dynamical parameter given in the parameter file. The default is 0 (as before).
In addition the relaxation parameter has been added to the parameter with the
default preserving the state from before.
Also, the default parameter for use_amg and use_bicgstab in the constructor of
CPRPrecondition have been removed.
This restores the performance to approximately the level it had before
the change to support non-diagonal well jacobians, for SPE9. All changes
are to the eliminateVariable() method.
- Explicitly compute and apply the inverse.
- Change loop ordering to apply inverse only num_eq - 1 times, instead
of (numeq - 1)^2.
- Use UmfPackLU instead of SparseLU.
1. The right hand side is solved only once
2. The solver is constructed directly with the matrix
3. const is added where it was missing
4. More commennts is added
5. Variable names are changed for clarification
If we need more than 150 linear iterations, it's probably something
wrong, and we may be better of by restarting with smaller time-steps.
TODO: make it possible for the user to specify this number.
The non-diagonal elements in the sub-matrices in the Schur complement is
no longer ignored. Instead of assuming the matrix do be diagonal, and
compute the invert of the sub-matrix, small linear systems are solved
using superLU.
Tested on SPE3 and Norne. (With this fix a slightly modified norne runs
until 3292 days)
of the matrix internal allocators.
This fix also avoid the copying of the BCRSMatrix by providing a contructor that creates
the DuneMatrix for a given Eigen SparseMatrix.
New parameters are:
- cpr_use_amg (default false) if true, use AMG preconditioner for elliptic part
- cpr_use_bicgstab (default true) if true, use BiCGStab (else use CG) for elliptic part
With some caveats:
- scaling factors for material balance equations and pressure are hardcoded.
- pressure system is formed from sum of material balance equations, with
no check for diagonal dominance.
In its current state, we still don't do CPR, but eliminate the well equations,
solve the resulting system and finally recover the eliminated well unknowns.