As there are no functors for computing the minimum and maximum,
we convert the std::max and std::min function pointers to
functors (which is not really nice.) Previously we were somehow
tricked into using std::greater and std::less, which of course do
return true or false and not what we need. Additionally, do more
excessive testing with different ranges.
We need to compute quite a few global reductions in the
Newton method of opm-autodiff. This commit adds the functionality
to compute several reductions combined using only one global
communication. Compiles and test succeeds with one or more process.
With this commit the WellsManager will check the status of completions
before adding them to the internal struct wells
datastructure. Completions can be in the four states:
OPEN, SHUT, AUTO, POPN
Completions with state == SHUT will be ignored, wheras the wellsmanager
will throw if the states AUTO or POPN are encountered. The WELOPEN
keyword can also have the value 'STOP'; for completions that is
translated to 'SHUT' by Schedule object.
Rename the the meaning for shut as whats used in Eclipse.
STOP: Well stopped off above the formation. I.e. allow for flow in the
well.
SHUT: Well completely isolated from the formation. The well is removed
from the well list.
The old test was simply wrong: it computed the M-distance and compared
to the grid radius, which becomes dependent on the scaling of the
metric M. The corrected test in isClose() depends on the anisotropy
ratio of M and the grid radius.
Note that this patch does not introduce any real temperature
dependence but only changes the APIs for the viscosity and for the
density related methods. Note that I also don't like the fact that
this requires so many changes to so many files, but with the current
design of the property classes I cannot see a way to avoid this...
There were to identical if statements and the second one was followed
by an else branch. While in this case (if statement just throws) it is not
a bug, this commit cleans up one of the if statements.
gcc warned about the following
/home/mblatt/src/dune/opm/opm-core/opm/core/wells/WellsManager.cpp: In function ‘std::array<long unsigned int, 3ul> WellsManagerDetail::directionIndices(Opm::CompletionDirection::DirectionEnum)’:
/home/mblatt/src/dune/opm/opm-core/opm/core/wells/WellsManager.cpp:191: warning: control reaches end of non-void function
To calm it I introduced a throw clause after the switch statements. Thus adding a new
enum value will raise a warning on smart compilers, hopefully.
Shut wells are not added to the well list and the well index should
therefore not be increased when well control is set. This is similar to
whats is done for shut wells in createWellsFromSpecs.
Shut wells are not added to the well list and thus not considered in the
simulator.
The shut well test in test_wellsmanager is modified to assert this
behaviour.
BUG: This change provokes an assert in the EclipeWriter as number of
wells in wellstate is different from number of wells in the schedule.
The error checking macro makes it harder to read and harder to write, so
instead we now only check for functions that can contain errors. Bounds and
range checks are handled by PETSc and not OPM.
The previous implementation set plenty of values in the initialization list and
immediately overwrote these values with values looked up from the param group.
This patch makes it look up the parameteres from the param group argument,
making the constructor simpler.
Petsc only supports initialisation through the ParameterGroup constructor.
Calling the default, non-arg constructor is a static error, and not
implementing it makes using it break compiles.
call_petsc.c was really a thin C wrapper around the call to petsc itself and
turns out was mostly unnecessary C++ emulation. This removes the file entirely
and ports its functionality into LinearSolverPetsc.cpp.
All features from the file should now be more readable as well as properly
utilising modern C++ features.
The patch uses the CHKERRXX macro from petsc to handle errors reported by
petsc, and currently does not handle this and give the control back to OPM's
error/throw system.
Commit 96cf137 introduced support for Peaceman index calculation
that honoured general completion directions (X,Y,Z). This was
accomplished through a permutation index that reordered the
permeability and geometric extent components according to a local
coordinate system along the completion.
In a complete breakdown of logic, however, the d-component extent
vector was indexed as though it were a d-by-d matrix. This commit
restores sanity to the processing.
Pointy hat: @bska.
This commit extends the feature set of the WellsManager to support
horizontal ("X" and "Y") completions and include the net-to-gross
ratio in the Peaceman index ("Completion Transmissibility Factor,
CTF") of a well completion. The NTG factor is included if present
in the input deck represented by the "eclipseState".
There are two separate, though related, parts to this commit. The
first part splits the calculation of Peaceman's "effective radius"
out to a separate utility function, effectiveRadius(), and
generalises WellsManagerDetail::computeWellIndex() to account for
arbitrary directions and NTG factors. The second part uses
GridPropertyAccess::Compressed<> to extract the NTG vector from the
input if present while providing a fall-back value of 1.0 if no such
vector is available.
Note: We may wish to make the extraction policy configurable at some
point in the future.
This commit tightens the function header of method
WellsManager::createWellsFromSpecs()
to accept a reference-to-const 'cartesian_to_compressed' map. It
used to be a complete, copy-constructed object, so this is a slight
performance enhancement as we no longer need to copy a (somewhat)
large object on every call to the method.
This commit generalises the implementation of utility function
'getCubeDim' to support arbitrary number of space dimensions. In
actual practice there's no change in features as we only really use
a compile-time constant (= 3) to specify the number of space
dimensions.
This is a demonstration of using the
GridPropertyAccess::Compressed<>
class template. We save (some) memory by not creating the zero
fall-back vector in assignPermeability(), preferring instead to use
the fall-back/default mechanism of ArrayPolicy::ExtractFromDeck<>.
While here, adjust vector<PermComponent>::reserve() capacity to
reflect actual requirements.
Clients expect column-major (Fortran) ordering of the contiguous
"permeability_" array so that's what we create despite "tensor"
being row-major.
Suggested by: [at] atgeirr
This commit switches the assignment
diagonal = max(diagonal, minval)
to using a reference in the "diagonal" expression. This guarantees
that the indexing is done once which eases maintainability. While
here, replace the hard-coded dimension stride ('3') with the current
run-time dimension. This is mostly for symmetry because the overall
code is only really supported in three space dimension.
Calling code relies on permeability tensors being stored in column
major order (row index cycling the most rapidly). Honour that
requirement. The previous assignment implied row major ordering
(column index cycling the most rapidly). This, however, is a
pedantic rather than visible change because the surrounding code
enforces symmetric tensors whence both orderings produce the same
results when the array is viewed contiguously.
For constant capillar pressure function the saturation is
determined by cell depths:
Sg_max, Sw_min
----- goc ----
Sg_min, Sw_min
----- woc ----
Sg_min, Sw_max
This commit removes several instances of EOL whitespace in function
'swatInitScaling()'. Aesthetic only. No functional changes.
Suggested by: [at] atgeirr
The constant 1.0e-8 was used as a threshold to distinguish "low"
from "high" capillary pressure values. Introduce acutual constant
"pc_low_threshold" to clarify that role.
Suggested by: [at] atgeirr
This commit renames the 'np' parameter used to allocate small arrays
for saturations and capillary pressures to 'max_np' to better
reflect its purpose.
Suggested by: [at] atgeirr
New function well_controls_clone(), implemented in terms of the
public API only, mirrors the objective of function clone_wells(),
only for well control sets. Add a basic test to demonstrate the
function too.
The 'cpty' field is for internal memory management purposes only.
No client can know of its existence, let alone inspect or directly
change the value, so it should not be used to adjudicate control set
equality. This was useful during the refactoring work to introduce
the opm-parser support, but its utility has since ceased.
Okay'ed by: [at] atgeirr and [at] joakim-hove
Current version executes reordered solve once for each tracer. The benefit
is a simpler code and the ability to use MDU with tracers. The cost is
potentially higher runtime, compared to doing a single sweep for all
tracers (and tof).
When this boolean parameter is true (the default), tracer solutions
will be normalized so that the tracer averages will sum to one in each cell.
This behaviour is the same as before, the change is that it can now be
turned off.
this basically means using Opm::EclipseState instead of the raw deck
for these keywords.
with this, property modifiers like ADD, MULT, COPY and friends are
supported for at least the PERM* keywords. If additional keywords are
required these can be added relatively easily as well.
no ctest regressions have been observed with this patch on my machine.
The queried keywords are unknown to the parser and after manual
inspection also to the Eclipse RM. There might be wrong keywords some
left, but these were to ones needed to get SPE9 started using
sim_fibo_ad...
the largest change is that all classes below opm/core/props/pvt take
the PVT region index as an argument, the higher-level ones (i.e.,
BlackoilProps*) take cell indices.
Previous fix was wrong because it called getKeyword() outside the
hasKeyword() check. Current version (like original code) uses the
short-circuiting behaviour of && to ensure this.
This was missing in commit 4c2120c and produced some build failures
that were hard to analyse. I'm not convinced that the underlying
problem is solved, but this does at least restore the build.
The class OwnerOverlapCopyCommunication is not defined unless MPI is
avilable. Therefore, we cannot reference the type unless we know
that MPI is available in the current translation unit.
Removed conflicts in
opm/core/wells/WellsManager.cpp
that were due to the change
```diff
- pd.well_index = WellsManagerDetail::computeWellIndex(radius, cubical, cell_perm, completion->getDiameter());
+ pd.well_index = WellsManagerDetail::computeWellIndex(radius, cubical, cell_perm, completion->getSkinFactor());
```
in WellsManager::createWellsFromSpecs which moved from WellsManager.cpp to WellsManager_impl.hpp file in a previous commit.
As @bska pointed in my issue #518 this definition was
accidentally removed in commit 20468d1 during a merge of
upstream changes. Therefore I readd it with this patch.
- Saturations, phase pressures, and standard initialsation of RS and RV
now agree to baseline.
- Tables of RS and RV versus vertical depth (kw RSVD RVVD) have been
hardcoded for testing (need new parser) and the calculations agree to
baseline in the gas and oil zones. In the water zone there is some
differences: Our code computes saturated RS and RV using the final
phase pressures (these are modified to be consistent with saturations
and capillary pressures) while the baseline uses unmodified phase pressures.
To support this the solveSystem methods of the LinearSolverInterface gets
an optional additional template parameter of type boost::any. It can hold any
copy constructable object. In our case it is used to pass the information about
the parallelization into the solvers of dune-istl without the compiler needing to know
their type. Inside of LinearSolverIstl::solveSystem we check whether the type stored inside of
boost::any is the new ParallelIstlInformation. If this is the case we extract the information
and use the parallel solvers if available, otherwise we solve serial/sequential.
The new ParallelIstlInformation is needed as the OwnerOverlapCopyCommunication is not copy
constructable. This is indeed a design flaw that should and will fixed upstream, but for the
time being we need ParallelIstlInformation to transfer the ParallelIndexSet and RemoteIndices
objects.
This patch refactors the calls to the dune-istl solvers.
The SeqScalarProduct, and SequentialInformation is now explicitly
constructed and later used to construct the smoothers
generically. Aditionally the linear operator (MatrixAdapter) is
constructed before calling the various solver dependent solve
routines.
While this does not change the behaviour of the code it is a
preparatory step to support parallel solvers. These parallel
solvers only differ in the type of the scalarproduct and
linear operator used from the sequential ones.
This patch refactors the calls to the dune-istl solvers.
The SeqScalarProduct, and SequentialInformation is now explicitly
constructed and later used to construct the smoothers
generically. Aditionally the linear operator (MatrixAdapter) is
constructed before calling the various solver dependent solve
routines.
While this does not change the behaviour of the code it is a
preparatory step to support parallel solvers. These parallel
solvers only differ in the type of the scalarproduct and
linear operator used from the sequential ones.
This fixes further occurences of DUNE_HAS_FASTAMG that were
missed in pull request #530.
Previously we relied on the define DUNE_HAS_FAST_AMG to detect
whether these preconditioners are available. This define is only
available in the 2.2 release with cmake support. Therfore we now
addtionally test whether we are using dune-istl 2.3 or newer.
and throw an exception if "simple" is encountered...
According to Ove, gwseg should be used, because "gwseg is the model
relevant to the norne case - i.e the model eclipse uses.
The fix for the simple model has to wait for a refac of the satfunc
complex."
Previously we relied on the define DUNE_HAS_FAST_AMG to detect
whether these preconditioners are available. This define is only
available in the 2.2 release with cmake support. Therfore we now
addtionally test whether we are using dune-isl 2.3 or newer.
Patch 31c09aed was erroneous as it was trying to assing a
SaturationPropsFromDeck<SatFuncSimpleNonuniform> to a
SaturationPropsFromDeck<SatFuncSimpleUniform> in the constructor
taking the new parser. This patch fixes this.
My last merge broke compilation of opm-autodiff, as this new function
still relied on the old behaviour (the one taking a grid instead of
the data directly). This patch moved initStateFromDeck to the new behaviour.
The mentioned commit was applied before the merge of
opm-parser-integrate and therefore the changes did not carry over
to the code that uses the new parser. This code mimics the
changed behaviour for the new parser.
Closes issue #516
Instead of making well rates zero for wells that are not controlled by
surface volume, we initialize them to a small value with the correct
sign (positive for injectors, negative for producers).
It is not quite complete yet for the following reasons:
- it does not compute state.surfacevol(),
- the InitialStateComputer class does not compute Rs or Rv,
- it has not been verified.
In summary:
- added RsFunction (base class),
- made NoMixing, RsVD, RsSatAtContact inherit RsFunction,
- RS and RV are no longer template arguments for EquilReg class,
- EquilReg constructor now takes two shared_ptr<Miscibility::RsFunction>,
- use of constructor updated, mostly using make_shared.
This includes relative permeability and capillary pressure functions.
The default has been to make a monotone spline from the given table
values and use a fine, uniform sampling of that. Now the default
is to use the tables as-is. It is still possible to use the spline
approach. For example in the class BlackoilPropertiesFromDeck one
may pass nonzero values for the 'pvt_tab_size' and 'sat_tab_size'
parameters, corresponding to how fine the spline will be sampled.
This patch refactors (hopefully) all parts of opm-core that are needed
by the fully implicite black oil solver in opm-autodiff and that inherently
relied on UnstructuredGrid.
We added a new simple grid interface consisting out of free functions
that will allow us to use CpGrid without copying it to an UnstructuredGrid
by the means of the GridAdapter. Using this interface we have add methods that
allow specifying the grid information (global_cell, cartdims, etc.) wherever
possible to prevent introducing grid parameters for the type of the grid.
Unfortunately this was not possible everywhere.
This commit implements some additional scaling keywords. This includes
the ISWL-family that provide hysteresis behaviour via alternative
scaling of the tables. The old parser has been somewhat extended for
testing purposes. The commit also includes a slight refactoring of the
SatFunc-family where a new base class has been introduced.
The initial implementation of RK4IVP<>::operator() failed to take
into account the possibility that we might need to evaluate the
function outside the vertical span for which it was initially
defined. This situation occurs, for instance, in the not uncommon
cases of the GOC being above or the WOC being below the model.
This commit installs a crude Hermitian extrapolation procedure to
handle these cases. Refinements are likely.
This commit adds support for assigning the initial phase pressure
distribution to a subset of the total grid cells. This is needed in
order to fully support equilibration regions. The existing region
support (template parameter 'Region' in function 'phasePressures()')
was only used/needed to define PVT property (specifically, the fluid
phase density) calculator pertaining to a particular equilibration
region.
This commit adds a simple facility for calculating initial phase
pressures assuming stationary conditions, a known reference pressure
in the oil zone as well as the depth and capillary pressures at the
water-oil and gas-oil contacts.
Function 'Opm::equil::phasePressures()' uses a simple ODE/IVP-based
approach, solved using the traditional RK4 method with constant step
sizes, to derive the required pressure values. Specifically, we
solve the ODE
dp/dz = rho(z,p) * g
with 'z' represening depth, 'p' being a phase pressure and 'rho' the
associate phase density. Finally, 'g' is the acceleration of
gravity. We assume that we can calculate phase densities, e.g.,
from table look-up. This assumption holds in the case of an ECLIPSE
input deck.
Using RK4 with constant step sizes is a limitation of this
implementation. This, basically, assumes that the phase densities
varies only smoothly with depth and pressure (at reservoir
conditions).
The pvt interface is extended to handle wet-gas systems:
1. rvSat is added as a function in the PVT interface
2. SinglePvtLiveGas computes the pvt values and its derivatives
3. The old rbub variable is changed to rsSat for clearity
4. The new interface is tested in test_blackoilfluid with data from
liveoil.DATA and wetgas.DATA