2014-04-15 11:30:06 -05:00
|
|
|
/*
|
|
|
|
Copyright (C) 2014 by Andreas Lauser
|
|
|
|
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
/*!
|
|
|
|
* \file
|
|
|
|
*
|
|
|
|
* \copydoc Ewoms::EclProblem
|
|
|
|
*/
|
|
|
|
#ifndef EWOMS_ECL_PROBLEM_HH
|
|
|
|
#define EWOMS_ECL_PROBLEM_HH
|
|
|
|
|
2014-11-28 05:58:48 -06:00
|
|
|
#include "eclgridmanager.hh"
|
|
|
|
#include "eclwellmanager.hh"
|
|
|
|
#include "eclwriter.hh"
|
|
|
|
#include "eclsummarywriter.hh"
|
|
|
|
#include "ecloutputblackoilmodule.hh"
|
2014-12-27 08:19:15 -06:00
|
|
|
#include "ecltransmissibility.hh"
|
|
|
|
#include "ecldummygradientcalculator.hh"
|
|
|
|
#include "eclfluxmodule.hh"
|
2014-11-28 05:58:48 -06:00
|
|
|
|
2014-04-15 11:30:06 -05:00
|
|
|
#include <ewoms/models/blackoil/blackoilmodel.hh>
|
|
|
|
#include <ewoms/disc/ecfv/ecfvdiscretization.hh>
|
|
|
|
|
2014-04-28 12:12:53 -05:00
|
|
|
#include <opm/material/fluidmatrixinteractions/PiecewiseLinearTwoPhaseMaterial.hpp>
|
2014-08-06 06:52:53 -05:00
|
|
|
#include <opm/material/fluidmatrixinteractions/SplineTwoPhaseMaterial.hpp>
|
2014-04-28 12:12:53 -05:00
|
|
|
#include <opm/material/fluidmatrixinteractions/EclDefaultMaterial.hpp>
|
2014-04-15 11:30:06 -05:00
|
|
|
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
|
|
|
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
|
|
|
|
2014-07-02 10:50:35 -05:00
|
|
|
#include <opm/core/utility/Average.hpp>
|
|
|
|
|
2014-04-15 11:30:06 -05:00
|
|
|
// for this simulator to make sense, dune-cornerpoint and opm-parser
|
|
|
|
// must be available
|
|
|
|
#include <dune/grid/CpGrid.hpp>
|
|
|
|
#include <opm/parser/eclipse/Deck/Deck.hpp>
|
2014-09-17 06:42:13 -05:00
|
|
|
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
|
2014-04-15 11:30:06 -05:00
|
|
|
|
|
|
|
#include <dune/common/version.hh>
|
|
|
|
#include <dune/common/fvector.hh>
|
|
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
|
|
|
|
#include <boost/date_time.hpp>
|
|
|
|
|
|
|
|
#include <vector>
|
|
|
|
#include <string>
|
|
|
|
|
|
|
|
namespace Ewoms {
|
|
|
|
template <class TypeTag>
|
|
|
|
class EclProblem;
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace Opm {
|
|
|
|
namespace Properties {
|
2014-11-28 05:58:48 -06:00
|
|
|
NEW_TYPE_TAG(EclBaseProblem, INHERITS_FROM(EclGridManager, EclOutputBlackOil));
|
2014-04-15 11:30:06 -05:00
|
|
|
|
|
|
|
// The temperature inside the reservoir
|
|
|
|
NEW_PROP_TAG(Temperature);
|
|
|
|
|
2014-05-02 09:08:22 -05:00
|
|
|
// Write all solutions for visualization, not just the ones for the
|
|
|
|
// report steps...
|
|
|
|
NEW_PROP_TAG(EnableWriteAllSolutions);
|
|
|
|
|
2014-04-15 11:30:06 -05:00
|
|
|
// Set the problem property
|
|
|
|
SET_TYPE_PROP(EclBaseProblem, Problem, Ewoms::EclProblem<TypeTag>);
|
|
|
|
|
|
|
|
// Select the element centered finite volume method as spatial discretization
|
|
|
|
SET_TAG_PROP(EclBaseProblem, SpatialDiscretizationSplice, EcfvDiscretization);
|
|
|
|
|
|
|
|
// Set the material Law
|
|
|
|
SET_PROP(EclBaseProblem, MaterialLaw)
|
|
|
|
{
|
|
|
|
private:
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
|
|
|
2014-04-28 12:12:53 -05:00
|
|
|
typedef Opm::TwoPhaseMaterialTraits<Scalar,
|
|
|
|
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
|
|
|
|
/*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx> OilWaterTraits;
|
|
|
|
|
|
|
|
typedef Opm::TwoPhaseMaterialTraits<Scalar,
|
|
|
|
/*wettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
|
|
|
|
/*nonWettingPhaseIdx=*/FluidSystem::gasPhaseIdx> GasOilTraits;
|
|
|
|
|
|
|
|
typedef Opm::ThreePhaseMaterialTraits<Scalar,
|
|
|
|
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
|
|
|
|
/*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
|
|
|
|
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx> Traits;
|
|
|
|
|
2014-12-08 10:53:18 -06:00
|
|
|
typedef typename Opm::PiecewiseLinearTwoPhaseMaterial<OilWaterTraits> OilWaterLaw;
|
|
|
|
typedef typename Opm::PiecewiseLinearTwoPhaseMaterial<GasOilTraits> GasOilLaw;
|
2014-08-06 06:52:53 -05:00
|
|
|
|
2014-12-08 10:53:18 -06:00
|
|
|
// typedef typename Opm::SplineTwoPhaseMaterial<OilWaterTraits> OilWaterLaw;
|
|
|
|
// typedef typename Opm::SplineTwoPhaseMaterial<GasOilTraits> GasOilLaw;
|
2014-04-15 11:30:06 -05:00
|
|
|
|
|
|
|
public:
|
2014-04-28 12:12:53 -05:00
|
|
|
typedef Opm::EclDefaultMaterial<Traits, GasOilLaw, OilWaterLaw> type;
|
2014-04-15 11:30:06 -05:00
|
|
|
};
|
|
|
|
|
|
|
|
// Enable gravity
|
|
|
|
SET_BOOL_PROP(EclBaseProblem, EnableGravity, true);
|
|
|
|
|
|
|
|
// Reuse the last linearization if possible?
|
|
|
|
SET_BOOL_PROP(EclBaseProblem, EnableLinearizationRecycling, true);
|
|
|
|
|
2014-12-19 08:30:55 -06:00
|
|
|
// Only relinearize the parts where the current solution is sufficiently "bad"
|
2014-04-15 11:30:06 -05:00
|
|
|
SET_BOOL_PROP(EclBaseProblem, EnablePartialRelinearization, true);
|
|
|
|
|
2014-05-02 09:08:22 -05:00
|
|
|
// only write the solutions for the report steps to disk
|
|
|
|
SET_BOOL_PROP(EclBaseProblem, EnableWriteAllSolutions, false);
|
|
|
|
|
2014-04-15 11:30:06 -05:00
|
|
|
// set the defaults for some problem specific properties
|
|
|
|
SET_SCALAR_PROP(EclBaseProblem, Temperature, 293.15);
|
|
|
|
|
|
|
|
// The default for the end time of the simulation [s]
|
|
|
|
//
|
2014-07-09 05:01:07 -05:00
|
|
|
// By default, stop it after the universe will probably have stopped
|
|
|
|
// to exist. (the ECL problem will finish the simulation explicitly
|
|
|
|
// after it simulated the last episode specified in the deck.)
|
|
|
|
SET_SCALAR_PROP(EclBaseProblem, EndTime, 1e100);
|
2014-04-15 11:30:06 -05:00
|
|
|
|
|
|
|
// The default for the initial time step size of the simulation [s].
|
|
|
|
//
|
|
|
|
// The chosen value means that the size of the first time step is the
|
|
|
|
// one of the initial episode (if the length of the initial episode is
|
|
|
|
// not millions of trillions of years, that is...)
|
|
|
|
SET_SCALAR_PROP(EclBaseProblem, InitialTimeStepSize, 1e100);
|
|
|
|
|
2014-11-28 06:12:15 -06:00
|
|
|
// increase the default raw tolerance for the newton solver to 10^-4 because this is what
|
|
|
|
// everone else seems to be doing...
|
|
|
|
SET_SCALAR_PROP(EclBaseProblem, NewtonRawTolerance, 1e-4);
|
|
|
|
|
2014-04-15 11:30:06 -05:00
|
|
|
// Disable the VTK output by default for this problem ...
|
|
|
|
SET_BOOL_PROP(EclBaseProblem, EnableVtkOutput, false);
|
|
|
|
|
2014-11-28 05:58:48 -06:00
|
|
|
// ... but enable the ECL output by default
|
|
|
|
SET_BOOL_PROP(EclBaseProblem, EnableEclOutput, true);
|
2014-04-15 11:30:06 -05:00
|
|
|
|
2014-11-21 09:39:47 -06:00
|
|
|
// also enable the summary output.
|
2014-11-28 05:58:48 -06:00
|
|
|
SET_BOOL_PROP(EclBaseProblem, EnableEclSummaryOutput, true);
|
2014-11-21 09:39:47 -06:00
|
|
|
|
2014-12-18 09:03:18 -06:00
|
|
|
// the cache for intensive quantities can be used for ECL problems and also yields a
|
|
|
|
// decent speedup...
|
|
|
|
SET_BOOL_PROP(EclBaseProblem, EnableIntensiveQuantityCache, true);
|
|
|
|
|
2014-12-27 08:19:15 -06:00
|
|
|
// Use the "velocity module" which uses the Eclipse "NEWTRAN" transmissibilities
|
|
|
|
SET_TYPE_PROP(EclBaseProblem, VelocityModule, Ewoms::EclTransVelocityModule<TypeTag>);
|
|
|
|
|
|
|
|
// Use the dummy gradient calculator in order not to do unnecessary work.
|
|
|
|
SET_TYPE_PROP(EclBaseProblem, GradientCalculator, Ewoms::EclDummyGradientCalculator<TypeTag>);
|
|
|
|
|
2014-12-18 09:03:18 -06:00
|
|
|
// The default name of the data file to load
|
2014-05-08 08:25:48 -05:00
|
|
|
SET_STRING_PROP(EclBaseProblem, GridFile, "data/ecl.DATA");
|
2014-04-15 11:30:06 -05:00
|
|
|
}} // namespace Properties, Opm
|
|
|
|
|
|
|
|
namespace Ewoms {
|
|
|
|
/*!
|
2014-12-22 12:19:03 -06:00
|
|
|
* \ingroup EclBlackOilSimulator
|
2014-04-15 11:30:06 -05:00
|
|
|
*
|
2014-11-28 05:58:48 -06:00
|
|
|
* \brief This problem simulates an input file given in the data format used by the
|
|
|
|
* commercial ECLiPSE simulator.
|
2014-04-15 11:30:06 -05:00
|
|
|
*/
|
|
|
|
template <class TypeTag>
|
|
|
|
class EclProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
|
|
|
|
{
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
|
|
|
|
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
|
|
|
|
|
|
// Grid and world dimension
|
|
|
|
enum { dim = GridView::dimension };
|
|
|
|
enum { dimWorld = GridView::dimensionworld };
|
|
|
|
|
|
|
|
// copy some indices for convenience
|
|
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
|
|
enum { numComponents = FluidSystem::numComponents };
|
|
|
|
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
|
|
|
|
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
|
|
|
|
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
|
|
|
|
enum { gasCompIdx = FluidSystem::gasCompIdx };
|
|
|
|
enum { oilCompIdx = FluidSystem::oilCompIdx };
|
|
|
|
enum { waterCompIdx = FluidSystem::waterCompIdx };
|
|
|
|
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, BlackOilFluidState) BlackOilFluidState;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
|
|
|
|
|
2014-11-28 05:58:48 -06:00
|
|
|
typedef Ewoms::EclSummaryWriter<TypeTag> EclSummaryWriter;
|
2014-11-21 09:39:47 -06:00
|
|
|
|
2014-04-15 11:30:06 -05:00
|
|
|
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
|
|
|
|
|
2014-12-04 12:22:56 -06:00
|
|
|
struct RockParams {
|
|
|
|
Scalar referencePressure;
|
|
|
|
Scalar compressibility;
|
|
|
|
};
|
|
|
|
|
2014-04-15 11:30:06 -05:00
|
|
|
public:
|
|
|
|
/*!
|
|
|
|
* \copydoc FvBaseProblem::registerParameters
|
|
|
|
*/
|
|
|
|
static void registerParameters()
|
|
|
|
{
|
|
|
|
ParentType::registerParameters();
|
|
|
|
|
2014-11-28 05:58:48 -06:00
|
|
|
Ewoms::EclOutputBlackOilModule<TypeTag>::registerParameters();
|
|
|
|
|
2014-04-15 11:30:06 -05:00
|
|
|
EWOMS_REGISTER_PARAM(TypeTag, Scalar, Temperature,
|
|
|
|
"The temperature [K] in the reservoir");
|
2014-05-02 09:08:22 -05:00
|
|
|
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableWriteAllSolutions,
|
2014-05-07 08:07:39 -05:00
|
|
|
"Write all solutions to disk instead of only the ones for the "
|
|
|
|
"report steps");
|
2014-11-28 05:58:48 -06:00
|
|
|
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableEclOutput,
|
|
|
|
"Write binary output which is compatible with the commercial "
|
|
|
|
"Eclipse simulator");
|
2014-04-15 11:30:06 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \copydoc Doxygen::defaultProblemConstructor
|
|
|
|
*/
|
|
|
|
EclProblem(Simulator &simulator)
|
|
|
|
: ParentType(simulator)
|
2014-12-27 08:19:15 -06:00
|
|
|
, transmissibilities_(simulator)
|
2014-05-07 08:07:39 -05:00
|
|
|
, wellManager_(simulator)
|
2014-11-28 05:58:48 -06:00
|
|
|
, eclWriter_(simulator)
|
2014-11-21 09:39:47 -06:00
|
|
|
, summaryWriter_(simulator)
|
2014-11-28 05:58:48 -06:00
|
|
|
{
|
|
|
|
// add the output module for the Ecl binary output
|
|
|
|
simulator.model().addOutputModule(new Ewoms::EclOutputBlackOilModule<TypeTag>(simulator));
|
|
|
|
}
|
2014-07-25 08:31:01 -05:00
|
|
|
|
2014-08-06 09:31:48 -05:00
|
|
|
/*!
|
|
|
|
* \copydoc FvBaseProblem::finishInit
|
|
|
|
*/
|
2014-07-25 08:31:01 -05:00
|
|
|
void finishInit()
|
2014-04-15 11:30:06 -05:00
|
|
|
{
|
2014-07-25 08:31:01 -05:00
|
|
|
ParentType::finishInit();
|
|
|
|
|
2014-05-07 08:07:39 -05:00
|
|
|
auto& simulator = this->simulator();
|
|
|
|
|
2014-04-15 11:30:06 -05:00
|
|
|
temperature_ = EWOMS_GET_PARAM(TypeTag, Scalar, Temperature);
|
|
|
|
|
|
|
|
// invert the direction of the gravity vector for ECL problems
|
|
|
|
// (z coodinates represent depth, not height.)
|
|
|
|
this->gravity_[dim - 1] *= -1;
|
|
|
|
|
2014-12-27 08:19:15 -06:00
|
|
|
// the "NOGRAV" keyword from Frontsim disables gravity...
|
|
|
|
const auto& deck = simulator.gridManager().deck();
|
|
|
|
if (deck->hasKeyword("NOGRAV"))
|
|
|
|
this->gravity_ = 0.0;
|
|
|
|
|
2014-06-04 11:05:12 -05:00
|
|
|
initFluidSystem_();
|
2014-12-04 12:22:56 -06:00
|
|
|
readRockParameters_();
|
2014-06-04 11:05:12 -05:00
|
|
|
readMaterialParameters_();
|
2014-12-27 08:19:15 -06:00
|
|
|
transmissibilities_.finishInit();
|
2014-06-04 11:05:12 -05:00
|
|
|
readInitialCondition_();
|
2014-04-15 11:30:06 -05:00
|
|
|
|
2014-09-08 11:10:24 -05:00
|
|
|
// initialize the wells. Note that this needs to be done after initializing the
|
|
|
|
// intrinsic permeabilities because the well model uses them...
|
2014-11-28 05:58:48 -06:00
|
|
|
wellManager_.init(simulator.gridManager().eclState());
|
2014-05-07 08:07:39 -05:00
|
|
|
|
2014-11-28 05:58:48 -06:00
|
|
|
// Start the first episode. For this, ask the ECL schedule.
|
2014-04-15 11:30:06 -05:00
|
|
|
Opm::TimeMapConstPtr timeMap = simulator.gridManager().schedule()->getTimeMap();
|
|
|
|
tm curTime = boost::posix_time::to_tm(timeMap->getStartTime(/*timeStepIdx=*/0));
|
|
|
|
|
2014-04-25 12:25:04 -05:00
|
|
|
Scalar startTime = std::mktime(&curTime);
|
|
|
|
simulator.setStartTime(startTime);
|
|
|
|
simulator.startNextEpisode(/*startTime=*/startTime,
|
2014-04-15 11:30:06 -05:00
|
|
|
/*length=*/timeMap->getTimeStepLength(/*timeStepIdx=*/0));
|
|
|
|
|
|
|
|
// we want the episode index to be the same as the report step
|
|
|
|
// index to make things simpler...
|
|
|
|
simulator.setEpisodeIndex(0);
|
2014-05-02 09:08:22 -05:00
|
|
|
|
|
|
|
// the user-specified initial time step can be shorter than
|
2014-05-30 05:42:48 -05:00
|
|
|
// the initial report step size given in the deck, but it
|
|
|
|
// can't be longer.
|
2014-05-02 09:08:22 -05:00
|
|
|
Scalar dt = simulator.timeStepSize();
|
|
|
|
if (dt > simulator.episodeLength())
|
2014-05-30 05:42:48 -05:00
|
|
|
simulator.setTimeStepSize(simulator.episodeLength());
|
2014-04-15 11:30:06 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
2014-07-09 05:01:07 -05:00
|
|
|
* \brief Called by the simulator before an episode begins.
|
2014-04-15 11:30:06 -05:00
|
|
|
*/
|
2014-07-09 05:01:07 -05:00
|
|
|
void beginEpisode()
|
2014-11-28 05:58:48 -06:00
|
|
|
{ wellManager_.beginEpisode(this->simulator().gridManager().eclState()); }
|
2014-07-09 05:01:07 -05:00
|
|
|
|
|
|
|
/*!
|
|
|
|
* \brief Called by the simulator before each time integration.
|
|
|
|
*/
|
2014-05-07 08:07:39 -05:00
|
|
|
void beginTimeStep()
|
|
|
|
{ wellManager_.beginTimeStep(); }
|
|
|
|
/*!
|
|
|
|
* \brief Called by the simulator before each Newton-Raphson iteration.
|
|
|
|
*/
|
|
|
|
void beginIteration()
|
|
|
|
{ wellManager_.beginIteration(); }
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \brief Called by the simulator after each Newton-Raphson iteration.
|
|
|
|
*/
|
|
|
|
void endIteration()
|
|
|
|
{ wellManager_.endIteration(); }
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \brief Called by the simulator after each time integration.
|
|
|
|
*/
|
2014-07-22 05:41:56 -05:00
|
|
|
void endTimeStep()
|
|
|
|
{
|
2014-05-07 08:07:39 -05:00
|
|
|
wellManager_.endTimeStep();
|
2014-07-22 05:41:56 -05:00
|
|
|
|
2014-05-07 08:07:39 -05:00
|
|
|
#ifndef NDEBUG
|
|
|
|
this->model().checkConservativeness(/*tolerance=*/-1, /*verbose=*/true);
|
2014-07-22 05:41:56 -05:00
|
|
|
#endif // NDEBUG
|
|
|
|
}
|
2014-07-09 05:01:07 -05:00
|
|
|
|
|
|
|
/*!
|
|
|
|
* \brief Called by the simulator after the end of an episode.
|
|
|
|
*/
|
|
|
|
void endEpisode()
|
2014-04-15 11:30:06 -05:00
|
|
|
{
|
2014-11-21 09:39:47 -06:00
|
|
|
// first, write the summary information ...
|
|
|
|
summaryWriter_.write(wellManager_);
|
|
|
|
|
|
|
|
// ... then proceed to the next report step
|
2014-04-15 11:30:06 -05:00
|
|
|
Simulator &simulator = this->simulator();
|
2014-11-28 05:58:48 -06:00
|
|
|
Opm::EclipseStateConstPtr eclState = this->simulator().gridManager().eclState();
|
|
|
|
Opm::TimeMapConstPtr timeMap = eclState->getSchedule()->getTimeMap();
|
2014-05-30 05:42:48 -05:00
|
|
|
|
|
|
|
// TimeMap deals with points in time, so the number of time
|
2014-07-09 05:01:07 -05:00
|
|
|
// intervals (i.e., report steps) is one less!
|
2014-05-30 05:42:48 -05:00
|
|
|
int numReportSteps = timeMap->size() - 1;
|
|
|
|
|
|
|
|
// start the next episode if there are additional report
|
|
|
|
// steps, else finish the simulation
|
2014-07-09 05:01:07 -05:00
|
|
|
int nextEpisodeIdx = simulator.episodeIndex() + 1;
|
2014-07-28 09:26:10 -05:00
|
|
|
if (nextEpisodeIdx < numReportSteps) {
|
2014-07-09 05:01:07 -05:00
|
|
|
simulator.startNextEpisode(timeMap->getTimeStepLength(nextEpisodeIdx));
|
2014-07-28 09:26:10 -05:00
|
|
|
simulator.setTimeStepSize(timeMap->getTimeStepLength(nextEpisodeIdx));
|
|
|
|
}
|
2014-05-30 05:42:48 -05:00
|
|
|
else
|
|
|
|
simulator.setFinished(true);
|
2014-04-15 11:30:06 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \brief Returns true if the current solution should be written
|
|
|
|
* to disk for visualization.
|
|
|
|
*
|
|
|
|
* For the ECL simulator we only write at the end of
|
|
|
|
* episodes/report steps...
|
|
|
|
*/
|
|
|
|
bool shouldWriteOutput()
|
|
|
|
{
|
2014-08-04 10:07:49 -05:00
|
|
|
if (this->simulator().timeStepIndex() < 0)
|
2014-04-15 11:30:06 -05:00
|
|
|
// always write the initial solution
|
|
|
|
return true;
|
|
|
|
|
2014-05-02 09:08:22 -05:00
|
|
|
if (EWOMS_GET_PARAM(TypeTag, bool, EnableWriteAllSolutions))
|
|
|
|
return true;
|
|
|
|
|
2014-04-15 11:30:06 -05:00
|
|
|
return this->simulator().episodeWillBeOver();
|
|
|
|
}
|
|
|
|
|
2014-11-28 05:58:48 -06:00
|
|
|
/*!
|
|
|
|
* \brief Write the requested quantities of the current solution into the output
|
|
|
|
* files.
|
|
|
|
*/
|
|
|
|
void writeOutput(bool verbose = true)
|
|
|
|
{
|
|
|
|
// calculate the time _after_ the time was updated
|
|
|
|
Scalar t = this->simulator().time() + this->simulator().timeStepSize();
|
|
|
|
|
|
|
|
// prepare the ECL and the VTK writers
|
|
|
|
if (enableEclOutput_())
|
|
|
|
eclWriter_.beginWrite(t);
|
|
|
|
|
|
|
|
// use the generic code to prepare the output fields and to
|
|
|
|
// write the desired VTK files.
|
|
|
|
ParentType::writeOutput(verbose);
|
|
|
|
|
|
|
|
if (enableEclOutput_()) {
|
|
|
|
this->model().appendOutputFields(eclWriter_);
|
|
|
|
eclWriter_.endWrite();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-04-15 11:30:06 -05:00
|
|
|
/*!
|
|
|
|
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
|
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
const DimMatrix &intrinsicPermeability(const Context &context,
|
|
|
|
int spaceIdx,
|
|
|
|
int timeIdx) const
|
|
|
|
{
|
|
|
|
int globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
|
|
|
return intrinsicPermeability_[globalSpaceIdx];
|
|
|
|
}
|
|
|
|
|
2014-07-02 10:50:35 -05:00
|
|
|
/*!
|
2014-12-27 08:19:15 -06:00
|
|
|
* \brief This method returns the intrinsic permeability tensor
|
|
|
|
* given a global element index.
|
|
|
|
*
|
|
|
|
* Its main (only?) usage is the ECL transmissibility calculation code...
|
2014-07-02 10:50:35 -05:00
|
|
|
*/
|
2014-12-27 08:19:15 -06:00
|
|
|
const DimMatrix &intrinsicPermeability(int globalElemIdx) const
|
|
|
|
{ return intrinsicPermeability_[globalElemIdx]; }
|
2014-07-02 10:50:35 -05:00
|
|
|
|
2014-12-27 08:19:15 -06:00
|
|
|
/*!
|
|
|
|
* \copydoc FvBaseMultiPhaseProblem::transmissibility
|
|
|
|
*/
|
|
|
|
Scalar transmissibility(int elem1Idx, int elem2Idx) const
|
|
|
|
{ return transmissibilities_.transmissibility(elem1Idx, elem2Idx); }
|
2014-07-02 10:50:35 -05:00
|
|
|
|
2014-04-15 11:30:06 -05:00
|
|
|
/*!
|
|
|
|
* \copydoc FvBaseMultiPhaseProblem::porosity
|
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
Scalar porosity(const Context &context, int spaceIdx, int timeIdx) const
|
|
|
|
{
|
|
|
|
int globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
|
|
|
return porosity_[globalSpaceIdx];
|
|
|
|
}
|
|
|
|
|
2014-12-04 12:22:56 -06:00
|
|
|
/*!
|
|
|
|
* \copydoc BlackoilProblem::rockCompressibility
|
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
Scalar rockCompressibility(const Context &context, int spaceIdx, int timeIdx) const
|
|
|
|
{
|
|
|
|
if (rockParams_.empty())
|
|
|
|
return 0.0;
|
|
|
|
|
|
|
|
int tableIdx = 0;
|
|
|
|
if (!rockTableIdx_.empty()) {
|
|
|
|
int globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
|
|
|
tableIdx = rockTableIdx_[globalSpaceIdx];
|
|
|
|
}
|
|
|
|
|
|
|
|
return rockParams_[tableIdx].compressibility;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \copydoc BlackoilProblem::rockReferencePressure
|
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
Scalar rockReferencePressure(const Context &context, int spaceIdx, int timeIdx) const
|
|
|
|
{
|
|
|
|
if (rockParams_.empty())
|
|
|
|
return 1e5;
|
|
|
|
|
|
|
|
int tableIdx = 0;
|
|
|
|
if (!rockTableIdx_.empty()) {
|
|
|
|
int globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
|
|
|
tableIdx = rockTableIdx_[globalSpaceIdx];
|
|
|
|
}
|
|
|
|
|
|
|
|
return rockParams_[tableIdx].referencePressure;
|
|
|
|
}
|
|
|
|
|
2014-04-15 11:30:06 -05:00
|
|
|
/*!
|
|
|
|
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
|
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
const MaterialLawParams &materialLawParams(const Context &context,
|
|
|
|
int spaceIdx, int timeIdx) const
|
|
|
|
{
|
2014-04-28 12:12:53 -05:00
|
|
|
int tableIdx = 0;
|
|
|
|
if (materialParamTableIdx_.size() > 0) {
|
|
|
|
int globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
|
|
|
tableIdx = materialParamTableIdx_[globalSpaceIdx];
|
|
|
|
}
|
|
|
|
return materialParams_[tableIdx];
|
2014-04-15 11:30:06 -05:00
|
|
|
}
|
|
|
|
|
2014-08-05 09:52:52 -05:00
|
|
|
/*!
|
|
|
|
* \brief Returns the index of the relevant region for thermodynmic properties
|
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
int pvtRegionIndex(const Context &context, int spaceIdx, int timeIdx) const
|
|
|
|
{
|
|
|
|
Opm::DeckConstPtr deck = this->simulator().gridManager().deck();
|
|
|
|
|
|
|
|
if (!deck->hasKeyword("PVTNUM"))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
const auto &grid = this->simulator().gridManager().grid();
|
|
|
|
|
|
|
|
// this is quite specific to the ECFV discretization. But so is everything in an
|
|
|
|
// ECL deck, i.e., we don't need to care here...
|
|
|
|
int compressedDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
|
|
|
int cartesianDofIdx = grid.globalCell()[compressedDofIdx];
|
|
|
|
|
|
|
|
return deck->getKeyword("PVTNUM")->getIntData()[cartesianDofIdx] - 1;
|
|
|
|
}
|
|
|
|
|
2014-04-15 11:30:06 -05:00
|
|
|
/*!
|
|
|
|
* \name Problem parameters
|
|
|
|
*/
|
|
|
|
//! \{
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \copydoc FvBaseProblem::name
|
|
|
|
*/
|
2014-04-25 10:22:28 -05:00
|
|
|
std::string name() const
|
2014-04-25 10:48:41 -05:00
|
|
|
{ return this->simulator().gridManager().caseName(); }
|
2014-04-15 11:30:06 -05:00
|
|
|
|
|
|
|
/*!
|
|
|
|
* \copydoc FvBaseMultiPhaseProblem::temperature
|
|
|
|
*
|
|
|
|
* The black-oil model assumes constant temperature to define its
|
|
|
|
* parameters. Although temperature is thus not really used by the
|
|
|
|
* model, it gets written to the VTK output. Who nows, maybe we
|
|
|
|
* will need it one day?
|
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
Scalar temperature(const Context &context, int spaceIdx, int timeIdx) const
|
|
|
|
{ return temperature_; }
|
|
|
|
|
|
|
|
// \}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \name Boundary conditions
|
|
|
|
*/
|
|
|
|
//! \{
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \copydoc FvBaseProblem::boundary
|
|
|
|
*
|
2014-11-28 05:58:48 -06:00
|
|
|
* ECLiPSE uses no-flow conditions for all boundaries. \todo really?
|
2014-04-15 11:30:06 -05:00
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
void boundary(BoundaryRateVector &values,
|
|
|
|
const Context &context,
|
|
|
|
int spaceIdx,
|
|
|
|
int timeIdx) const
|
|
|
|
{ values.setNoFlow(); }
|
|
|
|
|
|
|
|
//! \}
|
|
|
|
|
|
|
|
/*!
|
2014-06-24 07:54:32 -05:00
|
|
|
* \name Volumetric terms
|
2014-04-15 11:30:06 -05:00
|
|
|
*/
|
|
|
|
//! \{
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \copydoc FvBaseProblem::initial
|
|
|
|
*
|
|
|
|
* The reservoir problem uses a constant boundary condition for
|
|
|
|
* the whole domain.
|
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
void initial(PrimaryVariables &values, const Context &context, int spaceIdx, int timeIdx) const
|
|
|
|
{
|
|
|
|
int globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
|
|
|
|
|
|
|
values.assignNaive(initialFluidStates_[globalDofIdx]);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \copydoc FvBaseProblem::source
|
|
|
|
*
|
|
|
|
* For this problem, the source term of all components is 0 everywhere.
|
|
|
|
*/
|
|
|
|
template <class Context>
|
2014-05-07 08:07:39 -05:00
|
|
|
void source(RateVector &rate,
|
|
|
|
const Context &context,
|
|
|
|
int spaceIdx,
|
2014-04-15 11:30:06 -05:00
|
|
|
int timeIdx) const
|
|
|
|
{
|
2014-05-07 08:07:39 -05:00
|
|
|
rate = 0;
|
|
|
|
wellManager_.computeTotalRatesForDof(rate, context, spaceIdx, timeIdx);
|
|
|
|
|
|
|
|
// convert the source term from the total mass rate of the
|
|
|
|
// cell to the one per unit of volume as used by the model.
|
|
|
|
int globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
|
|
|
rate /= this->model().dofTotalVolume(globalDofIdx);
|
2014-04-15 11:30:06 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
//! \}
|
|
|
|
|
|
|
|
private:
|
2014-11-28 05:58:48 -06:00
|
|
|
static bool enableEclOutput_()
|
|
|
|
{ return EWOMS_GET_PARAM(TypeTag, bool, EnableEclOutput); }
|
|
|
|
|
2014-12-04 12:22:56 -06:00
|
|
|
void readRockParameters_()
|
|
|
|
{
|
|
|
|
auto deck = this->simulator().gridManager().deck();
|
|
|
|
auto eclState = this->simulator().gridManager().eclState();
|
|
|
|
|
|
|
|
// the ROCK keyword has not been specified, so we don't need
|
|
|
|
// to read rock parameters
|
|
|
|
if (!deck->hasKeyword("ROCK"))
|
|
|
|
return;
|
|
|
|
|
|
|
|
const auto rockKeyword = deck->getKeyword("ROCK");
|
|
|
|
rockParams_.resize(rockKeyword->size());
|
2014-12-08 12:09:05 -06:00
|
|
|
for (size_t rockRecordIdx = 0; rockRecordIdx < rockKeyword->size(); ++ rockRecordIdx) {
|
2014-12-04 12:22:56 -06:00
|
|
|
const auto rockRecord = rockKeyword->getRecord(rockRecordIdx);
|
|
|
|
rockParams_[rockRecordIdx].referencePressure =
|
|
|
|
rockRecord->getItem("PREF")->getSIDouble(0);
|
|
|
|
rockParams_[rockRecordIdx].compressibility =
|
|
|
|
rockRecord->getItem("COMPRESSIBILITY")->getSIDouble(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ROCKTAB has not been specified, so everything is in the
|
|
|
|
// first region and we don't need to care...
|
|
|
|
if (!eclState->hasIntGridProperty("ROCKTAB"))
|
|
|
|
return;
|
|
|
|
|
|
|
|
const std::vector<int>& rocktabData =
|
|
|
|
eclState->getIntGridProperty("ROCKTAB")->getData();
|
|
|
|
for (size_t elemIdx = 0; elemIdx < rocktabData.size(); ++ elemIdx)
|
|
|
|
// reminder: Eclipse uses FORTRAN indices
|
|
|
|
rockTableIdx_[elemIdx] = rocktabData[elemIdx] - 1;
|
|
|
|
}
|
|
|
|
|
2014-06-04 11:05:12 -05:00
|
|
|
void readMaterialParameters_()
|
2014-04-15 11:30:06 -05:00
|
|
|
{
|
2014-07-02 10:50:35 -05:00
|
|
|
auto deck = this->simulator().gridManager().deck();
|
2014-11-28 05:58:48 -06:00
|
|
|
auto eclState = this->simulator().gridManager().eclState();
|
2014-07-02 10:50:35 -05:00
|
|
|
const auto &grid = this->simulator().gridManager().grid();
|
|
|
|
|
2014-10-06 09:23:21 -05:00
|
|
|
size_t numDof = this->model().numGridDof();
|
2014-04-15 11:30:06 -05:00
|
|
|
|
|
|
|
intrinsicPermeability_.resize(numDof);
|
|
|
|
porosity_.resize(numDof);
|
|
|
|
materialParams_.resize(numDof);
|
|
|
|
|
2014-07-02 10:50:35 -05:00
|
|
|
////////////////////////////////
|
|
|
|
// permeability
|
|
|
|
|
2014-11-28 05:58:48 -06:00
|
|
|
// read the intrinsic permeabilities from the eclState. Note that all arrays
|
|
|
|
// provided by eclState are one-per-cell of "uncompressed" grid, whereas the
|
2014-07-02 10:50:35 -05:00
|
|
|
// dune-cornerpoint grid object might remove a few elements...
|
2014-11-28 05:58:48 -06:00
|
|
|
if (eclState->hasDoubleGridProperty("PERMX")) {
|
2014-04-15 11:30:06 -05:00
|
|
|
const std::vector<double> &permxData =
|
2014-11-28 05:58:48 -06:00
|
|
|
eclState->getDoubleGridProperty("PERMX")->getData();
|
2014-04-15 11:30:06 -05:00
|
|
|
std::vector<double> permyData(permxData);
|
2014-11-28 05:58:48 -06:00
|
|
|
if (eclState->hasDoubleGridProperty("PERMY"))
|
|
|
|
permyData = eclState->getDoubleGridProperty("PERMY")->getData();
|
2014-04-15 11:30:06 -05:00
|
|
|
std::vector<double> permzData(permxData);
|
2014-11-28 05:58:48 -06:00
|
|
|
if (eclState->hasDoubleGridProperty("PERMZ"))
|
|
|
|
permzData = eclState->getDoubleGridProperty("PERMZ")->getData();
|
2014-04-15 11:30:06 -05:00
|
|
|
|
|
|
|
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx) {
|
2014-07-02 10:50:35 -05:00
|
|
|
int cartesianElemIdx = grid.globalCell()[dofIdx];
|
2014-04-15 11:30:06 -05:00
|
|
|
intrinsicPermeability_[dofIdx] = 0.0;
|
2014-07-02 10:50:35 -05:00
|
|
|
intrinsicPermeability_[dofIdx][0][0] = permxData[cartesianElemIdx];
|
|
|
|
intrinsicPermeability_[dofIdx][1][1] = permyData[cartesianElemIdx];
|
|
|
|
intrinsicPermeability_[dofIdx][2][2] = permzData[cartesianElemIdx];
|
2014-04-15 11:30:06 -05:00
|
|
|
}
|
|
|
|
|
2014-07-02 10:50:35 -05:00
|
|
|
// for now we don't care about non-diagonal entries
|
2014-04-15 11:30:06 -05:00
|
|
|
}
|
|
|
|
else
|
|
|
|
OPM_THROW(std::logic_error,
|
2014-11-28 05:58:48 -06:00
|
|
|
"Can't read the intrinsic permeability from the ecl state. "
|
2014-06-04 11:05:12 -05:00
|
|
|
"(The PERM{X,Y,Z} keywords are missing)");
|
2014-07-02 10:50:35 -05:00
|
|
|
////////////////////////////////
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////
|
|
|
|
// compute the porosity
|
2014-11-28 05:58:48 -06:00
|
|
|
if (eclState->hasDoubleGridProperty("PORO")) {
|
2014-04-15 11:30:06 -05:00
|
|
|
const std::vector<double> &poroData =
|
2014-11-28 05:58:48 -06:00
|
|
|
eclState->getDoubleGridProperty("PORO")->getData();
|
2014-04-15 11:30:06 -05:00
|
|
|
|
2014-07-02 10:50:35 -05:00
|
|
|
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx) {
|
|
|
|
int cartesianElemIdx = grid.globalCell()[dofIdx];
|
|
|
|
porosity_[dofIdx] = poroData[cartesianElemIdx];
|
|
|
|
}
|
2014-04-15 11:30:06 -05:00
|
|
|
}
|
|
|
|
else
|
2014-11-28 05:58:48 -06:00
|
|
|
OPM_THROW(std::runtime_error,
|
|
|
|
"Can't read the porosity from the ECL state object. "
|
2014-04-15 11:30:06 -05:00
|
|
|
"(The PORO keyword is missing)");
|
|
|
|
|
2014-07-02 10:50:35 -05:00
|
|
|
// apply the NTG keyword to the porosity
|
2014-11-28 05:58:48 -06:00
|
|
|
if (eclState->hasDoubleGridProperty("NTG")) {
|
2014-07-02 10:50:35 -05:00
|
|
|
const std::vector<double> &ntgData =
|
2014-11-28 05:58:48 -06:00
|
|
|
eclState->getDoubleGridProperty("NTG")->getData();
|
2014-07-02 10:50:35 -05:00
|
|
|
|
|
|
|
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx) {
|
|
|
|
int cartesianElemIdx = grid.globalCell()[dofIdx];
|
|
|
|
porosity_[dofIdx] *= ntgData[cartesianElemIdx];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// apply the MULTPV keyword to the porosity
|
2014-11-28 05:58:48 -06:00
|
|
|
if (eclState->hasDoubleGridProperty("MULTPV")) {
|
2014-07-02 10:50:35 -05:00
|
|
|
const std::vector<double> &multpvData =
|
2014-11-28 05:58:48 -06:00
|
|
|
eclState->getDoubleGridProperty("MULTPV")->getData();
|
2014-07-02 10:50:35 -05:00
|
|
|
|
|
|
|
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx) {
|
|
|
|
int cartesianElemIdx = grid.globalCell()[dofIdx];
|
|
|
|
porosity_[dofIdx] *= multpvData[cartesianElemIdx];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////
|
|
|
|
// fluid parameters
|
2014-11-28 05:58:48 -06:00
|
|
|
const auto& swofTables = eclState->getSwofTables();
|
|
|
|
const auto& sgofTables = eclState->getSgofTables();
|
2014-04-28 12:12:53 -05:00
|
|
|
|
|
|
|
// the number of tables for the SWOF and the SGOF keywords
|
|
|
|
// must be identical
|
2014-09-17 06:42:13 -05:00
|
|
|
assert(swofTables.size() == sgofTables.size());
|
2014-04-28 12:12:53 -05:00
|
|
|
|
2014-09-17 06:42:13 -05:00
|
|
|
size_t numSatfuncTables = swofTables.size();
|
2014-08-06 06:52:53 -05:00
|
|
|
materialParams_.resize(numSatfuncTables);
|
|
|
|
|
2014-04-28 12:12:53 -05:00
|
|
|
typedef typename MaterialLawParams::GasOilParams GasOilParams;
|
|
|
|
typedef typename MaterialLawParams::OilWaterParams OilWaterParams;
|
|
|
|
|
|
|
|
for (size_t tableIdx = 0; tableIdx < numSatfuncTables; ++ tableIdx) {
|
|
|
|
// set the parameters of the material law for a given table
|
|
|
|
OilWaterParams owParams;
|
|
|
|
GasOilParams goParams;
|
|
|
|
|
2014-09-17 06:42:13 -05:00
|
|
|
const auto& swofTable = swofTables[tableIdx];
|
|
|
|
const auto& sgofTable = sgofTables[tableIdx];
|
2014-04-28 12:12:53 -05:00
|
|
|
|
2014-08-06 06:52:53 -05:00
|
|
|
const auto &SwColumn = swofTable.getSwColumn();
|
2014-11-27 11:59:40 -06:00
|
|
|
|
2014-08-06 06:52:53 -05:00
|
|
|
owParams.setKrwSamples(SwColumn, swofTable.getKrwColumn());
|
|
|
|
owParams.setKrnSamples(SwColumn, swofTable.getKrowColumn());
|
|
|
|
owParams.setPcnwSamples(SwColumn, swofTable.getPcowColumn());
|
2014-04-28 12:12:53 -05:00
|
|
|
|
2014-11-27 11:42:19 -06:00
|
|
|
// convert the saturations of the SGOF keyword from gas to oil saturations
|
|
|
|
std::vector<double> SoSamples(sgofTable.numRows());
|
|
|
|
for (size_t sampleIdx = 0; sampleIdx < sgofTable.numRows(); ++ sampleIdx)
|
|
|
|
SoSamples[sampleIdx] = 1 - sgofTable.getSgColumn()[sampleIdx];
|
|
|
|
|
2014-08-06 06:52:53 -05:00
|
|
|
goParams.setKrwSamples(SoSamples, sgofTable.getKrogColumn());
|
|
|
|
goParams.setKrnSamples(SoSamples, sgofTable.getKrgColumn());
|
|
|
|
goParams.setPcnwSamples(SoSamples, sgofTable.getPcogColumn());
|
2014-04-28 12:12:53 -05:00
|
|
|
|
|
|
|
owParams.finalize();
|
|
|
|
goParams.finalize();
|
|
|
|
|
2014-11-28 05:58:48 -06:00
|
|
|
// compute the connate water saturation. In ECL decks that is defined as
|
2014-11-27 11:59:40 -06:00
|
|
|
// the first saturation value of the SWOF keyword.
|
|
|
|
Scalar Swco = SwColumn.front();
|
|
|
|
materialParams_[tableIdx].setConnateWaterSaturation(Swco);
|
|
|
|
|
2014-04-28 12:12:53 -05:00
|
|
|
materialParams_[tableIdx].setOilWaterParams(owParams);
|
|
|
|
materialParams_[tableIdx].setGasOilParams(goParams);
|
|
|
|
|
|
|
|
materialParams_[tableIdx].finalize();
|
2014-04-15 11:30:06 -05:00
|
|
|
}
|
2014-04-28 12:12:53 -05:00
|
|
|
|
|
|
|
// set the index of the table to be used
|
2014-11-28 05:58:48 -06:00
|
|
|
if (eclState->hasIntGridProperty("SATNUM")) {
|
2014-05-07 08:07:39 -05:00
|
|
|
const std::vector<int> &satnumData =
|
2014-11-28 05:58:48 -06:00
|
|
|
eclState->getIntGridProperty("SATNUM")->getData();
|
2014-04-28 12:12:53 -05:00
|
|
|
|
|
|
|
materialParamTableIdx_.resize(numDof);
|
|
|
|
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx) {
|
2014-07-02 10:50:35 -05:00
|
|
|
int cartesianElemIdx = grid.globalCell()[dofIdx];
|
|
|
|
|
2014-04-28 12:12:53 -05:00
|
|
|
// make sure that all values are in the correct range
|
|
|
|
assert(1 <= satnumData[dofIdx]);
|
|
|
|
assert(satnumData[dofIdx] <= static_cast<int>(numSatfuncTables));
|
|
|
|
|
2014-11-28 05:58:48 -06:00
|
|
|
// ECL uses Fortran-style indices which start at
|
2014-04-28 12:12:53 -05:00
|
|
|
// 1, but this here is C++...
|
2014-07-02 10:50:35 -05:00
|
|
|
materialParamTableIdx_[dofIdx] = satnumData[cartesianElemIdx] - 1;
|
2014-04-28 12:12:53 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
materialParamTableIdx_.clear();
|
2014-07-02 10:50:35 -05:00
|
|
|
////////////////////////////////
|
2014-04-15 11:30:06 -05:00
|
|
|
}
|
|
|
|
|
2014-06-04 11:05:12 -05:00
|
|
|
void initFluidSystem_()
|
2014-04-15 11:30:06 -05:00
|
|
|
{
|
2014-06-04 11:05:12 -05:00
|
|
|
const auto deck = this->simulator().gridManager().deck();
|
2014-11-28 05:58:48 -06:00
|
|
|
const auto eclState = this->simulator().gridManager().eclState();
|
2014-06-04 11:05:12 -05:00
|
|
|
|
2014-04-15 11:30:06 -05:00
|
|
|
FluidSystem::initBegin();
|
|
|
|
|
2014-08-05 09:52:52 -05:00
|
|
|
int numRegions = deck->getKeyword("DENSITY")->size();
|
|
|
|
for (int regionIdx = 0; regionIdx < numRegions; ++regionIdx) {
|
|
|
|
// set the reference densities
|
|
|
|
Opm::DeckRecordConstPtr densityRecord =
|
|
|
|
deck->getKeyword("DENSITY")->getRecord(regionIdx);
|
2014-08-12 08:49:47 -05:00
|
|
|
FluidSystem::setReferenceDensities(densityRecord->getItem("OIL")->getSIDouble(0),
|
2014-08-05 09:52:52 -05:00
|
|
|
densityRecord->getItem("WATER")->getSIDouble(0),
|
|
|
|
densityRecord->getItem("GAS")->getSIDouble(0),
|
|
|
|
regionIdx);
|
|
|
|
|
|
|
|
// so far, we require the presence of the PVTO, PVTW and PVDG
|
|
|
|
// keywords...
|
2014-11-28 05:58:48 -06:00
|
|
|
FluidSystem::setPvtoTable(eclState->getPvtoTables()[regionIdx], regionIdx);
|
2014-09-17 06:42:13 -05:00
|
|
|
FluidSystem::setPvtw(deck->getKeyword("PVTW"), regionIdx);
|
2014-11-28 05:58:48 -06:00
|
|
|
FluidSystem::setPvdgTable(eclState->getPvdgTables()[regionIdx], regionIdx);
|
2014-08-05 09:52:52 -05:00
|
|
|
}
|
2014-04-15 11:30:06 -05:00
|
|
|
|
|
|
|
FluidSystem::initEnd();
|
|
|
|
}
|
|
|
|
|
2014-06-04 11:05:12 -05:00
|
|
|
void readInitialCondition_()
|
2014-04-15 11:30:06 -05:00
|
|
|
{
|
2014-06-04 11:05:12 -05:00
|
|
|
const auto deck = this->simulator().gridManager().deck();
|
2014-07-07 05:45:15 -05:00
|
|
|
const auto &grid = this->simulator().gridManager().grid();
|
|
|
|
|
2014-04-15 11:30:06 -05:00
|
|
|
if (!deck->hasKeyword("SWAT") ||
|
2014-05-30 05:42:48 -05:00
|
|
|
!deck->hasKeyword("SGAS"))
|
2014-04-15 11:30:06 -05:00
|
|
|
OPM_THROW(std::runtime_error,
|
2014-11-28 05:58:48 -06:00
|
|
|
"So far, the ECL input file requires the presence of the SWAT "
|
2014-04-15 11:30:06 -05:00
|
|
|
"and SGAS keywords");
|
2014-05-30 05:42:48 -05:00
|
|
|
if (!deck->hasKeyword("PRESSURE"))
|
2014-04-15 11:30:06 -05:00
|
|
|
OPM_THROW(std::runtime_error,
|
2014-11-28 05:58:48 -06:00
|
|
|
"So far, the ECL input file requires the presence of the PRESSURE "
|
2014-04-15 11:30:06 -05:00
|
|
|
"keyword");
|
2014-07-07 05:46:47 -05:00
|
|
|
if (!deck->hasKeyword("DISGAS"))
|
|
|
|
OPM_THROW(std::runtime_error,
|
2014-05-07 08:07:39 -05:00
|
|
|
"The deck must exhibit gas dissolved in the oil phase"
|
|
|
|
" (DISGAS keyword is missing)");
|
2014-07-07 05:46:47 -05:00
|
|
|
if (!deck->hasKeyword("RS"))
|
|
|
|
OPM_THROW(std::runtime_error,
|
2014-11-28 05:58:48 -06:00
|
|
|
"The ECL input file requires the presence of the RS keyword");
|
2014-07-07 05:46:47 -05:00
|
|
|
|
|
|
|
if (deck->hasKeyword("VAPOIL"))
|
|
|
|
OPM_THROW(std::runtime_error,
|
2014-05-07 08:07:39 -05:00
|
|
|
"The deck must _not_ exhibit vaporized oil"
|
|
|
|
" (The VAPOIL keyword is unsupported)");
|
2014-07-07 05:46:47 -05:00
|
|
|
if (deck->hasKeyword("RV"))
|
|
|
|
OPM_THROW(std::runtime_error,
|
2014-11-28 05:58:48 -06:00
|
|
|
"The ECL input file requires the RV keyword to be non-present");
|
2014-04-15 11:30:06 -05:00
|
|
|
|
2014-10-06 09:23:21 -05:00
|
|
|
size_t numDof = this->model().numGridDof();
|
2014-08-05 09:52:52 -05:00
|
|
|
|
|
|
|
initialFluidStates_.resize(numDof);
|
|
|
|
|
2014-04-15 11:30:06 -05:00
|
|
|
const std::vector<double> &waterSaturationData =
|
|
|
|
deck->getKeyword("SWAT")->getSIDoubleData();
|
|
|
|
const std::vector<double> &gasSaturationData =
|
|
|
|
deck->getKeyword("SGAS")->getSIDoubleData();
|
|
|
|
const std::vector<double> &pressureData =
|
|
|
|
deck->getKeyword("PRESSURE")->getSIDoubleData();
|
2014-07-07 05:45:15 -05:00
|
|
|
const std::vector<double> &rsData =
|
|
|
|
deck->getKeyword("RS")->getSIDoubleData();
|
2014-04-15 11:30:06 -05:00
|
|
|
|
|
|
|
// make sure that the size of the data arrays is correct
|
2014-08-04 17:20:19 -05:00
|
|
|
#ifndef NDEBUG
|
|
|
|
const auto &cartSize = grid.logicalCartesianSize();
|
|
|
|
size_t numCartesianCells = cartSize[0] * cartSize[1] * cartSize[2];
|
2014-07-07 05:45:15 -05:00
|
|
|
assert(waterSaturationData.size() == numCartesianCells);
|
|
|
|
assert(gasSaturationData.size() == numCartesianCells);
|
|
|
|
assert(pressureData.size() == numCartesianCells);
|
|
|
|
assert(rsData.size() == numCartesianCells);
|
2014-08-04 17:20:19 -05:00
|
|
|
#endif
|
2014-04-15 11:30:06 -05:00
|
|
|
|
|
|
|
// calculate the initial fluid states
|
|
|
|
for (size_t dofIdx = 0; dofIdx < numDof; ++dofIdx) {
|
|
|
|
auto &dofFluidState = initialFluidStates_[dofIdx];
|
|
|
|
|
2014-07-07 05:45:15 -05:00
|
|
|
size_t cartesianDofIdx = grid.globalCell()[dofIdx];
|
|
|
|
assert(0 <= cartesianDofIdx);
|
|
|
|
assert(cartesianDofIdx <= numCartesianCells);
|
|
|
|
|
2014-04-15 11:30:06 -05:00
|
|
|
//////
|
|
|
|
// set temperatures
|
|
|
|
//////
|
|
|
|
dofFluidState.setTemperature(temperature_);
|
|
|
|
|
|
|
|
//////
|
|
|
|
// set saturations
|
|
|
|
//////
|
|
|
|
dofFluidState.setSaturation(FluidSystem::waterPhaseIdx,
|
2014-07-07 05:45:15 -05:00
|
|
|
waterSaturationData[cartesianDofIdx]);
|
2014-04-15 11:30:06 -05:00
|
|
|
dofFluidState.setSaturation(FluidSystem::gasPhaseIdx,
|
2014-07-07 05:45:15 -05:00
|
|
|
gasSaturationData[cartesianDofIdx]);
|
2014-04-15 11:30:06 -05:00
|
|
|
dofFluidState.setSaturation(FluidSystem::oilPhaseIdx,
|
|
|
|
1
|
2014-07-07 05:45:15 -05:00
|
|
|
- waterSaturationData[cartesianDofIdx]
|
|
|
|
- gasSaturationData[cartesianDofIdx]);
|
2014-04-15 11:30:06 -05:00
|
|
|
|
|
|
|
//////
|
|
|
|
// set pressures
|
|
|
|
//////
|
2014-07-07 05:45:15 -05:00
|
|
|
Scalar oilPressure = pressureData[cartesianDofIdx];
|
2014-04-15 11:30:06 -05:00
|
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
|
|
dofFluidState.setPressure(phaseIdx, oilPressure);
|
|
|
|
}
|
|
|
|
|
|
|
|
//////
|
|
|
|
// set compositions
|
|
|
|
//////
|
|
|
|
|
|
|
|
// reset all mole fractions to 0
|
|
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
|
|
for (int compIdx = 0; compIdx < numComponents; ++compIdx)
|
|
|
|
dofFluidState.setMoleFraction(phaseIdx, compIdx, 0.0);
|
|
|
|
|
|
|
|
// set compositions of the gas and water phases
|
|
|
|
dofFluidState.setMoleFraction(waterPhaseIdx, waterCompIdx, 1.0);
|
|
|
|
dofFluidState.setMoleFraction(gasPhaseIdx, gasCompIdx, 1.0);
|
|
|
|
|
|
|
|
|
|
|
|
// set the composition of the oil phase:
|
|
|
|
//
|
|
|
|
// first, retrieve the relevant black-oil parameters from
|
|
|
|
// the fluid system.
|
2014-08-05 09:52:52 -05:00
|
|
|
Scalar RsSat = FluidSystem::gasDissolutionFactor(oilPressure, /*regionIdx=*/0);
|
2014-07-07 05:46:47 -05:00
|
|
|
Scalar RsReal = rsData[cartesianDofIdx];
|
|
|
|
|
|
|
|
if (RsReal > RsSat) {
|
|
|
|
std::array<int, 3> ijk;
|
|
|
|
grid.getIJK(dofIdx, ijk);
|
|
|
|
std::cerr << "Warning: The specified amount gas (R_s = " << RsReal << ") is more"
|
2014-05-07 08:07:39 -05:00
|
|
|
<< " than the maximium\n"
|
|
|
|
<< " amount which can be dissolved in oil"
|
|
|
|
<< " (R_s,max=" << RsSat << ")"
|
|
|
|
<< " for cell (" << ijk[0] << ", " << ijk[1] << ", " << ijk[2] << ")."
|
|
|
|
<< " Ignoring.\n";
|
2014-07-07 05:46:47 -05:00
|
|
|
RsReal = RsSat;
|
|
|
|
}
|
2014-04-15 11:30:06 -05:00
|
|
|
|
2014-07-07 05:46:47 -05:00
|
|
|
// calculate composition of the real and the saturated oil phase in terms of
|
|
|
|
// mass fractions.
|
2014-08-12 08:49:47 -05:00
|
|
|
Scalar rhooRef = FluidSystem::referenceDensity(oilPhaseIdx, /*regionIdx=*/0);
|
|
|
|
Scalar rhogRef = FluidSystem::referenceDensity(gasPhaseIdx, /*regionIdx=*/0);
|
2014-07-07 05:46:47 -05:00
|
|
|
Scalar XoGReal = RsReal*rhogRef / (RsReal*rhogRef + rhooRef);
|
2014-04-15 11:30:06 -05:00
|
|
|
|
|
|
|
// convert mass to mole fractions
|
|
|
|
Scalar MG = FluidSystem::molarMass(gasCompIdx);
|
|
|
|
Scalar MO = FluidSystem::molarMass(oilCompIdx);
|
|
|
|
|
2014-07-07 05:46:47 -05:00
|
|
|
Scalar xoGReal = XoGReal * MO / ((MO - MG) * XoGReal + MG);
|
|
|
|
Scalar xoOReal = 1 - xoGReal;
|
2014-04-15 11:30:06 -05:00
|
|
|
|
2014-07-07 05:46:47 -05:00
|
|
|
// finally, set the oil-phase composition
|
|
|
|
dofFluidState.setMoleFraction(oilPhaseIdx, gasCompIdx, xoGReal);
|
|
|
|
dofFluidState.setMoleFraction(oilPhaseIdx, oilCompIdx, xoOReal);
|
2014-04-15 11:30:06 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<Scalar> porosity_;
|
|
|
|
std::vector<DimMatrix> intrinsicPermeability_;
|
2014-12-27 08:19:15 -06:00
|
|
|
EclTransmissibility<TypeTag> transmissibilities_;
|
2014-07-02 10:50:35 -05:00
|
|
|
|
2014-04-28 12:12:53 -05:00
|
|
|
std::vector<unsigned short> materialParamTableIdx_;
|
2014-04-15 11:30:06 -05:00
|
|
|
std::vector<MaterialLawParams> materialParams_;
|
|
|
|
|
2014-12-04 12:22:56 -06:00
|
|
|
std::vector<unsigned short> rockTableIdx_;
|
|
|
|
std::vector<RockParams> rockParams_;
|
|
|
|
|
2014-04-15 11:30:06 -05:00
|
|
|
std::vector<BlackOilFluidState> initialFluidStates_;
|
|
|
|
|
|
|
|
Scalar temperature_;
|
2014-05-07 08:07:39 -05:00
|
|
|
|
|
|
|
EclWellManager<TypeTag> wellManager_;
|
2014-11-28 05:58:48 -06:00
|
|
|
|
|
|
|
EclWriter<TypeTag> eclWriter_;
|
|
|
|
EclSummaryWriter summaryWriter_;
|
2014-04-15 11:30:06 -05:00
|
|
|
};
|
|
|
|
} // namespace Ewoms
|
|
|
|
|
|
|
|
#endif
|