues[i + 1], minCurveValue, maxCurveValue ) )
{
indices.push_back( cvf::uint( i ) );
indices.push_back( cvf::uint( i + 1 ) );
}
}
}
cvf::ref<cvf::PrimitiveSetIndexedUInt> indexedUInt = new cvf::PrimitiveSetIndexedUInt( cvf::PrimitiveType::PT_LINES );
cvf::ref<cvf::UIntArray> indexArray = new cvf::UIntArray( indices );
m_curveDrawable = new cvf::DrawableGeo();
indexedUInt->setIndices( indexArray.p() );
m_curveDrawable->addPrimitiveSet( indexedUInt.p() );
cvf::ref<cvf::Vec3fArray> vertexArray = new cvf::Vec3fArray( m_curveVertices.size() );
for ( size_t i = 0; i < m_curveVertices.size(); ++i )
{
( *vertexArray )[i] = cvf::Vec3f( m_curveVertices[i] );
}
m_curveDrawable->setVertexArray( vertexArray.p() );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void Riv3dWellLogCurveGeometryGenerator::clearCurvePointsAndGeometry()
{
m_curveDrawable = nullptr;
m_curveVertices.clear();
m_curveMeasuredDepths.clear();
m_curveValues.clear();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::DrawableGeo> Riv3dWellLogCurveGeometryGenerator::curveDrawable()
{
return m_curveDrawable;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigWellPath* Riv3dWellLogCurveGeometryGenerator::wellPathGeometry() const
{
return m_wellPath->wellPathGeometry();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool Riv3dWellLogCurveGeometryGenerator::findClosestPointOnCurve( const cvf::Vec3d& globalIntersection,
cvf::Vec3d* closestPoint,
double* measuredDepthAtPoint,
double* valueAtClosestPoint ) const
{
double closestDistance = m_planeWidth * 0.1;
*closestPoint = cvf::Vec3d::UNDEFINED;
*measuredDepthAtPoint = cvf::UNDEFINED_DOUBLE;
*valueAtClosestPoint = cvf::UNDEFINED_DOUBLE;
if ( m_curveVertices.size() < 2u ) return false;
CVF_ASSERT( m_curveVertices.size() == m_curveValues.size() );
for ( size_t i = 1; i < m_curveVertices.size(); ++i )
{
bool validCurveSegment = RiaCurveDataTools::isValidValue( m_curveValues[i], false ) &&
RiaCurveDataTools::isValidValue( m_curveValues[i - 1], false );
if ( validCurveSegment )
{
cvf::Vec3d a = m_curveVertices[i - 1];
cvf::Vec3d b = m_curveVertices[i];
cvf::Vec3d ap = globalIntersection - a;
cvf::Vec3d ab = b - a;
// Projected point is clamped to one of the end points of the segment.
double distanceToProjectedPointAlongAB = ap * ab / ( ab * ab );
double clampedDistance = std::clamp( distanceToProjectedPointAlongAB, 0.0, 1.0 );
cvf::Vec3d projectionOfGlobalIntersection = a + clampedDistance * ab;
double distance = ( projectionOfGlobalIntersection - globalIntersection ).length();
if ( distance < closestDistance )
{
*closestPoint = cvf::Vec3d( projectionOfGlobalIntersection );
closestDistance = distance;
*measuredDepthAtPoint = m_curveMeasuredDepths[i - 1] * ( 1.0 - clampedDistance ) + m_curveMeasuredDepths[i] * clampedDistance;
*valueAtClosestPoint = m_curveValues[i - 1] * ( 1.0 - clampedDistance ) + m_curveValues[i] * clampedDistance;
}
}
}
if ( closestPoint->isUndefined() ) return false;
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void Riv3dWellLogCurveGeometryGenerator::createNewVerticesAlongTriangleEdges( const std::vector<cvf::Vec3d>& drawSurfaceVertices )
{
std::vector<cvf::Vec3d> expandedCurveVertices;
std::vector<double> expandedMeasuredDepths;
std::vector<double> expandedValues;
size_t estimatedNumberOfPoints = m_curveVertices.size() + drawSurfaceVertices.size();
expandedCurveVertices.reserve( estimatedNumberOfPoints );
expandedMeasuredDepths.reserve( estimatedNumberOfPoints );
expandedValues.reserve( estimatedNumberOfPoints );
for ( size_t i = 0; i < m_curveVertices.size() - 1; i += 2 )
{
if ( RiaCurveDataTools::isValidValue( m_curveValues[i], false ) && RiaCurveDataTools::isValidValue( m_curveValues[i + 1], false ) )
{
cvf::Vec3d lastVertex = m_curveVertices[i];
cvf::Vec3d fullSegmentVector = m_curveVertices[i + 1] - m_curveVertices[i];
std::vector<cvf::Vec3d> extraVertices;
createNewVerticesAlongSegment( m_curveVertices[i], m_curveVertices[i + 1], drawSurfaceVertices, &extraVertices );
for ( const cvf::Vec3d& extraVertex : extraVertices )
{
cvf::Vec3d newSegmentVector = extraVertex - lastVertex;
// Scalar projection (a * b / |b|) divided by full segment length to become (a * b / |b|^2)
double dotProduct = newSegmentVector * fullSegmentVector;
double fractionAlongFullSegment = dotProduct / fullSegmentVector.lengthSquared();
double measuredDepth = m_curveMeasuredDepths[i] * ( 1 - fractionAlongFullSegment ) +
m_curveMeasuredDepths[i + 1] * fractionAlongFullSegment;
double valueAtPoint = m_curveValues[i] * ( 1 - fractionAlongFullSegment ) + m_curveValues[i + 1] * fractionAlongFullSegment;
expandedCurveVertices.push_back( extraVertex );
expandedMeasuredDepths.push_back( measuredDepth );
expandedValues.push_back( valueAtPoint );
lastVertex = extraVertex;
}
}
else
{
// Add the invalid points and values.
expandedCurveVertices.push_back( m_curveVertices[i] );
expandedMeasuredDepths.push_back( m_curveMeasuredDepths[i] );
expandedValues.push_back( m_curveValues[i] );
}
}
m_curveVertices.swap( expandedCurveVertices );
m_curveMeasuredDepths.swap( expandedMeasuredDepths );
m_curveValues.swap( expandedValues );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void Riv3dWellLogCurveGeometryGenerator::createNewVerticesAlongSegment( const cvf::Vec3d& ptStart,
const cvf::Vec3d& ptEnd,
const std::vector<cvf::Vec3d>& drawSurfaceVertices,
std::vector<cvf::Vec3d>* extraVertices )
{
extraVertices->push_back( ptStart );
// Find segments that intersects the triangle edges
for ( size_t j = 0; j < drawSurfaceVertices.size() - 2; j += 1 )
{
caf::Line<double> triangleEdge1 = caf::Line<double>( drawSurfaceVertices[j], drawSurfaceVertices[j + 1] );
caf::Line<double> triangleEdge2 = caf::Line<double>( drawSurfaceVertices[j + 2], drawSurfaceVertices[j + 1] );
cvf::Vec3d triangleNormal = ( triangleEdge1.vector().getNormalized() ^ triangleEdge2.vector().getNormalized() ).getNormalized();
cvf::Vec3d currentSubSegment = ptEnd - extraVertices->back();
cvf::Vec3d projectedSegmentVector = currentSubSegment - ( currentSubSegment * triangleNormal ) * triangleNormal;
caf::Line<double> projectedCurveLine( extraVertices->back(), extraVertices->back() + projectedSegmentVector );
// Only attempt to find intersections with the first edge. The other edge is handled with the next triangle.
bool withinSegments = false;
caf::Line<double> connectingLine = projectedCurveLine.findLineBetweenNearestPoints( triangleEdge1, &withinSegments );
cvf::Vec3d newVertex = connectingLine.end();
cvf::Vec3d newSegmentVector = newVertex - extraVertices->back();
if ( withinSegments && newSegmentVector.lengthSquared() < currentSubSegment.lengthSquared() )
{
extraVertices->push_back( newVertex );
}
}
extraVertices->push_back( ptEnd );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3d> Riv3dWellLogCurveGeometryGenerator::projectVerticesOntoTriangles( const std::vector<cvf::Vec3d>& originalVertices,
const std::vector<cvf::Vec3d>& drawSurfaceVertices )
{
std::vector<cvf::Vec3d> projectedVertices;
projectedVertices.reserve( originalVertices.size() );
for ( size_t i = 0; i < originalVertices.size(); ++i )
{
// Sort projections onto triangle by the distance of the projection.
std::map<double, cvf::Vec3d> projectionsInsideTriangle;
for ( size_t j = 0; j < drawSurfaceVertices.size() - 2; j += 1 )
{
cvf::Vec3d triangleVertex1, triangleVertex2, triangleVertex3;
if ( j % 2 == 0 )
{
triangleVertex1 = drawSurfaceVertices[j];
triangleVertex2 = drawSurfaceVertices[j + 1];
triangleVertex3 = drawSurfaceVertices[j + 2];
}
else
{
triangleVertex1 = drawSurfaceVertices[j];
triangleVertex2 = drawSurfaceVertices[j + 2];
triangleVertex3 = drawSurfaceVertices[j + 1];
}
bool wasInsideTriangle = false;
cvf::Vec3d projectedPoint =
projectPointOntoTriangle( originalVertices[i], triangleVertex1, triangleVertex2, triangleVertex3, &wasInsideTriangle );
if ( wasInsideTriangle )
{
projectionsInsideTriangle.insert( std::make_pair( ( projectedPoint - originalVertices[i] ).lengthSquared(), projectedPoint ) );
}
}
// Take the closest projection
if ( !projectionsInsideTriangle.empty() )
{
projectedVertices.push_back( projectionsInsideTriangle.begin()->second );
}
else
{
projectedVertices.push_back( originalVertices[i] );
}
}
return projectedVertices;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3d Riv3dWellLogCurveGeometryGenerator::projectPointOntoTriangle( const cvf::Vec3d& point,
const cvf::Vec3d& triangleVertex1,
const cvf::Vec3d& triangleVertex2,
const cvf::Vec3d& triangleVertex3,
bool* wasInsideTriangle )
{
*wasInsideTriangle = false;
cvf::Vec3d e1 = triangleVertex2 - triangleVertex1;
cvf::Vec3d e2 = triangleVertex3 - triangleVertex1;
cvf::Vec3d n = ( e1.getNormalized() ^ e2.getNormalized() ).getNormalized();
// Project vertex onto triangle plane
cvf::Vec3d av = point - triangleVertex1;
cvf::Vec3d projectedAv = av - ( av * n ) * n;
cvf::Vec3d projectedPoint = projectedAv + triangleVertex1;
// Calculate barycentric coordinates
double areaABC = n * ( e1 ^ e2 );
double areaPBC = n * ( ( triangleVertex2 - projectedPoint ) ^ ( triangleVertex3 - projectedPoint ) );
double areaPCA = n * ( ( triangleVertex3 - projectedPoint ) ^ ( triangleVertex1 - projectedPoint ) );
double u = areaPBC / areaABC;
double v = areaPCA / areaABC;
double w = 1.0 - u - v;
if ( u >= -1.0e-6 && v >= -1.0e-6 && w >= -1.0e-6 )
{
*wasInsideTriangle = true;
// Clamp to ensure it is inside the triangle
u = std::clamp( u, 0.0, 1.0 );
v = std::clamp( v, 0.0, 1.0 );
w = std::clamp( w, 0.0, 1.0 );
projectedPoint = triangleVertex1 * u + triangleVertex2 * v + triangleVertex3 * w;
}
return projectedPoint;
}