opm-simulators/opm/simulators/aquifers/AquiferInterface.hpp

385 lines
14 KiB
C++
Raw Normal View History

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2017 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_AQUIFERINTERFACE_HEADER_INCLUDED
#define OPM_AQUIFERINTERFACE_HEADER_INCLUDED
#include <opm/common/utility/numeric/linearInterpolation.hpp>
#include <opm/parser/eclipse/EclipseState/Aquifer/Aquancon.hpp>
#include <opm/parser/eclipse/EclipseState/Aquifer/AquiferCT.hpp>
#include <opm/parser/eclipse/EclipseState/Aquifer/Aquifetp.hpp>
#include <opm/output/data/Aquifer.hpp>
#include <opm/material/common/MathToolbox.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/material/densead/Math.hpp>
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
#include <algorithm>
#include <unordered_map>
#include <vector>
namespace Opm
{
template <typename TypeTag>
class AquiferInterface
{
public:
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using BlackoilIndices = GetPropType<TypeTag, Properties::Indices>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
2020-11-24 07:58:15 -06:00
using ElementMapper = GetPropType<TypeTag, Properties::ElementMapper>;
enum { enableTemperature = getPropValue<TypeTag, Properties::EnableTemperature>() };
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
enum { enableBrine = getPropValue<TypeTag, Properties::EnableBrine>() };
static const int numEq = BlackoilIndices::numEq;
typedef double Scalar;
typedef DenseAd::Evaluation<double, /*size=*/numEq> Eval;
typedef BlackOilFluidState<Eval,
FluidSystem,
enableTemperature,
enableEnergy,
BlackoilIndices::gasEnabled,
enableBrine,
BlackoilIndices::numPhases>
FluidState;
static const auto waterCompIdx = FluidSystem::waterCompIdx;
static const auto waterPhaseIdx = FluidSystem::waterPhaseIdx;
// Constructor
AquiferInterface(int aqID,
const std::vector<Aquancon::AquancCell>& connections,
const Simulator& ebosSimulator)
: aquiferID_(aqID)
, connections_(connections)
, ebos_simulator_(ebosSimulator)
{
}
// Destructor
virtual ~AquiferInterface()
{
}
void initFromRestart(const data::Aquifers& aquiferSoln)
{
auto xaqPos = aquiferSoln.find(this->aquiferID());
if (xaqPos == aquiferSoln.end())
return;
this->assignRestartData(xaqPos->second);
this->W_flux_ = xaqPos->second.volume;
this->pa0_ = xaqPos->second.initPressure;
this->solution_set_from_restart_ = true;
}
void initialSolutionApplied()
{
2020-02-09 00:43:43 -06:00
initQuantities();
}
void beginTimeStep()
{
ElementContext elemCtx(ebos_simulator_);
auto elemIt = ebos_simulator_.gridView().template begin<0>();
const auto& elemEndIt = ebos_simulator_.gridView().template end<0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
elemCtx.updatePrimaryStencil(elem);
const int cellIdx = elemCtx.globalSpaceIndex(0, 0);
const int idx = cellToConnectionIdx_[cellIdx];
if (idx < 0)
continue;
elemCtx.updateIntensiveQuantities(0);
const auto& iq = elemCtx.intensiveQuantities(0, 0);
pressure_previous_[idx] = getValue(iq.fluidState().pressure(waterPhaseIdx));
}
}
template <class Context>
void addToSource(RateVector& rates,
const Context& context,
const unsigned spaceIdx,
const unsigned timeIdx)
{
const unsigned cellIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
const int idx = this->cellToConnectionIdx_[cellIdx];
if (idx < 0)
return;
// We are dereferencing the value of IntensiveQuantities because
// cachedIntensiveQuantities return a const pointer to
// IntensiveQuantities of that particular cell_id
const auto& intQuants = context.intensiveQuantities(spaceIdx, timeIdx);
// This is the pressure at td + dt
this->updateCellPressure(this->pressure_current_, idx, intQuants);
this->updateCellDensity(idx, intQuants);
this->calculateInflowRate(idx, context.simulator());
rates[BlackoilIndices::conti0EqIdx + FluidSystem::waterCompIdx]
+= this->Qai_[idx] / context.dofVolume(spaceIdx, timeIdx);
}
std::size_t size() const {
return this->connections_.size();
}
int aquiferID() const { return this->aquiferID_; }
protected:
inline Scalar gravity_() const
{
return ebos_simulator_.problem().gravity()[2];
}
2020-02-09 00:43:43 -06:00
inline void initQuantities()
{
// We reset the cumulative flux at the start of any simulation, so, W_flux = 0
if (!this->solution_set_from_restart_) {
W_flux_ = 0.;
}
// We next get our connections to the aquifer and initialize these quantities using the initialize_connections
// function
2020-02-09 00:43:43 -06:00
initializeConnections();
calculateAquiferCondition();
calculateAquiferConstants();
pressure_previous_.resize(this->connections_.size(), 0.);
pressure_current_.resize(this->connections_.size(), 0.);
Qai_.resize(this->connections_.size(), 0.0);
}
inline void
updateCellPressure(std::vector<Eval>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
pressure_water.at(idx) = fs.pressure(waterPhaseIdx);
}
inline void
updateCellPressure(std::vector<Scalar>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
pressure_water.at(idx) = fs.pressure(waterPhaseIdx).value();
}
inline void updateCellDensity(const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
rhow_.at(idx) = fs.density(waterPhaseIdx);
}
virtual void endTimeStep() = 0;
const int aquiferID_{};
const std::vector<Aquancon::AquancCell> connections_;
const Simulator& ebos_simulator_;
// Grid variables
std::vector<Scalar> faceArea_connected_;
std::vector<int> cellToConnectionIdx_;
// Quantities at each grid id
std::vector<Scalar> cell_depth_;
std::vector<Scalar> pressure_previous_;
std::vector<Eval> pressure_current_;
std::vector<Eval> Qai_;
std::vector<Eval> rhow_;
std::vector<Scalar> alphai_;
Scalar Tc_{}; // Time constant
Scalar pa0_{}; // initial aquifer pressure
Eval W_flux_;
bool solution_set_from_restart_ {false};
void initializeConnections()
{
this->cell_depth_.resize(this->size(), this->aquiferDepth());
this->alphai_.resize(this->size(), 1.0);
this->faceArea_connected_.resize(this->size(), 0.0);
// Translate the C face tag into the enum used by opm-parser's TransMult class
FaceDir::DirEnum faceDirection;
// denom_face_areas is the sum of the areas connected to an aquifer
Scalar denom_face_areas = 0.;
this->cellToConnectionIdx_.resize(this->ebos_simulator_.gridView().size(/*codim=*/0), -1);
2020-12-17 06:19:18 -06:00
const auto& gridView = this->ebos_simulator_.vanguard().gridView();
for (size_t idx = 0; idx < this->size(); ++idx) {
const auto global_index = this->connections_[idx].global_index;
const int cell_index = this->ebos_simulator_.vanguard().compressedIndex(global_index);
2020-12-17 06:19:18 -06:00
auto elemIt = gridView.template begin</*codim=*/ 0>();
if (cell_index > 0)
std::advance(elemIt, cell_index);
//the global_index is not part of this grid
if ( cell_index < 0 || elemIt->partitionType() != Dune::InteriorEntity)
continue;
this->cellToConnectionIdx_[cell_index] = idx;
this->cell_depth_.at(idx) = this->ebos_simulator_.vanguard().cellCenterDepth(cell_index);
}
// get areas for all connections
ElementMapper elemMapper(gridView, Dune::mcmgElementLayout());
auto elemIt = gridView.template begin</*codim=*/ 0>();
const auto& elemEndIt = gridView.template end</*codim=*/ 0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
unsigned cell_index = elemMapper.index(elem);
int idx = this->cellToConnectionIdx_[cell_index];
// only deal with connections given by the aquifer
if( idx < 0)
continue;
auto isIt = gridView.ibegin(elem);
const auto& isEndIt = gridView.iend(elem);
for (; isIt != isEndIt; ++ isIt) {
// store intersection, this might be costly
const auto& intersection = *isIt;
// only deal with grid boundaries
if (!intersection.boundary())
continue;
int insideFaceIdx = intersection.indexInInside();
switch (insideFaceIdx) {
case 0:
faceDirection = FaceDir::XMinus;
break;
case 1:
faceDirection = FaceDir::XPlus;
break;
case 2:
faceDirection = FaceDir::YMinus;
break;
case 3:
faceDirection = FaceDir::YPlus;
break;
case 4:
faceDirection = FaceDir::ZMinus;
break;
case 5:
faceDirection = FaceDir::ZPlus;
break;
default:
OPM_THROW(std::logic_error,
"Internal error in initialization of aquifer.");
}
if (faceDirection == this->connections_[idx].face_dir) {
this->faceArea_connected_[idx] = this->connections_[idx].influx_coeff;
break;
}
}
denom_face_areas += this->faceArea_connected_.at(idx);
}
const auto& comm = this->ebos_simulator_.vanguard().grid().comm();
comm.sum(&denom_face_areas, 1);
const double eps_sqrt = std::sqrt(std::numeric_limits<double>::epsilon());
for (size_t idx = 0; idx < this->size(); ++idx) {
this->alphai_.at(idx) = (denom_face_areas < eps_sqrt)
? // Prevent no connection NaNs due to division by zero
0.
: this->faceArea_connected_.at(idx) / denom_face_areas;
}
}
virtual void assignRestartData(const data::AquiferData& xaq) = 0;
virtual void calculateInflowRate(int idx, const Simulator& simulator) = 0;
virtual void calculateAquiferCondition() = 0;
virtual void calculateAquiferConstants() = 0;
virtual Scalar aquiferDepth() const = 0;
// This function is for calculating the aquifer properties from equilibrium state with the reservoir
virtual Scalar calculateReservoirEquilibrium()
{
// Since the global_indices are the reservoir index, we just need to extract the fluidstate at those indices
std::vector<Scalar> pw_aquifer;
Scalar water_pressure_reservoir;
ElementContext elemCtx(this->ebos_simulator_);
const auto& gridView = this->ebos_simulator_.gridView();
auto elemIt = gridView.template begin</*codim=*/0>();
const auto& elemEndIt = gridView.template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
elemCtx.updatePrimaryStencil(elem);
const auto cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto idx = this->cellToConnectionIdx_[cellIdx];
if (idx < 0)
continue;
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = iq0.fluidState();
water_pressure_reservoir = fs.pressure(waterPhaseIdx).value();
this->rhow_[idx] = fs.density(waterPhaseIdx);
pw_aquifer.push_back(
(water_pressure_reservoir
- this->rhow_[idx].value() * this->gravity_() * (this->cell_depth_[idx] - this->aquiferDepth()))
* this->alphai_[idx]);
}
// We take the average of the calculated equilibrium pressures.
const auto& comm = ebos_simulator_.vanguard().grid().comm();
Scalar vals[2];
vals[0] = std::accumulate(this->alphai_.begin(), this->alphai_.end(), 0.0);
vals[1] = std::accumulate(pw_aquifer.begin(), pw_aquifer.end(), 0.0);
comm.sum(vals, 2);
return vals[1] / vals[0];
}
// This function is used to initialize and calculate the alpha_i for each grid connection to the aquifer
};
} // namespace Opm
#endif