opm-simulators/ebos/eclproblem.hh

2977 lines
122 KiB
C++
Raw Normal View History

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::EclProblem
*/
#ifndef EWOMS_ECL_PROBLEM_HH
#define EWOMS_ECL_PROBLEM_HH
2021-12-01 07:00:21 -06:00
#if USE_ALUGRID
#define DISABLE_ALUGRID_SFC_ORDERING 1
#include "eclalugridvanguard.hh"
#elif USE_POLYHEDRALGRID
#include "eclpolyhedralgridvanguard.hh"
#else
#include "eclcpgridvanguard.hh"
#endif
#include "eclactionhandler.hh"
#include "eclequilinitializer.hh"
#include "eclwriter.hh"
#include "ecloutputblackoilmodule.hh"
#include "ecltransmissibility.hh"
#include "eclthresholdpressure.hh"
#include "ecldummygradientcalculator.hh"
#include "eclfluxmodule.hh"
#include "eclbaseaquifermodel.hh"
#include "eclnewtonmethod.hh"
#include "ecltracermodel.hh"
#include "vtkecltracermodule.hh"
#include "eclgenericproblem.hh"
#include <opm/core/props/satfunc/RelpermDiagnostics.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/utils/ParallelSerialization.hpp>
#include <opm/simulators/timestepping/SimulatorReport.hpp>
#include <opm/models/common/directionalmobility.hh>
#include <opm/models/utils/pffgridvector.hh>
#include <opm/models/blackoil/blackoilmodel.hh>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
#include <opm/material/thermal/EclThermalLawManager.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/material/fluidsystems/blackoilpvt/DryGasPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/WetGasPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/LiveOilPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/DeadOilPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/ConstantCompressibilityOilPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/ConstantCompressibilityWaterPvt.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/common/utility/TimeService.hpp>
#include <opm/utility/CopyablePtr.hpp>
#include <opm/material/common/ConditionalStorage.hpp>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <opm/output/eclipse/EclipseIO.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <set>
#include <vector>
#include <string>
#include <algorithm>
2022-08-12 07:33:15 -05:00
#include <functional>
namespace Opm {
template <class TypeTag>
class EclProblem;
}
namespace Opm::Properties {
namespace TTag {
2021-12-01 07:00:21 -06:00
#if USE_ALUGRID
struct EclBaseProblem {
2021-05-26 08:12:08 -05:00
using InheritsFrom = std::tuple<VtkEclTracer, EclOutputBlackOil, EclAluGridVanguard>;
};
#elif USE_POLYHEDRALGRID
struct EclBaseProblem {
using InheritsFrom = std::tuple<VtkEclTracer, EclOutputBlackOil, EclPolyhedralGridVanguard>;
};
#else
struct EclBaseProblem {
using InheritsFrom = std::tuple<VtkEclTracer, EclOutputBlackOil, EclCpGridVanguard>;
};
#endif
}
// The class which deals with ECL wells
template<class TypeTag, class MyTypeTag>
struct EclWellModel {
using type = UndefinedProperty;
};
// Write all solutions for visualization, not just the ones for the
// report steps...
template<class TypeTag, class MyTypeTag>
struct EnableWriteAllSolutions {
using type = UndefinedProperty;
};
// The number of time steps skipped between writing two consequtive restart files
template<class TypeTag, class MyTypeTag>
struct RestartWritingInterval {
using type = UndefinedProperty;
};
// Enable partial compensation of systematic mass losses via the source term of the next time
// step
template<class TypeTag, class MyTypeTag>
struct EclEnableDriftCompensation {
using type = UndefinedProperty;
};
// Enable the additional checks even if compiled in debug mode (i.e., with the NDEBUG
// macro undefined). Next to a slightly better performance, this also eliminates some
// print statements in debug mode.
template<class TypeTag, class MyTypeTag>
struct EnableDebuggingChecks {
using type = UndefinedProperty;
};
// if thermal flux boundaries are enabled an effort is made to preserve the initial
// thermal gradient specified via the TEMPVD keyword
template<class TypeTag, class MyTypeTag>
struct EnableThermalFluxBoundaries {
using type = UndefinedProperty;
};
// Specify whether API tracking should be enabled (replaces PVT regions).
// TODO: This is not yet implemented
template<class TypeTag, class MyTypeTag>
struct EnableApiTracking {
using type = UndefinedProperty;
};
// The class which deals with ECL aquifers
template<class TypeTag, class MyTypeTag>
struct EclAquiferModel {
using type = UndefinedProperty;
};
// In experimental mode, decides if the aquifer model should be enabled or not
template<class TypeTag, class MyTypeTag>
struct EclEnableAquifers {
using type = UndefinedProperty;
};
// time stepping parameters
template<class TypeTag, class MyTypeTag>
struct EclMaxTimeStepSizeAfterWellEvent {
using type = UndefinedProperty;
};
template<class TypeTag, class MyTypeTag>
struct EclRestartShrinkFactor {
using type = UndefinedProperty;
};
template<class TypeTag, class MyTypeTag>
struct EclEnableTuning {
using type = UndefinedProperty;
};
template<class TypeTag, class MyTypeTag>
struct OutputMode {
using type = UndefinedProperty;
};
// Set the problem property
template<class TypeTag>
struct Problem<TypeTag, TTag::EclBaseProblem> {
using type = EclProblem<TypeTag>;
};
// Select the element centered finite volume method as spatial discretization
template<class TypeTag>
struct SpatialDiscretizationSplice<TypeTag, TTag::EclBaseProblem> {
using type = TTag::EcfvDiscretization;
};
//! for ebos, use automatic differentiation to linearize the system of PDEs
template<class TypeTag>
struct LocalLinearizerSplice<TypeTag, TTag::EclBaseProblem> {
using type = TTag::AutoDiffLocalLinearizer;
};
// Set the material law for fluid fluxes
2020-08-27 04:38:38 -05:00
template<class TypeTag>
struct MaterialLaw<TypeTag, TTag::EclBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
2021-05-26 07:24:16 -05:00
using Traits = ThreePhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx>;
public:
2021-05-26 07:24:16 -05:00
using EclMaterialLawManager = ::Opm::EclMaterialLawManager<Traits>;
2021-05-26 07:24:16 -05:00
using type = typename EclMaterialLawManager::MaterialLaw;
};
// Set the material law for energy storage in rock
2020-08-27 04:38:38 -05:00
template<class TypeTag>
struct SolidEnergyLaw<TypeTag, TTag::EclBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
public:
2021-05-26 07:24:16 -05:00
using EclThermalLawManager = ::Opm::EclThermalLawManager<Scalar, FluidSystem>;
2021-05-26 07:24:16 -05:00
using type = typename EclThermalLawManager::SolidEnergyLaw;
};
// Set the material law for thermal conduction
2020-08-27 04:38:38 -05:00
template<class TypeTag>
struct ThermalConductionLaw<TypeTag, TTag::EclBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
public:
2021-05-26 07:24:16 -05:00
using EclThermalLawManager = ::Opm::EclThermalLawManager<Scalar, FluidSystem>;
2021-05-26 07:24:16 -05:00
using type = typename EclThermalLawManager::ThermalConductionLaw;
};
// ebos can use a slightly faster stencil class because it does not need the normals and
// the integration points of intersections
2020-08-27 04:38:38 -05:00
template<class TypeTag>
struct Stencil<TypeTag, TTag::EclBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
public:
2021-05-26 07:24:16 -05:00
using type = EcfvStencil<Scalar,
GridView,
/*needIntegrationPos=*/false,
/*needNormal=*/false>;
};
// by default use the dummy aquifer "model"
template<class TypeTag>
struct EclAquiferModel<TypeTag, TTag::EclBaseProblem> {
using type = EclBaseAquiferModel<TypeTag>;
};
// Enable aquifers by default in experimental mode
template<class TypeTag>
struct EclEnableAquifers<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// Enable gravity
template<class TypeTag>
struct EnableGravity<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// Enable diffusion
template<class TypeTag>
struct EnableDiffusion<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// only write the solutions for the report steps to disk
template<class TypeTag>
struct EnableWriteAllSolutions<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// disable API tracking
template<class TypeTag>
struct EnableApiTracking<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// The default for the end time of the simulation [s]
//
// By default, stop it after the universe will probably have stopped
// to exist. (the ECL problem will finish the simulation explicitly
// after it simulated the last episode specified in the deck.)
template<class TypeTag>
struct EndTime<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1e100;
};
// The default for the initial time step size of the simulation [s].
//
// The chosen value means that the size of the first time step is the
// one of the initial episode (if the length of the initial episode is
// not millions of trillions of years, that is...)
template<class TypeTag>
struct InitialTimeStepSize<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 3600*24;
};
// the default for the allowed volumetric error for oil per second
template<class TypeTag>
struct NewtonTolerance<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1e-2;
};
// the tolerated amount of "incorrect" amount of oil per time step for the complete
2019-01-11 04:05:18 -06:00
// reservoir. this is scaled by the pore volume of the reservoir, i.e., larger reservoirs
// will tolerate larger residuals.
template<class TypeTag>
struct EclNewtonSumTolerance<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1e-4;
};
// set the exponent for the volume scaling of the sum tolerance: larger reservoirs can
// tolerate a higher amount of mass lost per time step than smaller ones! since this is
// not linear, we use the cube root of the overall pore volume by default, i.e., the
// value specified by the NewtonSumTolerance parameter is the "incorrect" mass per
// timestep for an reservoir that exhibits 1 m^3 of pore volume. A reservoir with a total
// pore volume of 10^3 m^3 will tolerate 10 times as much.
template<class TypeTag>
struct EclNewtonSumToleranceExponent<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1.0/3.0;
};
// set number of Newton iterations where the volumetric residual is considered for
// convergence
template<class TypeTag>
struct EclNewtonStrictIterations<TypeTag, TTag::EclBaseProblem> {
static constexpr int value = 8;
};
// set fraction of the pore volume where the volumetric residual may be violated during
// strict Newton iterations
template<class TypeTag>
struct EclNewtonRelaxedVolumeFraction<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 0.03;
};
// the maximum volumetric error of a cell in the relaxed region
template<class TypeTag>
struct EclNewtonRelaxedTolerance<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1e9;
};
// Ignore the maximum error mass for early termination of the newton method.
template<class TypeTag>
struct NewtonMaxError<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 10e9;
};
// set the maximum number of Newton iterations to 14 because the likelyhood that a time
// step succeeds at more than 14 Newton iteration is rather small
template<class TypeTag>
struct NewtonMaxIterations<TypeTag, TTag::EclBaseProblem> {
static constexpr int value = 14;
};
// also, reduce the target for the "optimum" number of Newton iterations to 6. Note that
// this is only relevant if the time step is reduced from the report step size for some
// reason. (because ebos first tries to do a report step using a single time step.)
template<class TypeTag>
struct NewtonTargetIterations<TypeTag, TTag::EclBaseProblem> {
static constexpr int value = 6;
};
// Disable the VTK output by default for this problem ...
template<class TypeTag>
struct EnableVtkOutput<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// ... but enable the ECL output by default
template<class TypeTag>
struct EnableEclOutput<TypeTag,TTag::EclBaseProblem> {
static constexpr bool value = true;
};
#ifdef HAVE_DAMARIS
//! Enable the Damaris output by default
template<class TypeTag>
struct EnableDamarisOutput<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// If Damaris is available, write specific variable output in parallel
template<class TypeTag>
struct EnableDamarisOutputCollective<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
#endif
// If available, write the ECL output in a non-blocking manner
template<class TypeTag>
struct EnableAsyncEclOutput<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// Write ESMRY file for fast loading of summary data
template<class TypeTag>
struct EnableEsmry<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// By default, use single precision for the ECL formated results
template<class TypeTag>
struct EclOutputDoublePrecision<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// The default location for the ECL output files
template<class TypeTag>
struct OutputDir<TypeTag, TTag::EclBaseProblem> {
static constexpr auto value = ".";
};
// the cache for intensive quantities can be used for ECL problems and also yields a
// decent speedup...
template<class TypeTag>
struct EnableIntensiveQuantityCache<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// the cache for the storage term can also be used and also yields a decent speedup
template<class TypeTag>
struct EnableStorageCache<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// Use the "velocity module" which uses the Eclipse "NEWTRAN" transmissibilities
template<class TypeTag>
struct FluxModule<TypeTag, TTag::EclBaseProblem> {
using type = EclTransFluxModule<TypeTag>;
};
// Use the dummy gradient calculator in order not to do unnecessary work.
template<class TypeTag>
struct GradientCalculator<TypeTag, TTag::EclBaseProblem> {
using type = EclDummyGradientCalculator<TypeTag>;
};
// Use a custom Newton-Raphson method class for ebos in order to attain more
// sophisticated update and error computation mechanisms
template<class TypeTag>
struct NewtonMethod<TypeTag, TTag::EclBaseProblem> {
using type = EclNewtonMethod<TypeTag>;
};
// The frequency of writing restart (*.ers) files. This is the number of time steps
// between writing restart files
template<class TypeTag>
struct RestartWritingInterval<TypeTag, TTag::EclBaseProblem> {
static constexpr int value = 0xffffff; // disable
};
// Drift compensation is an experimental feature, i.e., systematic errors in the
// conservation quantities are only compensated for
// as default if experimental mode is enabled.
template<class TypeTag>
struct EclEnableDriftCompensation<TypeTag, TTag::EclBaseProblem> {
2020-09-16 09:09:14 -05:00
static constexpr bool value = true;
};
// By default, we enable the debugging checks if we're compiled in debug mode
template<class TypeTag>
struct EnableDebuggingChecks<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// store temperature (but do not conserve energy, as long as EnableEnergy is false)
template<class TypeTag>
struct EnableTemperature<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// disable all extensions supported by black oil model. this should not really be
// necessary but it makes things a bit more explicit
template<class TypeTag>
struct EnablePolymer<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableSolvent<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableEnergy<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableFoam<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableExtbo<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableMICP<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// disable thermal flux boundaries by default
template<class TypeTag>
struct EnableThermalFluxBoundaries<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// By default, simulators derived from the EclBaseProblem are production simulators,
// i.e., experimental features must be explicitly enabled at compile time
template<class TypeTag>
struct EnableExperiments<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// set defaults for the time stepping parameters
template<class TypeTag>
struct EclMaxTimeStepSizeAfterWellEvent<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 3600*24*365.25;
};
template<class TypeTag>
struct EclRestartShrinkFactor<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 3;
};
template<class TypeTag>
struct EclEnableTuning<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct OutputMode<TypeTag, TTag::EclBaseProblem> {
static constexpr auto value = "all";
};
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup EclBlackOilSimulator
*
* \brief This problem simulates an input file given in the data format used by the
* commercial ECLiPSE simulator.
*/
template <class TypeTag>
class EclProblem : public GetPropType<TypeTag, Properties::BaseProblem>
, public EclGenericProblem<GetPropType<TypeTag, Properties::GridView>,
GetPropType<TypeTag, Properties::FluidSystem>,
GetPropType<TypeTag, Properties::Scalar>>
{
using BaseType = EclGenericProblem<GetPropType<TypeTag, Properties::GridView>,
GetPropType<TypeTag, Properties::FluidSystem>,
GetPropType<TypeTag, Properties::Scalar>>;
using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;
using Implementation = GetPropType<TypeTag, Properties::Problem>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Stencil = GetPropType<TypeTag, Properties::Stencil>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using GlobalEqVector = GetPropType<TypeTag, Properties::GlobalEqVector>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using Vanguard = GetPropType<TypeTag, Properties::Vanguard>;
// Grid and world dimension
enum { dim = GridView::dimension };
enum { dimWorld = GridView::dimensionworld };
// copy some indices for convenience
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
enum { numPhases = FluidSystem::numPhases };
enum { numComponents = FluidSystem::numComponents };
enum { enableExperiments = getPropValue<TypeTag, Properties::EnableExperiments>() };
enum { enableSolvent = getPropValue<TypeTag, Properties::EnableSolvent>() };
enum { enablePolymer = getPropValue<TypeTag, Properties::EnablePolymer>() };
enum { enableBrine = getPropValue<TypeTag, Properties::EnableBrine>() };
enum { enableSaltPrecipitation = getPropValue<TypeTag, Properties::EnableSaltPrecipitation>() };
enum { enablePolymerMolarWeight = getPropValue<TypeTag, Properties::EnablePolymerMW>() };
enum { enableFoam = getPropValue<TypeTag, Properties::EnableFoam>() };
enum { enableExtbo = getPropValue<TypeTag, Properties::EnableExtbo>() };
enum { enableTemperature = getPropValue<TypeTag, Properties::EnableTemperature>() };
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
2021-01-14 08:33:28 -06:00
enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
enum { enableThermalFluxBoundaries = getPropValue<TypeTag, Properties::EnableThermalFluxBoundaries>() };
enum { enableApiTracking = getPropValue<TypeTag, Properties::EnableApiTracking>() };
enum { enableMICP = getPropValue<TypeTag, Properties::EnableMICP>() };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { gasCompIdx = FluidSystem::gasCompIdx };
enum { oilCompIdx = FluidSystem::oilCompIdx };
enum { waterCompIdx = FluidSystem::waterCompIdx };
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Element = typename GridView::template Codim<0>::Entity;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using EclMaterialLawManager = typename GetProp<TypeTag, Properties::MaterialLaw>::EclMaterialLawManager;
using EclThermalLawManager = typename GetProp<TypeTag, Properties::SolidEnergyLaw>::EclThermalLawManager;
using MaterialLawParams = typename EclMaterialLawManager::MaterialLawParams;
using SolidEnergyLawParams = typename EclThermalLawManager::SolidEnergyLawParams;
using ThermalConductionLawParams = typename EclThermalLawManager::ThermalConductionLawParams;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using DofMapper = GetPropType<TypeTag, Properties::DofMapper>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using EclWellModel = GetPropType<TypeTag, Properties::EclWellModel>;
using EclAquiferModel = GetPropType<TypeTag, Properties::EclAquiferModel>;
2021-05-26 07:24:16 -05:00
using SolventModule = BlackOilSolventModule<TypeTag>;
using PolymerModule = BlackOilPolymerModule<TypeTag>;
using FoamModule = BlackOilFoamModule<TypeTag>;
using BrineModule = BlackOilBrineModule<TypeTag>;
using ExtboModule = BlackOilExtboModule<TypeTag>;
2022-08-12 07:33:15 -05:00
using MICPModule = BlackOilMICPModule<TypeTag>;
2021-05-26 07:24:16 -05:00
using InitialFluidState = typename EclEquilInitializer<TypeTag>::ScalarFluidState;
2017-12-14 08:54:31 -06:00
2021-05-26 07:24:16 -05:00
using Toolbox = MathToolbox<Evaluation>;
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
2021-05-26 07:24:16 -05:00
using EclWriterType = EclWriter<TypeTag>;
2021-05-26 07:24:16 -05:00
using TracerModel = EclTracerModel<TypeTag>;
using DirectionalMobilityPtr = Opm::Utility::CopyablePtr<DirectionalMobility<TypeTag, Evaluation>>;
public:
using EclGenericProblem<GridView,FluidSystem,Scalar>::briefDescription;
using EclGenericProblem<GridView,FluidSystem,Scalar>::helpPreamble;
using EclGenericProblem<GridView,FluidSystem,Scalar>::shouldWriteOutput;
using EclGenericProblem<GridView,FluidSystem,Scalar>::shouldWriteRestartFile;
using EclGenericProblem<GridView,FluidSystem,Scalar>::maxTimeIntegrationFailures;
using EclGenericProblem<GridView,FluidSystem,Scalar>::minTimeStepSize;
using EclGenericProblem<GridView,FluidSystem,Scalar>::rockCompressibility;
using EclGenericProblem<GridView,FluidSystem,Scalar>::rockReferencePressure;
using EclGenericProblem<GridView,FluidSystem,Scalar>::porosity;
/*!
* \copydoc FvBaseProblem::registerParameters
*/
static void registerParameters()
{
ParentType::registerParameters();
EclWriterType::registerParameters();
VtkEclTracerModule<TypeTag>::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableWriteAllSolutions,
"Write all solutions to disk instead of only the ones for the "
"report steps");
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableEclOutput,
"Write binary output which is compatible with the commercial "
"Eclipse simulator");
#ifdef HAVE_DAMARIS
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableDamarisOutput,
"Write a specific variable using Damaris in a separate core");
#endif
EWOMS_REGISTER_PARAM(TypeTag, bool, EclOutputDoublePrecision,
"Tell the output writer to use double precision. Useful for 'perfect' restarts");
EWOMS_REGISTER_PARAM(TypeTag, unsigned, RestartWritingInterval,
"The frequencies of which time steps are serialized to disk");
EWOMS_REGISTER_PARAM(TypeTag, bool, EclEnableDriftCompensation,
"Enable partial compensation of systematic mass losses via the source term of the next time step");
if constexpr (enableExperiments)
EWOMS_REGISTER_PARAM(TypeTag, bool, EclEnableAquifers,
"Enable analytic and numeric aquifer models");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, EclMaxTimeStepSizeAfterWellEvent,
"Maximum time step size after an well event");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, EclRestartShrinkFactor,
"Factor by which the time step is reduced after convergence failure");
EWOMS_REGISTER_PARAM(TypeTag, bool, EclEnableTuning,
"Honor some aspects of the TUNING keyword from the ECL deck.");
EWOMS_REGISTER_PARAM(TypeTag, std::string, OutputMode,
"Specify which messages are going to be printed. Valid values are: none, log, all (default)");
}
/*!
* \copydoc FvBaseProblem::handlePositionalParameter
*/
static int handlePositionalParameter(std::set<std::string>& seenParams,
std::string& errorMsg,
int,
const char** argv,
int paramIdx,
int)
{
using ParamsMeta = GetProp<TypeTag, Properties::ParameterMetaData>;
Dune::ParameterTree& tree = ParamsMeta::tree();
return eclPositionalParameter(tree,
seenParams,
errorMsg,
argv,
paramIdx);
}
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
fix most pedantic compiler warnings in the basic infrastructure i.e., using clang 3.8 to compile the test suite with the following flags: ``` -Weverything -Wno-documentation -Wno-documentation-unknown-command -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-undef -Wno-padded -Wno-global-constructors -Wno-exit-time-destructors -Wno-weak-vtables -Wno-float-equal ``` should not produce any warnings anymore. In my opinion the only flag which would produce beneficial warnings is -Wdocumentation. This has not been fixed in this patch because writing documentation is left for another day (or, more likely, year). note that this patch consists of a heavy dose of the OPM_UNUSED macro and plenty of static_casts (to fix signedness issues). Fixing the singedness issues were quite a nightmare and the fact that the Dune API is quite inconsistent in that regard was not exactly helpful. :/ Finally this patch includes quite a few formatting changes (e.g., all occurences of 'T &t' should be changed to `T& t`) and some fixes for minor issues which I've found during the excercise. I've made sure that all unit tests the test suite still pass successfully and I've made sure that flow_ebos still works for Norne and that it did not regress w.r.t. performance. (Note that this patch does not fix compiler warnings triggered `ebos` and `flow_ebos` but only those caused by the basic infrastructure or the unit tests.) v2: fix the warnings that occur if the dune-localfunctions module is not available. thanks to [at]atgeirr for testing. v3: fix dune 2.3 build issue
2016-11-07 08:14:07 -06:00
EclProblem(Simulator& simulator)
: ParentType(simulator)
, EclGenericProblem<GridView,FluidSystem,Scalar>(simulator.vanguard().eclState(),
simulator.vanguard().schedule(),
simulator.vanguard().gridView())
, transmissibilities_(simulator.vanguard().eclState(),
simulator.vanguard().gridView(),
simulator.vanguard().cartesianIndexMapper(),
simulator.vanguard().grid(),
simulator.vanguard().cellCentroids(),
enableEnergy,
enableDiffusion)
, thresholdPressures_(simulator)
, wellModel_(simulator)
, aquiferModel_(simulator)
, pffDofData_(simulator.gridView(), this->elementMapper())
, tracerModel_(simulator)
, actionHandler_(simulator.vanguard().eclState(),
simulator.vanguard().schedule(),
simulator.vanguard().actionState(),
simulator.vanguard().summaryState(),
wellModel_,
simulator.vanguard().grid().comm())
{
this->model().addOutputModule(new VtkEclTracerModule<TypeTag>(simulator));
// Tell the black-oil extensions to initialize their internal data structures
const auto& vanguard = simulator.vanguard();
SolventModule::initFromState(vanguard.eclState(), vanguard.schedule());
PolymerModule::initFromState(vanguard.eclState());
FoamModule::initFromState(vanguard.eclState());
BrineModule::initFromState(vanguard.eclState());
ExtboModule::initFromState(vanguard.eclState());
MICPModule::initFromState(vanguard.eclState());
// create the ECL writer
2023-01-05 04:23:46 -06:00
eclWriter_ = std::make_unique<EclWriterType>(simulator);
enableDriftCompensation_ = EWOMS_GET_PARAM(TypeTag, bool, EclEnableDriftCompensation);
enableEclOutput_ = EWOMS_GET_PARAM(TypeTag, bool, EnableEclOutput);
if constexpr (enableExperiments)
enableAquifers_ = EWOMS_GET_PARAM(TypeTag, bool, EclEnableAquifers);
else
enableAquifers_ = true;
this->enableTuning_ = EWOMS_GET_PARAM(TypeTag, bool, EclEnableTuning);
this->initialTimeStepSize_ = EWOMS_GET_PARAM(TypeTag, Scalar, InitialTimeStepSize);
this->minTimeStepSize_ = EWOMS_GET_PARAM(TypeTag, Scalar, MinTimeStepSize);
this->maxTimeStepSize_ = EWOMS_GET_PARAM(TypeTag, Scalar, MaxTimeStepSize);
this->maxTimeStepAfterWellEvent_ = EWOMS_GET_PARAM(TypeTag, Scalar, EclMaxTimeStepSizeAfterWellEvent);
this->restartShrinkFactor_ = EWOMS_GET_PARAM(TypeTag, Scalar, EclRestartShrinkFactor);
this->maxFails_ = EWOMS_GET_PARAM(TypeTag, unsigned, MaxTimeStepDivisions);
RelpermDiagnostics relpermDiagnostics;
relpermDiagnostics.diagnosis(vanguard.eclState(), vanguard.cartesianIndexMapper());
}
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
auto& simulator = this->simulator();
const auto& eclState = simulator.vanguard().eclState();
const auto& schedule = simulator.vanguard().schedule();
// Set the start time of the simulation
simulator.setStartTime(schedule.getStartTime());
simulator.setEndTime(schedule.simTime(schedule.size() - 1));
// We want the episode index to be the same as the report step index to make
// things simpler, so we have to set the episode index to -1 because it is
// incremented by endEpisode(). The size of the initial time step and
// length of the initial episode is set to zero for the same reason.
simulator.setEpisodeIndex(-1);
simulator.setEpisodeLength(0.0);
// the "NOGRAV" keyword from Frontsim or setting the EnableGravity to false
// disables gravity, else the standard value of the gravity constant at sea level
// on earth is used
this->gravity_ = 0.0;
if (EWOMS_GET_PARAM(TypeTag, bool, EnableGravity))
this->gravity_[dim - 1] = 9.80665;
if (!eclState.getInitConfig().hasGravity())
this->gravity_[dim - 1] = 0.0;
if (this->enableTuning_) {
// if support for the TUNING keyword is enabled, we get the initial time
// steping parameters from it instead of from command line parameters
2021-01-06 09:14:15 -06:00
const auto& tuning = schedule[0].tuning();
this->initialTimeStepSize_ = tuning.TSINIT;
this->maxTimeStepAfterWellEvent_ = tuning.TMAXWC;
this->maxTimeStepSize_ = tuning.TSMAXZ;
this->restartShrinkFactor_ = 1./tuning.TSFCNV;
this->minTimeStepSize_ = tuning.TSMINZ;
}
this->initFluidSystem_();
2019-10-09 08:24:23 -05:00
2017-12-19 05:42:10 -06:00
// deal with DRSDT
this->initDRSDT_(this->model().numGridDof(), this->episodeIndex());
2017-12-19 05:42:10 -06:00
this->readRockParameters_(simulator.vanguard().cellCenterDepths());
readMaterialParameters_();
readThermalParameters_();
2021-12-01 07:00:21 -06:00
// Re-ordering in case of ALUGrid
std::function<unsigned int(unsigned int)> gridToEquilGrid;
#if USE_ALUGRID
gridToEquilGrid = [&simulator](unsigned int i) {
return simulator.vanguard().gridIdxToEquilGridIdx(i);
};
#endif // USE_ALUGRID
2021-12-01 07:00:21 -06:00
transmissibilities_.finishInit(gridToEquilGrid);
const auto& initconfig = eclState.getInitConfig();
tracerModel_.init(initconfig.restartRequested());
if (initconfig.restartRequested())
readEclRestartSolution_();
else
readInitialCondition_();
tracerModel_.prepareTracerBatches();
updatePffDofData_();
2021-05-27 07:03:43 -05:00
if constexpr (getPropValue<TypeTag, Properties::EnablePolymer>()) {
const auto& vanguard = this->simulator().vanguard();
const auto& gridView = vanguard.gridView();
int numElements = gridView.size(/*codim=*/0);
this->maxPolymerAdsorption_.resize(numElements, 0.0);
}
readBoundaryConditions_();
// compute and set eq weights based on initial b values
computeAndSetEqWeights_();
if (enableDriftCompensation_) {
drift_.resize(this->model().numGridDof());
drift_ = 0.0;
}
// write the static output files (EGRID, INIT, SMSPEC, etc.)
if (enableEclOutput_) {
if (simulator.vanguard().grid().comm().size() > 1) {
if (simulator.vanguard().grid().comm().rank() == 0)
eclWriter_->setTransmissibilities(&simulator.vanguard().globalTransmissibility());
} else
eclWriter_->setTransmissibilities(&simulator.problem().eclTransmissibilities());
2021-12-01 07:00:21 -06:00
// Re-ordering in case of ALUGrid
std::function<unsigned int(unsigned int)> equilGridToGrid;
#if USE_ALUGRID
equilGridToGrid = [&simulator](unsigned int i) {
return simulator.vanguard().gridEquilIdxToGridIdx(i);
};
#endif // USE_ALUGRID
2021-12-01 07:00:21 -06:00
eclWriter_->writeInit(equilGridToGrid);
}
simulator.vanguard().releaseGlobalTransmissibilities();
// after finishing the initialization and writing the initial solution, we move
// to the first "real" episode/report step
// for restart the episode index and start is already set
if (!initconfig.restartRequested()) {
simulator.startNextEpisode(schedule.seconds(0));
simulator.setEpisodeIndex(0);
}
}
void prefetch(const Element& elem) const
{ pffDofData_.prefetch(elem); }
/*!
* \brief This method restores the complete state of the problem and its sub-objects
* from disk.
*
* The serialization format used by this method is ad-hoc. It is the inverse of the
* serialize() method.
*
* \tparam Restarter The deserializer type
*
* \param res The deserializer object
*/
template <class Restarter>
fix most pedantic compiler warnings in the basic infrastructure i.e., using clang 3.8 to compile the test suite with the following flags: ``` -Weverything -Wno-documentation -Wno-documentation-unknown-command -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-undef -Wno-padded -Wno-global-constructors -Wno-exit-time-destructors -Wno-weak-vtables -Wno-float-equal ``` should not produce any warnings anymore. In my opinion the only flag which would produce beneficial warnings is -Wdocumentation. This has not been fixed in this patch because writing documentation is left for another day (or, more likely, year). note that this patch consists of a heavy dose of the OPM_UNUSED macro and plenty of static_casts (to fix signedness issues). Fixing the singedness issues were quite a nightmare and the fact that the Dune API is quite inconsistent in that regard was not exactly helpful. :/ Finally this patch includes quite a few formatting changes (e.g., all occurences of 'T &t' should be changed to `T& t`) and some fixes for minor issues which I've found during the excercise. I've made sure that all unit tests the test suite still pass successfully and I've made sure that flow_ebos still works for Norne and that it did not regress w.r.t. performance. (Note that this patch does not fix compiler warnings triggered `ebos` and `flow_ebos` but only those caused by the basic infrastructure or the unit tests.) v2: fix the warnings that occur if the dune-localfunctions module is not available. thanks to [at]atgeirr for testing. v3: fix dune 2.3 build issue
2016-11-07 08:14:07 -06:00
void deserialize(Restarter& res)
{
// reload the current episode/report step from the deck
beginEpisode();
// deserialize the wells
wellModel_.deserialize(res);
if (enableAquifers_)
// deserialize the aquifer
aquiferModel_.deserialize(res);
}
/*!
* \brief This method writes the complete state of the problem and its subobjects to
* disk.
*
* The file format used here is ad-hoc.
*/
template <class Restarter>
fix most pedantic compiler warnings in the basic infrastructure i.e., using clang 3.8 to compile the test suite with the following flags: ``` -Weverything -Wno-documentation -Wno-documentation-unknown-command -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-undef -Wno-padded -Wno-global-constructors -Wno-exit-time-destructors -Wno-weak-vtables -Wno-float-equal ``` should not produce any warnings anymore. In my opinion the only flag which would produce beneficial warnings is -Wdocumentation. This has not been fixed in this patch because writing documentation is left for another day (or, more likely, year). note that this patch consists of a heavy dose of the OPM_UNUSED macro and plenty of static_casts (to fix signedness issues). Fixing the singedness issues were quite a nightmare and the fact that the Dune API is quite inconsistent in that regard was not exactly helpful. :/ Finally this patch includes quite a few formatting changes (e.g., all occurences of 'T &t' should be changed to `T& t`) and some fixes for minor issues which I've found during the excercise. I've made sure that all unit tests the test suite still pass successfully and I've made sure that flow_ebos still works for Norne and that it did not regress w.r.t. performance. (Note that this patch does not fix compiler warnings triggered `ebos` and `flow_ebos` but only those caused by the basic infrastructure or the unit tests.) v2: fix the warnings that occur if the dune-localfunctions module is not available. thanks to [at]atgeirr for testing. v3: fix dune 2.3 build issue
2016-11-07 08:14:07 -06:00
void serialize(Restarter& res)
{
wellModel_.serialize(res);
if (enableAquifers_)
aquiferModel_.serialize(res);
}
int episodeIndex() const
{
return std::max(this->simulator().episodeIndex(), 0);
}
/*!
* \brief Called by the simulator before an episode begins.
*/
void beginEpisode()
{
// Proceed to the next report step
auto& simulator = this->simulator();
int episodeIdx = simulator.episodeIndex();
auto& eclState = simulator.vanguard().eclState();
const auto& schedule = simulator.vanguard().schedule();
2021-01-10 14:46:45 -06:00
const auto& events = schedule[episodeIdx].events();
if (episodeIdx >= 0 && events.hasEvent(ScheduleEvents::GEO_MODIFIER)) {
// bring the contents of the keywords to the current state of the SCHEDULE
// section.
//
// TODO (?): make grid topology changes possible (depending on what exactly
// has changed, the grid may need be re-created which has some serious
// implications on e.g., the solution of the simulation.)
2021-01-10 14:46:45 -06:00
const auto& miniDeck = schedule[episodeIdx].geo_keywords();
const auto& cc = simulator.vanguard().grid().comm();
eclState.apply_schedule_keywords( miniDeck );
eclBroadcast(cc, eclState.getTransMult() );
2021-12-01 07:00:21 -06:00
// Re-ordering in case of ALUGrid
std::function<unsigned int(unsigned int)> equilGridToGrid;
#if USE_ALUGRID
equilGridToGrid = [&simulator](unsigned int i) {
return simulator.vanguard().gridEquilIdxToGridIdx(i);
};
#endif // USE_ALUGRID
2021-12-01 07:00:21 -06:00
// re-compute all quantities which may possibly be affected.
2021-12-01 07:00:21 -06:00
transmissibilities_.update(true, equilGridToGrid);
this->referencePorosity_[1] = this->referencePorosity_[0];
updateReferencePorosity_();
updatePffDofData_();
this->model().linearizer().updateDiscretizationParameters();
}
bool tuningEvent = this->beginEpisode_(enableExperiments, this->episodeIndex());
// set up the wells for the next episode.
wellModel_.beginEpisode();
// set up the aquifers for the next episode.
if (enableAquifers_)
// set up the aquifers for the next episode.
aquiferModel_.beginEpisode();
// set the size of the initial time step of the episode
Scalar dt = limitNextTimeStepSize_(simulator.episodeLength());
if (episodeIdx == 0 || tuningEvent)
// allow the size of the initial time step to be set via an external parameter
// if TUNING is enabled, also limit the time step size after a tuning event to TSINIT
dt = std::min(dt, this->initialTimeStepSize_);
simulator.setTimeStepSize(dt);
// Evaluate UDQ assign statements to make sure the settings are
// available as UDA controls for the current report step.
actionHandler_.evalUDQAssignments(episodeIdx, simulator.vanguard().udqState());
}
/*!
* \brief Called by the simulator before each time integration.
*/
void beginTimeStep()
{
int episodeIdx = this->episodeIndex();
this->beginTimeStep_(enableExperiments,
episodeIdx,
this->simulator().timeStepIndex(),
this->simulator().startTime(),
this->simulator().time(),
this->simulator().timeStepSize(),
this->simulator().endTime());
2019-10-08 08:49:48 -05:00
// update maximum water saturation and minimum pressure
// used when ROCKCOMP is activated
const bool invalidateFromMaxWaterSat = updateMaxWaterSaturation_();
const bool invalidateFromMinPressure = updateMinPressure_();
// update hysteresis and max oil saturation used in vappars
const bool invalidateFromHyst = updateHysteresis_();
const bool invalidateFromMaxOilSat = updateMaxOilSaturation_();
// the derivatives may have change
bool invalidateIntensiveQuantities = invalidateFromMaxWaterSat || invalidateFromMinPressure || invalidateFromHyst || invalidateFromMaxOilSat;
if (invalidateIntensiveQuantities)
this->model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0);
2017-12-19 05:42:10 -06:00
2021-05-27 07:03:43 -05:00
if constexpr (getPropValue<TypeTag, Properties::EnablePolymer>())
updateMaxPolymerAdsorption_();
wellModel_.beginTimeStep();
if (enableAquifers_)
aquiferModel_.beginTimeStep();
tracerModel_.beginTimeStep();
}
/*!
* \brief Called by the simulator before each Newton-Raphson iteration.
*/
void beginIteration()
{
wellModel_.beginIteration();
if (enableAquifers_)
aquiferModel_.beginIteration();
}
/*!
* \brief Called by the simulator after each Newton-Raphson iteration.
*/
void endIteration()
{
wellModel_.endIteration();
if (enableAquifers_)
aquiferModel_.endIteration();
}
/*!
* \brief Called by the simulator after each time integration.
*/
void endTimeStep()
{
#ifndef NDEBUG
2021-05-27 07:03:43 -05:00
if constexpr (getPropValue<TypeTag, Properties::EnableDebuggingChecks>()) {
// in debug mode, we don't care about performance, so we check if the model does
// the right thing (i.e., the mass change inside the whole reservoir must be
// equivalent to the fluxes over the grid's boundaries plus the source rates
// specified by the problem)
int rank = this->simulator().gridView().comm().rank();
if (rank == 0)
std::cout << "checking conservativeness of solution\n";
this->model().checkConservativeness(/*tolerance=*/-1, /*verbose=*/true);
if (rank == 0)
std::cout << "solution is sufficiently conservative\n";
}
#endif // NDEBUG
auto& simulator = this->simulator();
wellModel_.endTimeStep();
if (enableAquifers_)
aquiferModel_.endTimeStep();
tracerModel_.endTimeStep();
// deal with DRSDT and DRVDT
2017-12-19 05:42:10 -06:00
updateCompositionChangeLimits_();
if (enableDriftCompensation_) {
const auto& residual = this->model().linearizer().residual();
for (unsigned globalDofIdx = 0; globalDofIdx < residual.size(); globalDofIdx ++) {
drift_[globalDofIdx] = residual[globalDofIdx];
drift_[globalDofIdx] *= simulator.timeStepSize();
2021-05-27 07:03:43 -05:00
if constexpr (getPropValue<TypeTag, Properties::UseVolumetricResidual>())
drift_[globalDofIdx] *= this->model().dofTotalVolume(globalDofIdx);
}
}
bool isSubStep = !EWOMS_GET_PARAM(TypeTag, bool, EnableWriteAllSolutions) && !this->simulator().episodeWillBeOver();
eclWriter_->evalSummaryState(isSubStep);
int episodeIdx = this->episodeIndex();
2021-12-01 07:00:21 -06:00
// Re-ordering in case of Alugrid
std::function<unsigned int(unsigned int)> gridToEquilGrid;
#if USE_ALUGRID
gridToEquilGrid = [&simulator](unsigned int i) {
return simulator.vanguard().gridIdxToEquilGridIdx(i);
};
#endif // USE_ALUGRID
2021-12-01 07:00:21 -06:00
std::function<void(bool)> transUp =
[this,gridToEquilGrid](bool global) {
this->transmissibilities_.update(global,gridToEquilGrid);
};
actionHandler_.applyActions(episodeIdx,
simulator.time() + simulator.timeStepSize(),
transUp);
// deal with "clogging" for the MICP model
if constexpr (enableMICP){
auto& model = this->model();
const auto& residual = this->model().linearizer().residual();
for (unsigned globalDofIdx = 0; globalDofIdx < residual.size(); globalDofIdx ++) {
auto& phi = this->referencePorosity_[/*timeIdx=*/1][globalDofIdx];
MICPModule::checkCloggingMICP(model, phi, globalDofIdx);
}
}
}
/*!
* \brief Called by the simulator after the end of an episode.
*/
void endEpisode()
{
auto& simulator = this->simulator();
2019-06-19 12:15:43 -05:00
auto& schedule = simulator.vanguard().schedule();
2017-10-27 02:07:23 -05:00
wellModel_.endEpisode();
if (enableAquifers_)
aquiferModel_.endEpisode();
int episodeIdx = this->episodeIndex();
// check if we're finished ...
if (episodeIdx + 1 >= static_cast<int>(schedule.size() - 1)) {
simulator.setFinished(true);
return;
}
// .. if we're not yet done, start the next episode (report step)
simulator.startNextEpisode(schedule.stepLength(episodeIdx + 1));
}
/*!
* \brief Write the requested quantities of the current solution into the output
* files.
*/
void writeOutput(bool verbose = true)
{
// use the generic code to prepare the output fields and to
// write the desired VTK files.
ParentType::writeOutput(verbose);
bool isSubStep = !EWOMS_GET_PARAM(TypeTag, bool, EnableWriteAllSolutions) && !this->simulator().episodeWillBeOver();
if (enableEclOutput_)
eclWriter_->writeOutput(isSubStep);
}
void finalizeOutput() {
// this will write all pending output to disk
// to avoid corruption of output files
eclWriter_.reset();
}
2019-06-19 12:15:43 -05:00
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
fix most pedantic compiler warnings in the basic infrastructure i.e., using clang 3.8 to compile the test suite with the following flags: ``` -Weverything -Wno-documentation -Wno-documentation-unknown-command -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-undef -Wno-padded -Wno-global-constructors -Wno-exit-time-destructors -Wno-weak-vtables -Wno-float-equal ``` should not produce any warnings anymore. In my opinion the only flag which would produce beneficial warnings is -Wdocumentation. This has not been fixed in this patch because writing documentation is left for another day (or, more likely, year). note that this patch consists of a heavy dose of the OPM_UNUSED macro and plenty of static_casts (to fix signedness issues). Fixing the singedness issues were quite a nightmare and the fact that the Dune API is quite inconsistent in that regard was not exactly helpful. :/ Finally this patch includes quite a few formatting changes (e.g., all occurences of 'T &t' should be changed to `T& t`) and some fixes for minor issues which I've found during the excercise. I've made sure that all unit tests the test suite still pass successfully and I've made sure that flow_ebos still works for Norne and that it did not regress w.r.t. performance. (Note that this patch does not fix compiler warnings triggered `ebos` and `flow_ebos` but only those caused by the basic infrastructure or the unit tests.) v2: fix the warnings that occur if the dune-localfunctions module is not available. thanks to [at]atgeirr for testing. v3: fix dune 2.3 build issue
2016-11-07 08:14:07 -06:00
const DimMatrix& intrinsicPermeability(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return transmissibilities_.permeability(globalSpaceIdx);
}
/*!
* \brief This method returns the intrinsic permeability tensor
* given a global element index.
*
* Its main (only?) usage is the ECL transmissibility calculation code...
*/
fix most pedantic compiler warnings in the basic infrastructure i.e., using clang 3.8 to compile the test suite with the following flags: ``` -Weverything -Wno-documentation -Wno-documentation-unknown-command -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-undef -Wno-padded -Wno-global-constructors -Wno-exit-time-destructors -Wno-weak-vtables -Wno-float-equal ``` should not produce any warnings anymore. In my opinion the only flag which would produce beneficial warnings is -Wdocumentation. This has not been fixed in this patch because writing documentation is left for another day (or, more likely, year). note that this patch consists of a heavy dose of the OPM_UNUSED macro and plenty of static_casts (to fix signedness issues). Fixing the singedness issues were quite a nightmare and the fact that the Dune API is quite inconsistent in that regard was not exactly helpful. :/ Finally this patch includes quite a few formatting changes (e.g., all occurences of 'T &t' should be changed to `T& t`) and some fixes for minor issues which I've found during the excercise. I've made sure that all unit tests the test suite still pass successfully and I've made sure that flow_ebos still works for Norne and that it did not regress w.r.t. performance. (Note that this patch does not fix compiler warnings triggered `ebos` and `flow_ebos` but only those caused by the basic infrastructure or the unit tests.) v2: fix the warnings that occur if the dune-localfunctions module is not available. thanks to [at]atgeirr for testing. v3: fix dune 2.3 build issue
2016-11-07 08:14:07 -06:00
const DimMatrix& intrinsicPermeability(unsigned globalElemIdx) const
{ return transmissibilities_.permeability(globalElemIdx); }
/*!
* \copydoc EclTransmissiblity::transmissibility
*/
template <class Context>
fix most pedantic compiler warnings in the basic infrastructure i.e., using clang 3.8 to compile the test suite with the following flags: ``` -Weverything -Wno-documentation -Wno-documentation-unknown-command -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-undef -Wno-padded -Wno-global-constructors -Wno-exit-time-destructors -Wno-weak-vtables -Wno-float-equal ``` should not produce any warnings anymore. In my opinion the only flag which would produce beneficial warnings is -Wdocumentation. This has not been fixed in this patch because writing documentation is left for another day (or, more likely, year). note that this patch consists of a heavy dose of the OPM_UNUSED macro and plenty of static_casts (to fix signedness issues). Fixing the singedness issues were quite a nightmare and the fact that the Dune API is quite inconsistent in that regard was not exactly helpful. :/ Finally this patch includes quite a few formatting changes (e.g., all occurences of 'T &t' should be changed to `T& t`) and some fixes for minor issues which I've found during the excercise. I've made sure that all unit tests the test suite still pass successfully and I've made sure that flow_ebos still works for Norne and that it did not regress w.r.t. performance. (Note that this patch does not fix compiler warnings triggered `ebos` and `flow_ebos` but only those caused by the basic infrastructure or the unit tests.) v2: fix the warnings that occur if the dune-localfunctions module is not available. thanks to [at]atgeirr for testing. v3: fix dune 2.3 build issue
2016-11-07 08:14:07 -06:00
Scalar transmissibility(const Context& context,
[[maybe_unused]] unsigned fromDofLocalIdx,
unsigned toDofLocalIdx) const
{
assert(fromDofLocalIdx == 0);
return pffDofData_.get(context.element(), toDofLocalIdx).transmissibility;
}
/*!
* \brief Direct access to the transmissibility between two elements.
*/
Scalar transmissibility(unsigned globalCenterElemIdx, unsigned globalElemIdx) const
{
return transmissibilities_.transmissibility(globalCenterElemIdx, globalElemIdx);
}
2021-01-14 08:33:28 -06:00
/*!
* \copydoc EclTransmissiblity::diffusivity
*/
template <class Context>
Scalar diffusivity(const Context& context,
[[maybe_unused]] unsigned fromDofLocalIdx,
2021-01-14 08:33:28 -06:00
unsigned toDofLocalIdx) const
{
assert(fromDofLocalIdx == 0);
return *pffDofData_.get(context.element(), toDofLocalIdx).diffusivity;
}
/*!
* \copydoc EclTransmissiblity::transmissibilityBoundary
*/
template <class Context>
Scalar transmissibilityBoundary(const Context& elemCtx,
unsigned boundaryFaceIdx) const
{
unsigned elemIdx = elemCtx.globalSpaceIndex(/*dofIdx=*/0, /*timeIdx=*/0);
return transmissibilities_.transmissibilityBoundary(elemIdx, boundaryFaceIdx);
}
/*!
* \brief Direct access to a boundary transmissibility.
*/
Scalar transmissibilityBoundary(const unsigned globalSpaceIdx,
const unsigned boundaryFaceIdx) const
{
return transmissibilities_.transmissibilityBoundary(globalSpaceIdx, boundaryFaceIdx);
}
/*!
* \copydoc EclTransmissiblity::thermalHalfTransmissibility
*/
template <class Context>
Scalar thermalHalfTransmissibilityIn(const Context& context,
unsigned faceIdx,
unsigned timeIdx) const
{
const auto& face = context.stencil(timeIdx).interiorFace(faceIdx);
unsigned toDofLocalIdx = face.exteriorIndex();
return *pffDofData_.get(context.element(), toDofLocalIdx).thermalHalfTransIn;
}
/*!
* \copydoc EclTransmissiblity::thermalHalfTransmissibility
*/
template <class Context>
Scalar thermalHalfTransmissibilityOut(const Context& context,
unsigned faceIdx,
unsigned timeIdx) const
{
const auto& face = context.stencil(timeIdx).interiorFace(faceIdx);
unsigned toDofLocalIdx = face.exteriorIndex();
return *pffDofData_.get(context.element(), toDofLocalIdx).thermalHalfTransOut;
}
/*!
* \copydoc EclTransmissiblity::thermalHalfTransmissibility
*/
template <class Context>
Scalar thermalHalfTransmissibilityBoundary(const Context& elemCtx,
unsigned boundaryFaceIdx) const
{
unsigned elemIdx = elemCtx.globalSpaceIndex(/*dofIdx=*/0, /*timeIdx=*/0);
return transmissibilities_.thermalHalfTransBoundary(elemIdx, boundaryFaceIdx);
}
/*!
* \brief Return a reference to the object that handles the "raw" transmissibilities.
*/
const typename Vanguard::TransmissibilityType& eclTransmissibilities() const
{ return transmissibilities_; }
/*!
* \copydoc BlackOilBaseProblem::thresholdPressure
*/
Scalar thresholdPressure(unsigned elem1Idx, unsigned elem2Idx) const
{ return thresholdPressures_.thresholdPressure(elem1Idx, elem2Idx); }
const EclThresholdPressure<TypeTag>& thresholdPressure() const
{ return thresholdPressures_; }
EclThresholdPressure<TypeTag>& thresholdPressure()
{ return thresholdPressures_; }
2018-04-28 06:31:27 -05:00
const EclTracerModel<TypeTag>& tracerModel() const
{ return tracerModel_; }
EclTracerModel<TypeTag>& tracerModel()
{ return tracerModel_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*
* For the EclProblem, this method is identical to referencePorosity(). The intensive
* quantities object may apply various multipliers (e.g. ones which model rock
* compressibility and water induced rock compaction) to it which depend on the
* current physical conditions.
*/
template <class Context>
fix most pedantic compiler warnings in the basic infrastructure i.e., using clang 3.8 to compile the test suite with the following flags: ``` -Weverything -Wno-documentation -Wno-documentation-unknown-command -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-undef -Wno-padded -Wno-global-constructors -Wno-exit-time-destructors -Wno-weak-vtables -Wno-float-equal ``` should not produce any warnings anymore. In my opinion the only flag which would produce beneficial warnings is -Wdocumentation. This has not been fixed in this patch because writing documentation is left for another day (or, more likely, year). note that this patch consists of a heavy dose of the OPM_UNUSED macro and plenty of static_casts (to fix signedness issues). Fixing the singedness issues were quite a nightmare and the fact that the Dune API is quite inconsistent in that regard was not exactly helpful. :/ Finally this patch includes quite a few formatting changes (e.g., all occurences of 'T &t' should be changed to `T& t`) and some fixes for minor issues which I've found during the excercise. I've made sure that all unit tests the test suite still pass successfully and I've made sure that flow_ebos still works for Norne and that it did not regress w.r.t. performance. (Note that this patch does not fix compiler warnings triggered `ebos` and `flow_ebos` but only those caused by the basic infrastructure or the unit tests.) v2: fix the warnings that occur if the dune-localfunctions module is not available. thanks to [at]atgeirr for testing. v3: fix dune 2.3 build issue
2016-11-07 08:14:07 -06:00
Scalar porosity(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return this->porosity(globalSpaceIdx, timeIdx);
}
/*!
* \brief Returns the depth of an degree of freedom [m]
*
* For ECL problems this is defined as the average of the depth of an element and is
* thus slightly different from the depth of an element's centroid.
*/
template <class Context>
fix most pedantic compiler warnings in the basic infrastructure i.e., using clang 3.8 to compile the test suite with the following flags: ``` -Weverything -Wno-documentation -Wno-documentation-unknown-command -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-undef -Wno-padded -Wno-global-constructors -Wno-exit-time-destructors -Wno-weak-vtables -Wno-float-equal ``` should not produce any warnings anymore. In my opinion the only flag which would produce beneficial warnings is -Wdocumentation. This has not been fixed in this patch because writing documentation is left for another day (or, more likely, year). note that this patch consists of a heavy dose of the OPM_UNUSED macro and plenty of static_casts (to fix signedness issues). Fixing the singedness issues were quite a nightmare and the fact that the Dune API is quite inconsistent in that regard was not exactly helpful. :/ Finally this patch includes quite a few formatting changes (e.g., all occurences of 'T &t' should be changed to `T& t`) and some fixes for minor issues which I've found during the excercise. I've made sure that all unit tests the test suite still pass successfully and I've made sure that flow_ebos still works for Norne and that it did not regress w.r.t. performance. (Note that this patch does not fix compiler warnings triggered `ebos` and `flow_ebos` but only those caused by the basic infrastructure or the unit tests.) v2: fix the warnings that occur if the dune-localfunctions module is not available. thanks to [at]atgeirr for testing. v3: fix dune 2.3 build issue
2016-11-07 08:14:07 -06:00
Scalar dofCenterDepth(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return this->dofCenterDepth(globalSpaceIdx);
2021-12-01 07:00:21 -06:00
}
/*!
* \brief Direct indexed acces to the depth of an degree of freedom [m]
2021-12-01 07:00:21 -06:00
*
* For ECL problems this is defined as the average of the depth of an element and is
* thus slightly different from the depth of an element's centroid.
*/
Scalar dofCenterDepth(unsigned globalSpaceIdx) const
{
return this->simulator().vanguard().cellCenterDepth(globalSpaceIdx);
}
/*!
* \copydoc BlackoilProblem::rockCompressibility
*/
template <class Context>
fix most pedantic compiler warnings in the basic infrastructure i.e., using clang 3.8 to compile the test suite with the following flags: ``` -Weverything -Wno-documentation -Wno-documentation-unknown-command -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-undef -Wno-padded -Wno-global-constructors -Wno-exit-time-destructors -Wno-weak-vtables -Wno-float-equal ``` should not produce any warnings anymore. In my opinion the only flag which would produce beneficial warnings is -Wdocumentation. This has not been fixed in this patch because writing documentation is left for another day (or, more likely, year). note that this patch consists of a heavy dose of the OPM_UNUSED macro and plenty of static_casts (to fix signedness issues). Fixing the singedness issues were quite a nightmare and the fact that the Dune API is quite inconsistent in that regard was not exactly helpful. :/ Finally this patch includes quite a few formatting changes (e.g., all occurences of 'T &t' should be changed to `T& t`) and some fixes for minor issues which I've found during the excercise. I've made sure that all unit tests the test suite still pass successfully and I've made sure that flow_ebos still works for Norne and that it did not regress w.r.t. performance. (Note that this patch does not fix compiler warnings triggered `ebos` and `flow_ebos` but only those caused by the basic infrastructure or the unit tests.) v2: fix the warnings that occur if the dune-localfunctions module is not available. thanks to [at]atgeirr for testing. v3: fix dune 2.3 build issue
2016-11-07 08:14:07 -06:00
Scalar rockCompressibility(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return this->rockCompressibility(globalSpaceIdx);
}
/*!
* \copydoc BlackoilProblem::rockReferencePressure
*/
template <class Context>
fix most pedantic compiler warnings in the basic infrastructure i.e., using clang 3.8 to compile the test suite with the following flags: ``` -Weverything -Wno-documentation -Wno-documentation-unknown-command -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-undef -Wno-padded -Wno-global-constructors -Wno-exit-time-destructors -Wno-weak-vtables -Wno-float-equal ``` should not produce any warnings anymore. In my opinion the only flag which would produce beneficial warnings is -Wdocumentation. This has not been fixed in this patch because writing documentation is left for another day (or, more likely, year). note that this patch consists of a heavy dose of the OPM_UNUSED macro and plenty of static_casts (to fix signedness issues). Fixing the singedness issues were quite a nightmare and the fact that the Dune API is quite inconsistent in that regard was not exactly helpful. :/ Finally this patch includes quite a few formatting changes (e.g., all occurences of 'T &t' should be changed to `T& t`) and some fixes for minor issues which I've found during the excercise. I've made sure that all unit tests the test suite still pass successfully and I've made sure that flow_ebos still works for Norne and that it did not regress w.r.t. performance. (Note that this patch does not fix compiler warnings triggered `ebos` and `flow_ebos` but only those caused by the basic infrastructure or the unit tests.) v2: fix the warnings that occur if the dune-localfunctions module is not available. thanks to [at]atgeirr for testing. v3: fix dune 2.3 build issue
2016-11-07 08:14:07 -06:00
Scalar rockReferencePressure(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return this->rockReferencePressure(globalSpaceIdx);
}
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
fix most pedantic compiler warnings in the basic infrastructure i.e., using clang 3.8 to compile the test suite with the following flags: ``` -Weverything -Wno-documentation -Wno-documentation-unknown-command -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-undef -Wno-padded -Wno-global-constructors -Wno-exit-time-destructors -Wno-weak-vtables -Wno-float-equal ``` should not produce any warnings anymore. In my opinion the only flag which would produce beneficial warnings is -Wdocumentation. This has not been fixed in this patch because writing documentation is left for another day (or, more likely, year). note that this patch consists of a heavy dose of the OPM_UNUSED macro and plenty of static_casts (to fix signedness issues). Fixing the singedness issues were quite a nightmare and the fact that the Dune API is quite inconsistent in that regard was not exactly helpful. :/ Finally this patch includes quite a few formatting changes (e.g., all occurences of 'T &t' should be changed to `T& t`) and some fixes for minor issues which I've found during the excercise. I've made sure that all unit tests the test suite still pass successfully and I've made sure that flow_ebos still works for Norne and that it did not regress w.r.t. performance. (Note that this patch does not fix compiler warnings triggered `ebos` and `flow_ebos` but only those caused by the basic infrastructure or the unit tests.) v2: fix the warnings that occur if the dune-localfunctions module is not available. thanks to [at]atgeirr for testing. v3: fix dune 2.3 build issue
2016-11-07 08:14:07 -06:00
const MaterialLawParams& materialLawParams(const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return this->materialLawParams(globalSpaceIdx);
}
const MaterialLawParams& materialLawParams(unsigned globalDofIdx) const
{
return materialLawManager_->materialLawParams(globalDofIdx);
}
const MaterialLawParams& materialLawParams(unsigned globalDofIdx, FaceDir::DirEnum facedir) const
{
return materialLawManager_->materialLawParams(globalDofIdx, facedir);
}
/*!
* \brief Return the parameters for the energy storage law of the rock
*/
template <class Context>
const SolidEnergyLawParams&
solidEnergyLawParams(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return thermalLawManager_->solidEnergyLawParams(globalSpaceIdx);
}
/*!
* \copydoc FvBaseMultiPhaseProblem::thermalConductionParams
*/
template <class Context>
const ThermalConductionLawParams &
thermalConductionLawParams(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return thermalLawManager_->thermalConductionLawParams(globalSpaceIdx);
}
/*!
* \brief Returns the ECL material law manager
*
* Note that this method is *not* part of the generic eWoms problem API because it
* would force all problens use the ECL material laws.
*/
std::shared_ptr<const EclMaterialLawManager> materialLawManager() const
{ return materialLawManager_; }
template <class FluidState>
void updateRelperms(
std::array<Evaluation,numPhases> &mobility,
DirectionalMobilityPtr &dirMob,
FluidState &fluidState,
unsigned globalSpaceIdx) const
{
{
// calculate relative permeabilities. note that we store the result into the
// mobility_ class attribute. the division by the phase viscosity happens later.
const auto& materialParams = materialLawParams(globalSpaceIdx);
MaterialLaw::relativePermeabilities(mobility, materialParams, fluidState);
Valgrind::CheckDefined(mobility);
}
if (materialLawManager_->hasDirectionalRelperms()
|| materialLawManager_->hasDirectionalImbnum())
{
using Dir = FaceDir::DirEnum;
constexpr int ndim = 3;
dirMob = std::make_unique<DirectionalMobility<TypeTag, Evaluation>>();
Dir facedirs[ndim] = {Dir::XPlus, Dir::YPlus, Dir::ZPlus};
for (int i = 0; i<ndim; i++) {
const auto& materialParams = materialLawParams(globalSpaceIdx, facedirs[i]);
auto& mob_array = dirMob->getArray(i);
MaterialLaw::relativePermeabilities(mob_array, materialParams, fluidState);
}
}
}
/*!
* \copydoc materialLawManager()
*/
std::shared_ptr<EclMaterialLawManager> materialLawManager()
{ return materialLawManager_; }
using EclGenericProblem<GridView,FluidSystem,Scalar>::pvtRegionIndex;
/*!
* \brief Returns the index of the relevant region for thermodynmic properties
*/
template <class Context>
fix most pedantic compiler warnings in the basic infrastructure i.e., using clang 3.8 to compile the test suite with the following flags: ``` -Weverything -Wno-documentation -Wno-documentation-unknown-command -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-undef -Wno-padded -Wno-global-constructors -Wno-exit-time-destructors -Wno-weak-vtables -Wno-float-equal ``` should not produce any warnings anymore. In my opinion the only flag which would produce beneficial warnings is -Wdocumentation. This has not been fixed in this patch because writing documentation is left for another day (or, more likely, year). note that this patch consists of a heavy dose of the OPM_UNUSED macro and plenty of static_casts (to fix signedness issues). Fixing the singedness issues were quite a nightmare and the fact that the Dune API is quite inconsistent in that regard was not exactly helpful. :/ Finally this patch includes quite a few formatting changes (e.g., all occurences of 'T &t' should be changed to `T& t`) and some fixes for minor issues which I've found during the excercise. I've made sure that all unit tests the test suite still pass successfully and I've made sure that flow_ebos still works for Norne and that it did not regress w.r.t. performance. (Note that this patch does not fix compiler warnings triggered `ebos` and `flow_ebos` but only those caused by the basic infrastructure or the unit tests.) v2: fix the warnings that occur if the dune-localfunctions module is not available. thanks to [at]atgeirr for testing. v3: fix dune 2.3 build issue
2016-11-07 08:14:07 -06:00
unsigned pvtRegionIndex(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return pvtRegionIndex(context.globalSpaceIndex(spaceIdx, timeIdx)); }
using EclGenericProblem<GridView,FluidSystem,Scalar>::satnumRegionIndex;
/*!
* \brief Returns the index of the relevant region for thermodynmic properties
*/
template <class Context>
unsigned satnumRegionIndex(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return this->satnumRegionIndex(context.globalSpaceIndex(spaceIdx, timeIdx)); }
using EclGenericProblem<GridView,FluidSystem,Scalar>::miscnumRegionIndex;
/*!
* \brief Returns the index of the relevant region for thermodynmic properties
*/
template <class Context>
unsigned miscnumRegionIndex(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return this->miscnumRegionIndex(context.globalSpaceIndex(spaceIdx, timeIdx)); }
using EclGenericProblem<GridView,FluidSystem,Scalar>::plmixnumRegionIndex;
/*!
* \brief Returns the index of the relevant region for thermodynmic properties
*/
template <class Context>
unsigned plmixnumRegionIndex(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return this->plmixnumRegionIndex(context.globalSpaceIndex(spaceIdx, timeIdx)); }
using EclGenericProblem<GridView,FluidSystem,Scalar>::maxPolymerAdsorption;
/*!
* \brief Returns the max polymer adsorption value
*/
template <class Context>
Scalar maxPolymerAdsorption(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return this->maxPolymerAdsorption(context.globalSpaceIndex(spaceIdx, timeIdx)); }
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{ return this->simulator().vanguard().caseName(); }
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
fix most pedantic compiler warnings in the basic infrastructure i.e., using clang 3.8 to compile the test suite with the following flags: ``` -Weverything -Wno-documentation -Wno-documentation-unknown-command -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-undef -Wno-padded -Wno-global-constructors -Wno-exit-time-destructors -Wno-weak-vtables -Wno-float-equal ``` should not produce any warnings anymore. In my opinion the only flag which would produce beneficial warnings is -Wdocumentation. This has not been fixed in this patch because writing documentation is left for another day (or, more likely, year). note that this patch consists of a heavy dose of the OPM_UNUSED macro and plenty of static_casts (to fix signedness issues). Fixing the singedness issues were quite a nightmare and the fact that the Dune API is quite inconsistent in that regard was not exactly helpful. :/ Finally this patch includes quite a few formatting changes (e.g., all occurences of 'T &t' should be changed to `T& t`) and some fixes for minor issues which I've found during the excercise. I've made sure that all unit tests the test suite still pass successfully and I've made sure that flow_ebos still works for Norne and that it did not regress w.r.t. performance. (Note that this patch does not fix compiler warnings triggered `ebos` and `flow_ebos` but only those caused by the basic infrastructure or the unit tests.) v2: fix the warnings that occur if the dune-localfunctions module is not available. thanks to [at]atgeirr for testing. v3: fix dune 2.3 build issue
2016-11-07 08:14:07 -06:00
Scalar temperature(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
// use the initial temperature of the DOF if temperature is not a primary
// variable
unsigned globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return initialFluidStates_[globalDofIdx].temperature(/*phaseIdx=*/0);
}
/*!
* \copydoc FvBaseProblem::boundary
*
* ECLiPSE uses no-flow conditions for all boundaries. \todo really?
*/
template <class Context>
fix most pedantic compiler warnings in the basic infrastructure i.e., using clang 3.8 to compile the test suite with the following flags: ``` -Weverything -Wno-documentation -Wno-documentation-unknown-command -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-undef -Wno-padded -Wno-global-constructors -Wno-exit-time-destructors -Wno-weak-vtables -Wno-float-equal ``` should not produce any warnings anymore. In my opinion the only flag which would produce beneficial warnings is -Wdocumentation. This has not been fixed in this patch because writing documentation is left for another day (or, more likely, year). note that this patch consists of a heavy dose of the OPM_UNUSED macro and plenty of static_casts (to fix signedness issues). Fixing the singedness issues were quite a nightmare and the fact that the Dune API is quite inconsistent in that regard was not exactly helpful. :/ Finally this patch includes quite a few formatting changes (e.g., all occurences of 'T &t' should be changed to `T& t`) and some fixes for minor issues which I've found during the excercise. I've made sure that all unit tests the test suite still pass successfully and I've made sure that flow_ebos still works for Norne and that it did not regress w.r.t. performance. (Note that this patch does not fix compiler warnings triggered `ebos` and `flow_ebos` but only those caused by the basic infrastructure or the unit tests.) v2: fix the warnings that occur if the dune-localfunctions module is not available. thanks to [at]atgeirr for testing. v3: fix dune 2.3 build issue
2016-11-07 08:14:07 -06:00
void boundary(BoundaryRateVector& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
if (!context.intersection(spaceIdx).boundary())
2021-03-09 02:44:53 -06:00
return;
if constexpr (!enableEnergy || !enableThermalFluxBoundaries)
values.setNoFlow();
else {
// in the energy case we need to specify a non-trivial boundary condition
// because the geothermal gradient needs to be maintained. for this, we
// simply assume the initial temperature at the boundary and specify the
// thermal flow accordingly. in this context, "thermal flow" means energy
// flow due to a temerature gradient while assuming no-flow for mass
unsigned interiorDofIdx = context.interiorScvIndex(spaceIdx, timeIdx);
unsigned globalDofIdx = context.globalSpaceIndex(interiorDofIdx, timeIdx);
values.setThermalFlow(context, spaceIdx, timeIdx, initialFluidStates_[globalDofIdx]);
}
if (nonTrivialBoundaryConditions()) {
unsigned indexInInside = context.intersection(spaceIdx).indexInInside();
unsigned interiorDofIdx = context.interiorScvIndex(spaceIdx, timeIdx);
unsigned globalDofIdx = context.globalSpaceIndex(interiorDofIdx, timeIdx);
unsigned pvtRegionIdx = pvtRegionIndex(context, spaceIdx, timeIdx);
2022-10-17 04:31:46 -05:00
FaceDir::DirEnum dir = FaceDir::FromIntersectionIndex(indexInInside);
const auto& dirichlet = dirichlet_(dir)[globalDofIdx];
2022-10-17 04:31:46 -05:00
if (freebc_(dir)[globalDofIdx])
values.setFreeFlow(context, spaceIdx, timeIdx, boundaryFluidState(globalDofIdx, indexInInside));
else if (std::get<0>(dirichlet) != BCComponent::NONE)
values.setFreeFlow(context, spaceIdx, timeIdx, boundaryFluidState(globalDofIdx, indexInInside));
2022-10-17 04:31:46 -05:00
else
values.setMassRate(massratebc_(dir)[globalDofIdx], pvtRegionIdx);
}
}
/*!
* \brief Returns an element's historic maximum oil phase saturation that was
* observed during the simulation.
*
* In this context, "historic" means the the time before the current timestep began.
*
* This is a bit of a hack from the conceptional point of view, but it is required to
* match the results of the 'flow' and ECLIPSE 100 simulators.
*/
Scalar maxOilSaturation(unsigned globalDofIdx) const
{
if (!this->vapparsActive(this->episodeIndex()))
return 0.0;
return this->maxOilSaturation_[globalDofIdx];
}
/*!
* \brief Sets an element's maximum oil phase saturation observed during the
* simulation.
*
* In this context, "historic" means the the time before the current timestep began.
*
* This a hack on top of the maxOilSaturation() hack but it is currently required to
* do restart externally. i.e. from the flow code.
*/
void setMaxOilSaturation(unsigned globalDofIdx, Scalar value)
{
if (!this->vapparsActive(this->episodeIndex()))
return;
this->maxOilSaturation_[globalDofIdx] = value;
}
/*!
* \brief Returns the maximum value of the gas dissolution factor at the current time
* for a given degree of freedom.
*/
Scalar maxGasDissolutionFactor(unsigned timeIdx, unsigned globalDofIdx) const
{
int pvtRegionIdx = this->pvtRegionIndex(globalDofIdx);
int episodeIdx = this->episodeIndex();
if (!this->drsdtActive_(episodeIdx) || this->maxDRs_[pvtRegionIdx] < 0.0)
return std::numeric_limits<Scalar>::max()/2.0;
Scalar scaling = 1.0;
if (this->drsdtConvective_(episodeIdx)) {
scaling = this->convectiveDrs_[globalDofIdx];
}
// this is a bit hacky because it assumes that a time discretization with only
// two time indices is used.
if (timeIdx == 0)
return this->lastRs_[globalDofIdx] + this->maxDRs_[pvtRegionIdx] * scaling;
else
return this->lastRs_[globalDofIdx];
}
/*!
* \brief Returns the maximum value of the oil vaporization factor at the current
* time for a given degree of freedom.
*/
Scalar maxOilVaporizationFactor(unsigned timeIdx, unsigned globalDofIdx) const
{
int pvtRegionIdx = this->pvtRegionIndex(globalDofIdx);
int episodeIdx = this->episodeIndex();
if (!this->drvdtActive_(episodeIdx) || this->maxDRv_[pvtRegionIdx] < 0.0)
return std::numeric_limits<Scalar>::max()/2.0;
// this is a bit hacky because it assumes that a time discretization with only
// two time indices is used.
if (timeIdx == 0)
return this->lastRv_[globalDofIdx] + this->maxDRv_[pvtRegionIdx];
else
return this->lastRv_[globalDofIdx];
}
/*!
* \brief Return if the storage term of the first iteration is identical to the storage
* term for the solution of the previous time step.
*
* For quite technical reasons, the storage term cannot be recycled if either DRSDT
* or DRVDT are active in ebos. Nor if the porosity is changes between timesteps
* using a pore volume multiplier (i.e., poreVolumeMultiplier() != 1.0)
*/
bool recycleFirstIterationStorage() const
{
int episodeIdx = this->episodeIndex();
return !this->drsdtActive_(episodeIdx) &&
!this->drvdtActive_(episodeIdx) &&
this->rockCompPoroMultWc_.empty() &&
this->rockCompPoroMult_.empty();
}
/*!
* \copydoc FvBaseProblem::initial
*
* The reservoir problem uses a constant boundary condition for
* the whole domain.
*/
template <class Context>
fix most pedantic compiler warnings in the basic infrastructure i.e., using clang 3.8 to compile the test suite with the following flags: ``` -Weverything -Wno-documentation -Wno-documentation-unknown-command -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-undef -Wno-padded -Wno-global-constructors -Wno-exit-time-destructors -Wno-weak-vtables -Wno-float-equal ``` should not produce any warnings anymore. In my opinion the only flag which would produce beneficial warnings is -Wdocumentation. This has not been fixed in this patch because writing documentation is left for another day (or, more likely, year). note that this patch consists of a heavy dose of the OPM_UNUSED macro and plenty of static_casts (to fix signedness issues). Fixing the singedness issues were quite a nightmare and the fact that the Dune API is quite inconsistent in that regard was not exactly helpful. :/ Finally this patch includes quite a few formatting changes (e.g., all occurences of 'T &t' should be changed to `T& t`) and some fixes for minor issues which I've found during the excercise. I've made sure that all unit tests the test suite still pass successfully and I've made sure that flow_ebos still works for Norne and that it did not regress w.r.t. performance. (Note that this patch does not fix compiler warnings triggered `ebos` and `flow_ebos` but only those caused by the basic infrastructure or the unit tests.) v2: fix the warnings that occur if the dune-localfunctions module is not available. thanks to [at]atgeirr for testing. v3: fix dune 2.3 build issue
2016-11-07 08:14:07 -06:00
void initial(PrimaryVariables& values, const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
values.setPvtRegionIndex(pvtRegionIndex(context, spaceIdx, timeIdx));
values.assignNaive(initialFluidStates_[globalDofIdx]);
if constexpr (enableSolvent)
values[Indices::solventSaturationIdx] = this->solventSaturation_[globalDofIdx];
if constexpr (enablePolymer)
values[Indices::polymerConcentrationIdx] = this->polymerConcentration_[globalDofIdx];
if constexpr (enablePolymerMolarWeight)
values[Indices::polymerMoleWeightIdx]= this->polymerMoleWeight_[globalDofIdx];
if constexpr (enableBrine) {
if (enableSaltPrecipitation && values.primaryVarsMeaningBrine() == PrimaryVariables::BrineMeaning::Sp) {
values[Indices::saltConcentrationIdx] = initialFluidStates_[globalDofIdx].saltSaturation();
}
else {
values[Indices::saltConcentrationIdx] = initialFluidStates_[globalDofIdx].saltConcentration();
}
}
2020-07-02 09:04:09 -05:00
if constexpr (enableMICP){
values[Indices::microbialConcentrationIdx]= this->microbialConcentration_[globalDofIdx];
values[Indices::oxygenConcentrationIdx]= this->oxygenConcentration_[globalDofIdx];
values[Indices::ureaConcentrationIdx]= this->ureaConcentration_[globalDofIdx];
values[Indices::calciteConcentrationIdx]= this->calciteConcentration_[globalDofIdx];
values[Indices::biofilmConcentrationIdx]= this->biofilmConcentration_[globalDofIdx];
}
values.checkDefined();
}
/*!
* \copydoc FvBaseProblem::initialSolutionApplied()
*/
void initialSolutionApplied()
{
// initialize the wells. Note that this needs to be done after initializing the
// intrinsic permeabilities and the after applying the initial solution because
// the well model uses these...
wellModel_.init();
// let the object for threshold pressures initialize itself. this is done only at
// this point, because determining the threshold pressures may require to access
// the initial solution.
thresholdPressures_.finishInit();
2017-12-19 05:42:10 -06:00
updateCompositionChangeLimits_();
if (enableAquifers_)
aquiferModel_.initialSolutionApplied();
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0 everywhere.
*/
template <class Context>
fix most pedantic compiler warnings in the basic infrastructure i.e., using clang 3.8 to compile the test suite with the following flags: ``` -Weverything -Wno-documentation -Wno-documentation-unknown-command -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-undef -Wno-padded -Wno-global-constructors -Wno-exit-time-destructors -Wno-weak-vtables -Wno-float-equal ``` should not produce any warnings anymore. In my opinion the only flag which would produce beneficial warnings is -Wdocumentation. This has not been fixed in this patch because writing documentation is left for another day (or, more likely, year). note that this patch consists of a heavy dose of the OPM_UNUSED macro and plenty of static_casts (to fix signedness issues). Fixing the singedness issues were quite a nightmare and the fact that the Dune API is quite inconsistent in that regard was not exactly helpful. :/ Finally this patch includes quite a few formatting changes (e.g., all occurences of 'T &t' should be changed to `T& t`) and some fixes for minor issues which I've found during the excercise. I've made sure that all unit tests the test suite still pass successfully and I've made sure that flow_ebos still works for Norne and that it did not regress w.r.t. performance. (Note that this patch does not fix compiler warnings triggered `ebos` and `flow_ebos` but only those caused by the basic infrastructure or the unit tests.) v2: fix the warnings that occur if the dune-localfunctions module is not available. thanks to [at]atgeirr for testing. v3: fix dune 2.3 build issue
2016-11-07 08:14:07 -06:00
void source(RateVector& rate,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const unsigned globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
source(rate, globalDofIdx, timeIdx);
}
void source(RateVector& rate,
unsigned globalDofIdx,
unsigned timeIdx) const
{
rate = 0.0;
2015-05-21 09:18:45 -05:00
wellModel_.computeTotalRatesForDof(rate, globalDofIdx);
// convert the source term from the total mass rate of the
// cell to the one per unit of volume as used by the model.
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx) {
rate[eqIdx] /= this->model().dofTotalVolume(globalDofIdx);
Valgrind::CheckDefined(rate[eqIdx]);
assert(isfinite(rate[eqIdx]));
}
if (enableAquifers_)
aquiferModel_.addToSource(rate, globalDofIdx, timeIdx);
// if requested, compensate systematic mass loss for cells which were "well
// behaved" in the last time step
// Note that we don't allow for drift compensation if there are no active wells.
const bool compensateDrift = wellModel_.wellsActive();
if (enableDriftCompensation_ && compensateDrift) {
const auto& simulator = this->simulator();
const auto& model = this->model();
2022-08-17 03:47:03 -05:00
// we use a lower tolerance for the compensation too
// assure the added drift from the last step does not
// cause convergence issues on the current step
Scalar maxCompensation = model.newtonMethod().tolerance()/10;
Scalar poro = this->porosity(globalDofIdx, timeIdx);
Scalar dt = simulator.timeStepSize();
EqVector dofDriftRate = drift_[globalDofIdx];
dofDriftRate /= dt*model.dofTotalVolume(globalDofIdx);
// restrict drift compensation to the CNV tolerance
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx) {
Scalar cnv = std::abs(dofDriftRate[eqIdx])*dt*model.eqWeight(globalDofIdx, eqIdx)/poro;
if (cnv > maxCompensation) {
dofDriftRate[eqIdx] *= maxCompensation/cnv;
}
}
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx)
rate[eqIdx] -= dofDriftRate[eqIdx];
}
}
/*!
* \brief Returns a reference to the ECL well manager used by the problem.
*
* This can be used for inspecting wells outside of the problem.
*/
const EclWellModel& wellModel() const
{ return wellModel_; }
EclWellModel& wellModel()
{ return wellModel_; }
const EclAquiferModel& aquiferModel() const
{ return aquiferModel_; }
EclAquiferModel& mutableAquiferModel()
{ return aquiferModel_; }
// temporary solution to facilitate output of initial state from flow
const InitialFluidState& initialFluidState(unsigned globalDofIdx) const
{ return initialFluidStates_[globalDofIdx]; }
const EclipseIO& eclIO() const
{ return eclWriter_->eclIO(); }
void setSubStepReport(const SimulatorReportSingle& report)
{ return eclWriter_->setSubStepReport(report); }
void setSimulationReport(const SimulatorReport& report)
{ return eclWriter_->setSimulationReport(report); }
bool nonTrivialBoundaryConditions() const
{ return nonTrivialBoundaryConditions_; }
const InitialFluidState boundaryFluidState(unsigned globalDofIdx, const int directionId) const
{
FaceDir::DirEnum dir = FaceDir::FromIntersectionIndex(directionId);
const auto& dirichlet = dirichlet_(dir)[globalDofIdx];
if(std::get<0>(dirichlet) == BCComponent::NONE)
return initialFluidStates_[globalDofIdx];
InitialFluidState fluidState;
const int pvtRegionIdx = this->pvtRegionIndex(globalDofIdx);
fluidState.setPvtRegionIndex(pvtRegionIdx);
double pressure = initialFluidStates_[globalDofIdx].pressure(oilPhaseIdx);
const auto pressure_input = std::get<1>(dirichlet);
if(pressure_input)
pressure = *pressure_input;
std::array<Scalar, numPhases> pc = {0};
const auto& matParams = materialLawParams(globalDofIdx);
MaterialLaw::capillaryPressures(pc, matParams, fluidState);
Valgrind::CheckDefined(pressure);
Valgrind::CheckDefined(pc);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
if (Indices::oilEnabled)
fluidState.setPressure(phaseIdx, pressure + (pc[phaseIdx] - pc[oilPhaseIdx]));
else if (Indices::gasEnabled)
fluidState.setPressure(phaseIdx, pressure + (pc[phaseIdx] - pc[gasPhaseIdx]));
else if (Indices::waterEnabled)
//single (water) phase
fluidState.setPressure(phaseIdx, pressure);
}
switch (std::get<0>(dirichlet)) {
case BCComponent::OIL:
if (!FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx))
throw std::logic_error("oil is not active and you're trying to add oil BC");
fluidState.setSaturation(FluidSystem::oilPhaseIdx, 1.0);
break;
case BCComponent::GAS:
if (!FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx))
throw std::logic_error("gas is not active and you're trying to add gas BC");
fluidState.setSaturation(FluidSystem::gasPhaseIdx, 1.0);
break;
case BCComponent::WATER:
if (!FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx))
throw std::logic_error("water is not active and you're trying to add water BC");
fluidState.setSaturation(FluidSystem::waterPhaseIdx, 1.0);
break;
case BCComponent::SOLVENT:
case BCComponent::POLYMER:
case BCComponent::NONE:
throw std::logic_error("you need to specify a valid component (OIL, WATER or GAS) when DIRICHLET type is set in BC");
break;
}
double temperature = initialFluidStates_[globalDofIdx].temperature(oilPhaseIdx);
const auto temperature_input = std::get<2>(dirichlet);
if(temperature_input)
temperature = *temperature_input;
fluidState.setTemperature(temperature);
fluidState.setRs(0.0);
fluidState.setRv(0.0);
if (FluidSystem::enableVaporizedWater())
fluidState.setRvw(0.0);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
const auto& b = FluidSystem::inverseFormationVolumeFactor(fluidState, phaseIdx, pvtRegionIdx);
fluidState.setInvB(phaseIdx, b);
const auto& rho = FluidSystem::density(fluidState, phaseIdx, pvtRegionIdx);
fluidState.setDensity(phaseIdx, rho);
}
return fluidState;
}
/*!
* \brief Propose the size of the next time step to the simulator.
*
* This method is only called if the Newton solver does converge, the simulator
* automatically cuts the time step in half without consultating this method again.
*/
Scalar nextTimeStepSize() const
{
// allow external code to do the timestepping
if (this->nextTimeStepSize_ > 0.0)
return this->nextTimeStepSize_;
const auto& simulator = this->simulator();
int episodeIdx = simulator.episodeIndex();
// for the initial episode, we use a fixed time step size
if (episodeIdx < 0)
return this->initialTimeStepSize_;
// ask the newton method for a suggestion. This suggestion will be based on how
// well the previous time step converged. After that, apply the runtime time
// stepping constraints.
const auto& newtonMethod = this->model().newtonMethod();
return limitNextTimeStepSize_(newtonMethod.suggestTimeStepSize(simulator.timeStepSize()));
}
/*!
* \brief Calculate the porosity multiplier due to water induced rock compaction.
*
* TODO: The API of this is a bit ad-hoc, it would be better to use context objects.
*/
template <class LhsEval>
LhsEval rockCompPoroMultiplier(const IntensiveQuantities& intQuants, unsigned elementIdx) const
{
2020-09-25 08:10:39 -05:00
if (this->rockCompPoroMult_.empty() && this->rockCompPoroMultWc_.empty())
return 1.0;
unsigned tableIdx = 0;
if (!this->rockTableIdx_.empty())
tableIdx = this->rockTableIdx_[elementIdx];
const auto& fs = intQuants.fluidState();
LhsEval effectiveOilPressure = decay<LhsEval>(fs.pressure(oilPhaseIdx));
if (!this->minOilPressure_.empty())
// The pore space change is irreversible
effectiveOilPressure =
min(decay<LhsEval>(fs.pressure(oilPhaseIdx)),
this->minOilPressure_[elementIdx]);
if (!this->overburdenPressure_.empty())
effectiveOilPressure -= this->overburdenPressure_[elementIdx];
2020-09-25 08:10:39 -05:00
if (!this->rockCompPoroMult_.empty()) {
return this->rockCompPoroMult_[tableIdx].eval(effectiveOilPressure, /*extrapolation=*/true);
2020-09-25 08:10:39 -05:00
}
// water compaction
assert(!this->rockCompPoroMultWc_.empty());
LhsEval SwMax = max(decay<LhsEval>(fs.saturation(waterPhaseIdx)), this->maxWaterSaturation_[elementIdx]);
2020-09-25 08:10:39 -05:00
LhsEval SwDeltaMax = SwMax - initialFluidStates_[elementIdx].saturation(waterPhaseIdx);
return this->rockCompPoroMultWc_[tableIdx].eval(effectiveOilPressure, SwDeltaMax, /*extrapolation=*/true);
}
/*!
* \brief Calculate the transmissibility multiplier due to water induced rock compaction.
*
* TODO: The API of this is a bit ad-hoc, it would be better to use context objects.
*/
template <class LhsEval>
LhsEval rockCompTransMultiplier(const IntensiveQuantities& intQuants, unsigned elementIdx) const
{
if (this->rockCompTransMult_.empty() && this->rockCompTransMultWc_.empty())
return 1.0;
unsigned tableIdx = 0;
if (!this->rockTableIdx_.empty())
tableIdx = this->rockTableIdx_[elementIdx];
const auto& fs = intQuants.fluidState();
LhsEval effectiveOilPressure = decay<LhsEval>(fs.pressure(oilPhaseIdx));
if (!this->minOilPressure_.empty())
// The pore space change is irreversible
effectiveOilPressure =
min(decay<LhsEval>(fs.pressure(oilPhaseIdx)),
this->minOilPressure_[elementIdx]);
if (!this->overburdenPressure_.empty())
effectiveOilPressure -= this->overburdenPressure_[elementIdx];
if (!this->rockCompTransMult_.empty())
return this->rockCompTransMult_[tableIdx].eval(effectiveOilPressure, /*extrapolation=*/true);
2020-09-25 08:10:39 -05:00
// water compaction
assert(!this->rockCompTransMultWc_.empty());
LhsEval SwMax = max(decay<LhsEval>(fs.saturation(waterPhaseIdx)), this->maxWaterSaturation_[elementIdx]);
2020-09-25 08:10:39 -05:00
LhsEval SwDeltaMax = SwMax - initialFluidStates_[elementIdx].saturation(waterPhaseIdx);
return this->rockCompTransMultWc_[tableIdx].eval(effectiveOilPressure, SwDeltaMax, /*extrapolation=*/true);
}
std::pair<bool, RateVector> boundaryCondition(const unsigned int globalSpaceIdx, const int directionId)
{
if (!nonTrivialBoundaryConditions_) {
return { false, RateVector(0.0) };
}
2022-10-17 04:31:46 -05:00
FaceDir::DirEnum dir = FaceDir::FromIntersectionIndex(directionId);
const auto& dirichlet = dirichlet_(dir)[globalSpaceIdx];
bool free = freebc_(dir)[globalSpaceIdx] || std::get<0>(dirichlet) != BCComponent::NONE;
return { free, massratebc_(dir)[globalSpaceIdx] };
}
2022-11-17 08:01:14 -06:00
const std::unique_ptr<EclWriterType>& eclWriter() const
{
return eclWriter_;
}
template<class Serializer>
void serializeOp(Serializer& serializer)
{
serializer(static_cast<BaseType&>(*this));
serializer(drift_);
serializer(wellModel_);
serializer(aquiferModel_);
serializer(tracerModel_);
}
private:
template<class UpdateFunc>
void updateProperty_(const std::string& failureMsg,
UpdateFunc func)
{
ElementContext elemCtx(this->simulator());
const auto& vanguard = this->simulator().vanguard();
OPM_BEGIN_PARALLEL_TRY_CATCH();
for (const auto& elem : elements(vanguard.gridView())) {
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
unsigned compressedDofIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& iq = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
func(compressedDofIdx, iq);
}
OPM_END_PARALLEL_TRY_CATCH(failureMsg, vanguard.grid().comm());
}
2017-12-19 05:42:10 -06:00
// update the parameters needed for DRSDT and DRVDT
void updateCompositionChangeLimits_()
{
// update the "last Rs" values for all elements, including the ones in the ghost
// and overlap regions
int episodeIdx = this->episodeIndex();
std::array<bool,3> active{this->drsdtConvective_(episodeIdx),
this->drsdtActive_(episodeIdx),
this->drvdtActive_(episodeIdx)};
if (!active[0] && !active[1] && !active[2])
return;
this->updateProperty_("EclProblem::updateCompositionChangeLimits_()) failed:",
[this,episodeIdx,active](unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
auto& simulator = this->simulator();
auto& vanguard = simulator.vanguard();
if (active[0]) {
// This implements the convective DRSDT as described in
// Sandve et al. "Convective dissolution in field scale CO2 storage simulations using the OPM Flow simulator"
// Submitted to TCCS 11, 2021
const Scalar g = this->gravity_[dim - 1];
const DimMatrix& perm = intrinsicPermeability(compressedDofIdx);
const Scalar permz = perm[dim - 1][dim - 1]; // The Z permeability
const Scalar distZ = vanguard.cellThickness(compressedDofIdx);
const auto& fs = iq.fluidState();
const Scalar t = getValue(fs.temperature(FluidSystem::oilPhaseIdx));
const Scalar p = getValue(fs.pressure(FluidSystem::oilPhaseIdx));
const Scalar so = getValue(fs.saturation(FluidSystem::oilPhaseIdx));
const Scalar rssat = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(),t,p);
const Scalar saturatedInvB = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(),t,p);
const Scalar rsZero = 0.0;
const Scalar pureDensity = FluidSystem::oilPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(),t,p,rsZero) * FluidSystem::oilPvt().oilReferenceDensity(fs.pvtRegionIndex());
const Scalar saturatedDensity = saturatedInvB * (FluidSystem::oilPvt().oilReferenceDensity(fs.pvtRegionIndex()) + rssat * FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, fs.pvtRegionIndex()));
const Scalar deltaDensity = saturatedDensity - pureDensity;
const Scalar rs = getValue(fs.Rs());
const Scalar visc = FluidSystem::oilPvt().viscosity(fs.pvtRegionIndex(),t,p,rs);
const Scalar poro = getValue(iq.porosity());
// Note that for so = 0 this gives no limits (inf) for the dissolution rate
// Also we restrict the effect of convective mixing to positive density differences
// i.e. we only allow for fingers moving downward
this->convectiveDrs_[compressedDofIdx] = permz * rssat * max(0.0, deltaDensity) * g / ( so * visc * distZ * poro);
}
if (active[1]) {
const auto& fs = iq.fluidState();
using FluidState = typename std::decay<decltype(fs)>::type;
int pvtRegionIdx = this->pvtRegionIndex(compressedDofIdx);
const auto& oilVaporizationControl = vanguard.schedule()[episodeIdx].oilvap();
if (oilVaporizationControl.getOption(pvtRegionIdx) || fs.saturation(gasPhaseIdx) > freeGasMinSaturation_)
this->lastRs_[compressedDofIdx] =
BlackOil::template getRs_<FluidSystem,
FluidState,
Scalar>(fs, iq.pvtRegionIndex());
else
this->lastRs_[compressedDofIdx] = std::numeric_limits<Scalar>::infinity();
}
if (active[2]) {
const auto& fs = iq.fluidState();
using FluidState = typename std::decay<decltype(fs)>::type;
this->lastRv_[compressedDofIdx] =
BlackOil::template getRv_<FluidSystem,
FluidState,
Scalar>(fs, iq.pvtRegionIndex());
}
});
}
2017-12-19 05:42:10 -06:00
bool updateMaxOilSaturation_()
{
int episodeIdx = this->episodeIndex();
// we use VAPPARS
if (this->vapparsActive(episodeIdx)) {
this->updateProperty_("EclProblem::updateMaxOilSaturation_() failed:",
[this](unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
const auto& fs = iq.fluidState();
const Scalar So = decay<Scalar>(fs.saturation(oilPhaseIdx));
auto& mos = this->maxOilSaturation_;
mos[compressedDofIdx] = std::max(mos[compressedDofIdx], So);
});
return true;
2017-12-19 05:42:10 -06:00
}
return false;
2017-12-19 05:42:10 -06:00
}
bool updateMaxWaterSaturation_()
{
// water compaction is activated in ROCKCOMP
if (this->maxWaterSaturation_.empty())
return false;
this->maxWaterSaturation_[/*timeIdx=*/1] = this->maxWaterSaturation_[/*timeIdx=*/0];
this->updateProperty_("EclProblem::updateMaxWaterSaturation_() failed:",
[this](unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
const auto& fs = iq.fluidState();
const Scalar Sw = decay<Scalar>(fs.saturation(waterPhaseIdx));
auto& mow = this->maxWaterSaturation_;
mow[compressedDofIdx] = std::max(mow[compressedDofIdx], Sw);
});
return true;
}
bool updateMinPressure_()
{
// IRREVERS option is used in ROCKCOMP
if (this->minOilPressure_.empty())
return false;
this->updateProperty_("EclProblem::updateMinPressure_() failed:",
[this](unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
2023-01-05 04:23:54 -06:00
const auto& fs = iq.fluidState();
const Scalar mo = getValue(fs.pressure(oilPhaseIdx));
auto& mos = this->minOilPressure_;
mos[compressedDofIdx] = std::min(mos[compressedDofIdx], mo);
});
return true;
}
void readMaterialParameters_()
{
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& eclState = vanguard.eclState();
// the PVT and saturation region numbers
this->updatePvtnum_();
this->updateSatnum_();
// the MISC region numbers (solvent model)
this->updateMiscnum_();
// the PLMIX region numbers (polymer model)
this->updatePlmixnum_();
2022-07-01 01:19:51 -05:00
// directional relative permeabilities
this->updateKrnum_();
////////////////////////////////
// porosity
updateReferencePorosity_();
this->referencePorosity_[1] = this->referencePorosity_[0];
////////////////////////////////
////////////////////////////////
// fluid-matrix interactions (saturation functions; relperm/capillary pressure)
materialLawManager_ = std::make_shared<EclMaterialLawManager>();
materialLawManager_->initFromState(eclState);
materialLawManager_->initParamsForElements(eclState, this->model().numGridDof());
////////////////////////////////
}
void readThermalParameters_()
{
if constexpr (enableEnergy)
{
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& eclState = vanguard.eclState();
// fluid-matrix interactions (saturation functions; relperm/capillary pressure)
thermalLawManager_ = std::make_shared<EclThermalLawManager>();
thermalLawManager_->initParamsForElements(eclState, this->model().numGridDof());
}
}
void updateReferencePorosity_()
{
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& eclState = vanguard.eclState();
size_t numDof = this->model().numGridDof();
this->referencePorosity_[/*timeIdx=*/0].resize(numDof);
const auto& fp = eclState.fieldProps();
const std::vector<double> porvData = fp.porv(false);
const std::vector<int> actnumData = fp.actnum();
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx) {
Scalar poreVolume = porvData[dofIdx];
// we define the porosity as the accumulated pore volume divided by the
// geometric volume of the element. Note that -- in pathetic cases -- it can
// be larger than 1.0!
Scalar dofVolume = simulator.model().dofTotalVolume(dofIdx);
assert(dofVolume > 0.0);
this->referencePorosity_[/*timeIdx=*/0][dofIdx] = poreVolume/dofVolume;
}
}
void readInitialCondition_()
{
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& eclState = vanguard.eclState();
if (eclState.getInitConfig().hasEquil())
readEquilInitialCondition_();
else
readExplicitInitialCondition_();
if constexpr (enableSolvent || enablePolymer || enablePolymerMolarWeight || enableMICP)
this->readBlackoilExtentionsInitialConditions_(this->model().numGridDof(),
enableSolvent,
enablePolymer,
enablePolymerMolarWeight,
enableMICP);
//initialize min/max values
size_t numElems = this->model().numGridDof();
for (size_t elemIdx = 0; elemIdx < numElems; ++elemIdx) {
const auto& fs = initialFluidStates_[elemIdx];
if (!this->maxWaterSaturation_.empty())
this->maxWaterSaturation_[elemIdx] = std::max(this->maxWaterSaturation_[elemIdx], fs.saturation(waterPhaseIdx));
if (!this->maxOilSaturation_.empty())
this->maxOilSaturation_[elemIdx] = std::max(this->maxOilSaturation_[elemIdx], fs.saturation(oilPhaseIdx));
if (!this->minOilPressure_.empty())
this->minOilPressure_[elemIdx] = std::min(this->minOilPressure_[elemIdx], fs.pressure(oilPhaseIdx));
}
}
void readEquilInitialCondition_()
{
const auto& simulator = this->simulator();
// initial condition corresponds to hydrostatic conditions.
2021-05-26 07:24:16 -05:00
using EquilInitializer = EclEquilInitializer<TypeTag>;
EquilInitializer equilInitializer(simulator, *materialLawManager_);
size_t numElems = this->model().numGridDof();
initialFluidStates_.resize(numElems);
for (size_t elemIdx = 0; elemIdx < numElems; ++elemIdx) {
fix most pedantic compiler warnings in the basic infrastructure i.e., using clang 3.8 to compile the test suite with the following flags: ``` -Weverything -Wno-documentation -Wno-documentation-unknown-command -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-undef -Wno-padded -Wno-global-constructors -Wno-exit-time-destructors -Wno-weak-vtables -Wno-float-equal ``` should not produce any warnings anymore. In my opinion the only flag which would produce beneficial warnings is -Wdocumentation. This has not been fixed in this patch because writing documentation is left for another day (or, more likely, year). note that this patch consists of a heavy dose of the OPM_UNUSED macro and plenty of static_casts (to fix signedness issues). Fixing the singedness issues were quite a nightmare and the fact that the Dune API is quite inconsistent in that regard was not exactly helpful. :/ Finally this patch includes quite a few formatting changes (e.g., all occurences of 'T &t' should be changed to `T& t`) and some fixes for minor issues which I've found during the excercise. I've made sure that all unit tests the test suite still pass successfully and I've made sure that flow_ebos still works for Norne and that it did not regress w.r.t. performance. (Note that this patch does not fix compiler warnings triggered `ebos` and `flow_ebos` but only those caused by the basic infrastructure or the unit tests.) v2: fix the warnings that occur if the dune-localfunctions module is not available. thanks to [at]atgeirr for testing. v3: fix dune 2.3 build issue
2016-11-07 08:14:07 -06:00
auto& elemFluidState = initialFluidStates_[elemIdx];
elemFluidState.assign(equilInitializer.initialFluidState(elemIdx));
}
}
void readEclRestartSolution_()
{
// Set the start time of the simulation
auto& simulator = this->simulator();
const auto& schedule = simulator.vanguard().schedule();
const auto& eclState = simulator.vanguard().eclState();
const auto& initconfig = eclState.getInitConfig();
{
int restart_step = initconfig.getRestartStep();
simulator.setTime(schedule.seconds(restart_step));
simulator.startNextEpisode(simulator.startTime() + simulator.time(),
schedule.stepLength(restart_step));
simulator.setEpisodeIndex(restart_step);
}
eclWriter_->beginRestart();
Scalar dt = std::min(eclWriter_->restartTimeStepSize(), simulator.episodeLength());
simulator.setTimeStepSize(dt);
size_t numElems = this->model().numGridDof();
initialFluidStates_.resize(numElems);
if constexpr (enableSolvent)
this->solventSaturation_.resize(numElems, 0.0);
if constexpr (enablePolymer)
this->polymerConcentration_.resize(numElems, 0.0);
if constexpr (enablePolymerMolarWeight) {
const std::string msg {"Support of the RESTART for polymer molecular weight "
"is not implemented yet. The polymer weight value will be "
"zero when RESTART begins"};
OpmLog::warning("NO_POLYMW_RESTART", msg);
this->polymerMoleWeight_.resize(numElems, 0.0);
}
if constexpr (enableMICP){
this->microbialConcentration_.resize(numElems, 0.0);
this->oxygenConcentration_.resize(numElems, 0.0);
this->ureaConcentration_.resize(numElems, 0.0);
this->biofilmConcentration_.resize(numElems, 0.0);
this->calciteConcentration_.resize(numElems, 0.0);
}
for (size_t elemIdx = 0; elemIdx < numElems; ++elemIdx) {
auto& elemFluidState = initialFluidStates_[elemIdx];
elemFluidState.setPvtRegionIndex(pvtRegionIndex(elemIdx));
eclWriter_->eclOutputModule().initHysteresisParams(simulator, elemIdx);
eclWriter_->eclOutputModule().assignToFluidState(elemFluidState, elemIdx);
// Note: Function processRestartSaturations_() mutates the
// 'ssol' argument--the value from the restart file--if solvent
// is enabled. Then, store the updated solvent saturation into
// 'solventSaturation_'. Otherwise, just pass a dummy value to
// the function and discard the unchanged result. Do not index
// into 'solventSaturation_' unless solvent is enabled.
{
auto ssol = enableSolvent
? eclWriter_->eclOutputModule().getSolventSaturation(elemIdx)
: Scalar(0);
processRestartSaturations_(elemFluidState, ssol);
if constexpr (enableSolvent)
this->solventSaturation_[elemIdx] = ssol;
}
if (! this->lastRs_.empty()) {
this->lastRs_[elemIdx] = elemFluidState.Rs();
}
if (! this->lastRv_.empty()) {
this->lastRv_[elemIdx] = elemFluidState.Rv();
}
2019-09-25 05:28:58 -05:00
if constexpr (enablePolymer)
this->polymerConcentration_[elemIdx] = eclWriter_->eclOutputModule().getPolymerConcentration(elemIdx);
if constexpr (enableMICP){
this->microbialConcentration_[elemIdx] = eclWriter_->eclOutputModule().getMicrobialConcentration(elemIdx);
this->oxygenConcentration_[elemIdx] = eclWriter_->eclOutputModule().getOxygenConcentration(elemIdx);
this->ureaConcentration_[elemIdx] = eclWriter_->eclOutputModule().getUreaConcentration(elemIdx);
this->biofilmConcentration_[elemIdx] = eclWriter_->eclOutputModule().getBiofilmConcentration(elemIdx);
this->calciteConcentration_[elemIdx] = eclWriter_->eclOutputModule().getCalciteConcentration(elemIdx);
}
// if we need to restart for polymer molecular weight simulation, we need to add related here
}
const int episodeIdx = this->episodeIndex();
const auto& oilVaporizationControl = simulator.vanguard().schedule()[episodeIdx].oilvap();
if (this->drsdtActive_(episodeIdx))
// DRSDT is enabled
for (size_t pvtRegionIdx = 0; pvtRegionIdx < this->maxDRs_.size(); ++pvtRegionIdx)
this->maxDRs_[pvtRegionIdx] = oilVaporizationControl.getMaxDRSDT(pvtRegionIdx)*simulator.timeStepSize();
if (this->drvdtActive_(episodeIdx))
// DRVDT is enabled
for (size_t pvtRegionIdx = 0; pvtRegionIdx < this->maxDRv_.size(); ++pvtRegionIdx)
this->maxDRv_[pvtRegionIdx] = oilVaporizationControl.getMaxDRVDT(pvtRegionIdx)*simulator.timeStepSize();
// assign the restart solution to the current solution. note that we still need
// to compute real initial solution after this because the initial fluid states
// need to be correct for stuff like boundary conditions.
auto& sol = this->model().solution(/*timeIdx=*/0);
const auto& gridView = this->gridView();
ElementContext elemCtx(simulator);
for (const auto& elem : elements(gridView, Dune::Partitions::interior)) {
elemCtx.updatePrimaryStencil(elem);
int elemIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
initial(sol[elemIdx], elemCtx, /*spaceIdx=*/0, /*timeIdx=*/0);
}
// make sure that the ghost and overlap entities exhibit the correct
// solution. alternatively, this could be done in the loop above by also
// considering non-interior elements. Since the initial() method might not work
// 100% correctly for such elements, let's play safe and explicitly synchronize
// using message passing.
this->model().syncOverlap();
eclWriter_->endRestart();
}
2019-09-25 05:28:58 -05:00
void processRestartSaturations_(InitialFluidState& elemFluidState, Scalar& solventSaturation)
{
// each phase needs to be above certain value to be claimed to be existing
// this is used to recover some RESTART running with the defaulted single-precision format
const Scalar smallSaturationTolerance = 1.e-6;
Scalar sumSaturation = 0.0;
for (size_t phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (FluidSystem::phaseIsActive(phaseIdx)) {
if (elemFluidState.saturation(phaseIdx) < smallSaturationTolerance)
elemFluidState.setSaturation(phaseIdx, 0.0);
sumSaturation += elemFluidState.saturation(phaseIdx);
}
2019-09-25 05:28:58 -05:00
}
if constexpr (enableSolvent) {
2019-09-25 05:28:58 -05:00
if (solventSaturation < smallSaturationTolerance)
solventSaturation = 0.0;
sumSaturation += solventSaturation;
}
assert(sumSaturation > 0.0);
for (size_t phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (FluidSystem::phaseIsActive(phaseIdx)) {
const Scalar saturation = elemFluidState.saturation(phaseIdx) / sumSaturation;
elemFluidState.setSaturation(phaseIdx, saturation);
}
}
if constexpr (enableSolvent) {
2019-09-25 05:28:58 -05:00
solventSaturation = solventSaturation / sumSaturation;
}
}
void readExplicitInitialCondition_()
{
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& eclState = vanguard.eclState();
const auto& fp = eclState.fieldProps();
bool has_swat = fp.has_double("SWAT");
bool has_sgas = fp.has_double("SGAS");
bool has_rs = fp.has_double("RS");
bool has_rv = fp.has_double("RV");
bool has_rvw = fp.has_double("RVW");
bool has_pressure = fp.has_double("PRESSURE");
bool has_salt = fp.has_double("SALT");
bool has_saltp = fp.has_double("SALTP");
// make sure all required quantities are enables
if (Indices::numPhases > 1) {
if (FluidSystem::phaseIsActive(waterPhaseIdx) && !has_swat)
throw std::runtime_error("The ECL input file requires the presence of the SWAT keyword if "
"the water phase is active");
if (FluidSystem::phaseIsActive(gasPhaseIdx) && !has_sgas && FluidSystem::phaseIsActive(oilPhaseIdx))
throw std::runtime_error("The ECL input file requires the presence of the SGAS keyword if "
"the gas phase is active");
}
if (!has_pressure)
throw std::runtime_error("The ECL input file requires the presence of the PRESSURE "
"keyword if the model is initialized explicitly");
if (FluidSystem::enableDissolvedGas() && !has_rs)
throw std::runtime_error("The ECL input file requires the RS keyword to be present if"
" dissolved gas is enabled");
if (FluidSystem::enableVaporizedOil() && !has_rv)
throw std::runtime_error("The ECL input file requires the RV keyword to be present if"
" vaporized oil is enabled");
if (FluidSystem::enableVaporizedWater() && !has_rvw)
throw std::runtime_error("The ECL input file requires the RVW keyword to be present if"
" vaporized water is enabled");
if (enableBrine && !has_salt)
throw std::runtime_error("The ECL input file requires the SALT keyword to be present if"
2022-01-24 03:40:19 -06:00
" brine is enabled and the model is initialized explicitly");
if (enableSaltPrecipitation && !has_saltp)
throw std::runtime_error("The ECL input file requires the SALTP keyword to be present if"
2022-01-24 03:40:19 -06:00
" salt precipitation is enabled and the model is initialized explicitly");
size_t numDof = this->model().numGridDof();
initialFluidStates_.resize(numDof);
std::vector<double> waterSaturationData;
std::vector<double> gasSaturationData;
std::vector<double> pressureData;
std::vector<double> rsData;
std::vector<double> rvData;
std::vector<double> rvwData;
std::vector<double> tempiData;
std::vector<double> saltData;
std::vector<double> saltpData;
2020-11-25 15:48:01 -06:00
if (FluidSystem::phaseIsActive(waterPhaseIdx) && Indices::numPhases > 1)
waterSaturationData = fp.get_double("SWAT");
else
waterSaturationData.resize(numDof);
2020-11-25 15:48:01 -06:00
if (FluidSystem::phaseIsActive(gasPhaseIdx) && FluidSystem::phaseIsActive(oilPhaseIdx))
gasSaturationData = fp.get_double("SGAS");
else
gasSaturationData.resize(numDof);
pressureData = fp.get_double("PRESSURE");
if (FluidSystem::enableDissolvedGas())
rsData = fp.get_double("RS");
if (FluidSystem::enableVaporizedOil())
rvData = fp.get_double("RV");
if (FluidSystem::enableVaporizedWater())
rvwData = fp.get_double("RVW");
// initial reservoir temperature
tempiData = fp.get_double("TEMPI");
// initial salt concentration data
if constexpr (enableBrine)
saltData = fp.get_double("SALT");
// initial precipitated salt saturation data
if constexpr (enableSaltPrecipitation)
saltpData = fp.get_double("SALTP");
// calculate the initial fluid states
for (size_t dofIdx = 0; dofIdx < numDof; ++dofIdx) {
fix most pedantic compiler warnings in the basic infrastructure i.e., using clang 3.8 to compile the test suite with the following flags: ``` -Weverything -Wno-documentation -Wno-documentation-unknown-command -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-undef -Wno-padded -Wno-global-constructors -Wno-exit-time-destructors -Wno-weak-vtables -Wno-float-equal ``` should not produce any warnings anymore. In my opinion the only flag which would produce beneficial warnings is -Wdocumentation. This has not been fixed in this patch because writing documentation is left for another day (or, more likely, year). note that this patch consists of a heavy dose of the OPM_UNUSED macro and plenty of static_casts (to fix signedness issues). Fixing the singedness issues were quite a nightmare and the fact that the Dune API is quite inconsistent in that regard was not exactly helpful. :/ Finally this patch includes quite a few formatting changes (e.g., all occurences of 'T &t' should be changed to `T& t`) and some fixes for minor issues which I've found during the excercise. I've made sure that all unit tests the test suite still pass successfully and I've made sure that flow_ebos still works for Norne and that it did not regress w.r.t. performance. (Note that this patch does not fix compiler warnings triggered `ebos` and `flow_ebos` but only those caused by the basic infrastructure or the unit tests.) v2: fix the warnings that occur if the dune-localfunctions module is not available. thanks to [at]atgeirr for testing. v3: fix dune 2.3 build issue
2016-11-07 08:14:07 -06:00
auto& dofFluidState = initialFluidStates_[dofIdx];
2017-12-14 08:54:31 -06:00
dofFluidState.setPvtRegionIndex(pvtRegionIndex(dofIdx));
//////
// set temperature
//////
Scalar temperatureLoc = tempiData[dofIdx];
if (!std::isfinite(temperatureLoc) || temperatureLoc <= 0)
temperatureLoc = FluidSystem::surfaceTemperature;
dofFluidState.setTemperature(temperatureLoc);
//////
// set salt concentration
//////
if constexpr (enableBrine)
2022-01-19 09:44:42 -06:00
dofFluidState.setSaltConcentration(saltData[dofIdx]);
//////
// set precipitated salt saturation
//////
if constexpr (enableSaltPrecipitation)
2022-01-19 09:44:42 -06:00
dofFluidState.setSaltSaturation(saltpData[dofIdx]);
//////
// set saturations
//////
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx))
dofFluidState.setSaturation(FluidSystem::waterPhaseIdx,
waterSaturationData[dofIdx]);
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)){
if (!FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)){
dofFluidState.setSaturation(FluidSystem::gasPhaseIdx,
1.0
- waterSaturationData[dofIdx]);
}
else
dofFluidState.setSaturation(FluidSystem::gasPhaseIdx,
gasSaturationData[dofIdx]);
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx))
dofFluidState.setSaturation(FluidSystem::oilPhaseIdx,
1.0
- waterSaturationData[dofIdx]
- gasSaturationData[dofIdx]);
//////
// set phase pressures
//////
Scalar pressure = pressureData[dofIdx]; // oil pressure (or gas pressure for water-gas system or water pressure for single phase)
// this assumes that capillary pressures only depend on the phase saturations
// and possibly on temperature. (this is always the case for ECL problems.)
2022-08-05 03:35:52 -05:00
std::array<Scalar, numPhases> pc = {0};
const auto& matParams = materialLawParams(dofIdx);
MaterialLaw::capillaryPressures(pc, matParams, dofFluidState);
Valgrind::CheckDefined(pressure);
Valgrind::CheckDefined(pc);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
if (Indices::oilEnabled)
dofFluidState.setPressure(phaseIdx, pressure + (pc[phaseIdx] - pc[oilPhaseIdx]));
else if (Indices::gasEnabled)
dofFluidState.setPressure(phaseIdx, pressure + (pc[phaseIdx] - pc[gasPhaseIdx]));
else if (Indices::waterEnabled)
//single (water) phase
dofFluidState.setPressure(phaseIdx, pressure);
}
2017-12-14 08:54:31 -06:00
if (FluidSystem::enableDissolvedGas())
dofFluidState.setRs(rsData[dofIdx]);
else if (Indices::gasEnabled && Indices::oilEnabled)
2017-12-14 08:54:31 -06:00
dofFluidState.setRs(0.0);
2017-12-14 08:54:31 -06:00
if (FluidSystem::enableVaporizedOil())
dofFluidState.setRv(rvData[dofIdx]);
else if (Indices::gasEnabled && Indices::oilEnabled)
2017-12-14 08:54:31 -06:00
dofFluidState.setRv(0.0);
if (FluidSystem::enableVaporizedWater())
dofFluidState.setRvw(rvwData[dofIdx]);
//////
// set invB_
//////
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
const auto& b = FluidSystem::inverseFormationVolumeFactor(dofFluidState, phaseIdx, pvtRegionIndex(dofIdx));
dofFluidState.setInvB(phaseIdx, b);
const auto& rho = FluidSystem::density(dofFluidState, phaseIdx, pvtRegionIndex(dofIdx));
dofFluidState.setDensity(phaseIdx, rho);
}
}
}
// update the hysteresis parameters of the material laws for the whole grid
bool updateHysteresis_()
{
if (!materialLawManager_->enableHysteresis())
return false;
// we need to update the hysteresis data for _all_ elements (i.e., not just the
// interior ones) to avoid desynchronization of the processes in the parallel case!
this->updateProperty_("EclProblem::updateHysteresis_() failed:",
[this](unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
materialLawManager_->updateHysteresis(iq.fluidState(), compressedDofIdx);
});
return true;
}
void updateMaxPolymerAdsorption_()
{
// we need to update the max polymer adsoption data for all elements
this->updateProperty_("EclProblem::updateMaxPolymerAdsorption_() failed:",
[this](unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
const Scalar pa = scalarValue(iq.polymerAdsorption());
auto& mpa = this->maxPolymerAdsorption_;
mpa[compressedDofIdx] = std::max(mpa[compressedDofIdx], pa);
});
}
struct PffDofData_
{
ConditionalStorage<enableEnergy, Scalar> thermalHalfTransIn;
ConditionalStorage<enableEnergy, Scalar> thermalHalfTransOut;
ConditionalStorage<enableDiffusion, Scalar> diffusivity;
Scalar transmissibility;
};
// update the prefetch friendly data object
void updatePffDofData_()
{
fix most pedantic compiler warnings in the basic infrastructure i.e., using clang 3.8 to compile the test suite with the following flags: ``` -Weverything -Wno-documentation -Wno-documentation-unknown-command -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-undef -Wno-padded -Wno-global-constructors -Wno-exit-time-destructors -Wno-weak-vtables -Wno-float-equal ``` should not produce any warnings anymore. In my opinion the only flag which would produce beneficial warnings is -Wdocumentation. This has not been fixed in this patch because writing documentation is left for another day (or, more likely, year). note that this patch consists of a heavy dose of the OPM_UNUSED macro and plenty of static_casts (to fix signedness issues). Fixing the singedness issues were quite a nightmare and the fact that the Dune API is quite inconsistent in that regard was not exactly helpful. :/ Finally this patch includes quite a few formatting changes (e.g., all occurences of 'T &t' should be changed to `T& t`) and some fixes for minor issues which I've found during the excercise. I've made sure that all unit tests the test suite still pass successfully and I've made sure that flow_ebos still works for Norne and that it did not regress w.r.t. performance. (Note that this patch does not fix compiler warnings triggered `ebos` and `flow_ebos` but only those caused by the basic infrastructure or the unit tests.) v2: fix the warnings that occur if the dune-localfunctions module is not available. thanks to [at]atgeirr for testing. v3: fix dune 2.3 build issue
2016-11-07 08:14:07 -06:00
const auto& distFn =
[this](PffDofData_& dofData,
const Stencil& stencil,
unsigned localDofIdx)
-> void
{
const auto& elementMapper = this->model().elementMapper();
unsigned globalElemIdx = elementMapper.index(stencil.entity(localDofIdx));
if (localDofIdx != 0) {
2016-10-30 16:38:41 -05:00
unsigned globalCenterElemIdx = elementMapper.index(stencil.entity(/*dofIdx=*/0));
dofData.transmissibility = transmissibilities_.transmissibility(globalCenterElemIdx, globalElemIdx);
if constexpr (enableEnergy) {
*dofData.thermalHalfTransIn = transmissibilities_.thermalHalfTrans(globalCenterElemIdx, globalElemIdx);
*dofData.thermalHalfTransOut = transmissibilities_.thermalHalfTrans(globalElemIdx, globalCenterElemIdx);
}
if constexpr (enableDiffusion)
2021-01-14 08:33:28 -06:00
*dofData.diffusivity = transmissibilities_.diffusivity(globalCenterElemIdx, globalElemIdx);
}
};
pffDofData_.update(distFn);
}
void readBoundaryConditions_()
{
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& bcconfig = vanguard.eclState().getSimulationConfig().bcconfig();
if (bcconfig.size() > 0) {
nonTrivialBoundaryConditions_ = true;
size_t numCartDof = vanguard.cartesianSize();
unsigned numElems = vanguard.gridView().size(/*codim=*/0);
std::vector<int> cartesianToCompressedElemIdx(numCartDof, -1);
for (unsigned elemIdx = 0; elemIdx < numElems; ++elemIdx)
cartesianToCompressedElemIdx[vanguard.cartesianIndex(elemIdx)] = elemIdx;
massratebc_.resize(numElems, 0.0);
2022-10-17 04:31:46 -05:00
freebc_.resize(numElems, false);
dirichlet_.resize(numElems, {BCComponent::NONE, 0.0,0.0});
2022-10-17 04:31:46 -05:00
auto loopAndApply = [&cartesianToCompressedElemIdx,
&vanguard](const auto& bcface,
auto apply)
{
for (int i = bcface.i1; i <= bcface.i2; ++i) {
for (int j = bcface.j1; j <= bcface.j2; ++j) {
for (int k = bcface.k1; k <= bcface.k2; ++k) {
std::array<int, 3> tmp = {i,j,k};
auto elemIdx = cartesianToCompressedElemIdx[vanguard.cartesianIndex(tmp)];
if (elemIdx >= 0)
apply(elemIdx);
}
}
}
};
for (const auto& bcface : bcconfig) {
const auto& type = bcface.bctype;
if (type == BCType::RATE) {
2020-01-27 04:51:43 -06:00
int compIdx = 0; // default initialize to avoid -Wmaybe-uninitialized warning
switch (bcface.component) {
case BCComponent::OIL:
2020-09-25 02:59:45 -05:00
compIdx = Indices::canonicalToActiveComponentIndex(oilCompIdx);
break;
case BCComponent::GAS:
2020-09-25 02:59:45 -05:00
compIdx = Indices::canonicalToActiveComponentIndex(gasCompIdx);
break;
case BCComponent::WATER:
2020-09-25 02:59:45 -05:00
compIdx = Indices::canonicalToActiveComponentIndex(waterCompIdx);
break;
case BCComponent::SOLVENT:
if constexpr (!enableSolvent)
throw std::logic_error("solvent is disabled and you're trying to add solvent to BC");
compIdx = Indices::solventSaturationIdx;
break;
case BCComponent::POLYMER:
if constexpr (!enablePolymer)
throw std::logic_error("polymer is disabled and you're trying to add polymer to BC");
compIdx = Indices::polymerConcentrationIdx;
break;
case BCComponent::NONE:
2020-01-27 04:51:43 -06:00
throw std::logic_error("you need to specify the component when RATE type is set in BC");
break;
}
std::vector<RateVector>& data = massratebc_(bcface.dir);
const Evaluation rate = bcface.rate;
2022-10-17 04:31:46 -05:00
loopAndApply(bcface,
[&data,compIdx,rate](int elemIdx)
{ data[elemIdx][compIdx] = rate; });
} else if (type == BCType::FREE) {
2022-10-17 04:31:46 -05:00
std::vector<bool>& data = freebc_(bcface.dir);
loopAndApply(bcface,
[&data](int elemIdx) { data[elemIdx] = true; });
// TODO: either the real initial solution needs to be computed or read from the restart file
const auto& eclState = simulator.vanguard().eclState();
const auto& initconfig = eclState.getInitConfig();
if (initconfig.restartRequested()) {
throw std::logic_error("restart is not compatible with using free boundary conditions");
}
} else if (type == BCType::DIRICHLET) {
const auto component = bcface.component;
const auto pressure = bcface.pressure;
const auto temperature = bcface.temperature;
std::vector<std::tuple<BCComponent, std::optional<double>, std::optional<double>>>& data = dirichlet_(bcface.dir);
loopAndApply(bcface,
[&data,component,pressure,temperature](int elemIdx) { data[elemIdx] = {component, pressure, temperature}; });
} else {
throw std::logic_error("invalid type for BC. Use FREE or RATE");
}
}
}
}
// this method applies the runtime constraints specified via the deck and/or command
// line parameters for the size of the next time step.
Scalar limitNextTimeStepSize_(Scalar dtNext) const
{
if constexpr (enableExperiments) {
const auto& simulator = this->simulator();
int episodeIdx = simulator.episodeIndex();
// first thing in the morning, limit the time step size to the maximum size
dtNext = std::min(dtNext, this->maxTimeStepSize_);
Scalar remainingEpisodeTime =
simulator.episodeStartTime() + simulator.episodeLength()
- (simulator.startTime() + simulator.time());
assert(remainingEpisodeTime >= 0.0);
// if we would have a small amount of time left over in the current episode, make
// two equal time steps instead of a big and a small one
if (remainingEpisodeTime/2.0 < dtNext && dtNext < remainingEpisodeTime*(1.0 - 1e-5))
// note: limiting to the maximum time step size here is probably not strictly
// necessary, but it should not hurt and is more fool-proof
dtNext = std::min(this->maxTimeStepSize_, remainingEpisodeTime/2.0);
if (simulator.episodeStarts()) {
// if a well event occurred, respect the limit for the maximum time step after
// that, too
int reportStepIdx = std::max(episodeIdx, 0);
const auto& events = simulator.vanguard().schedule()[reportStepIdx].events();
bool wellEventOccured =
events.hasEvent(ScheduleEvents::NEW_WELL)
|| events.hasEvent(ScheduleEvents::PRODUCTION_UPDATE)
|| events.hasEvent(ScheduleEvents::INJECTION_UPDATE)
|| events.hasEvent(ScheduleEvents::WELL_STATUS_CHANGE);
if (episodeIdx >= 0 && wellEventOccured && this->maxTimeStepAfterWellEvent_ > 0)
dtNext = std::min(dtNext, this->maxTimeStepAfterWellEvent_);
}
}
return dtNext;
}
void computeAndSetEqWeights_()
{
std::vector<Scalar> sumInvB(numPhases, 0.0);
const auto& gridView = this->gridView();
ElementContext elemCtx(this->simulator());
2022-08-17 03:47:03 -05:00
for(const auto& elem: elements(gridView, Dune::Partitions::interior)) {
elemCtx.updatePrimaryStencil(elem);
int elemIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& dofFluidState = initialFluidStates_[elemIdx];
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
sumInvB[phaseIdx] += dofFluidState.invB(phaseIdx);
}
}
size_t numDof = this->model().numGridDof();
const auto& comm = this->simulator().vanguard().grid().comm();
comm.sum(sumInvB.data(),sumInvB.size());
Scalar numTotalDof = comm.sum(numDof);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
Scalar avgB = numTotalDof / sumInvB[phaseIdx];
unsigned solventCompIdx = FluidSystem::solventComponentIndex(phaseIdx);
unsigned activeSolventCompIdx = Indices::canonicalToActiveComponentIndex(solventCompIdx);
this->model().setEqWeight(activeSolventCompIdx, avgB);
}
}
typename Vanguard::TransmissibilityType transmissibilities_;
std::shared_ptr<EclMaterialLawManager> materialLawManager_;
std::shared_ptr<EclThermalLawManager> thermalLawManager_;
EclThresholdPressure<TypeTag> thresholdPressures_;
2017-12-14 08:54:31 -06:00
std::vector<InitialFluidState> initialFluidStates_;
constexpr static Scalar freeGasMinSaturation_ = 1e-7;
bool enableDriftCompensation_;
GlobalEqVector drift_;
EclWellModel wellModel_;
bool enableAquifers_;
EclAquiferModel aquiferModel_;
bool enableEclOutput_;
std::unique_ptr<EclWriterType> eclWriter_;
PffGridVector<GridView, Stencil, PffDofData_, DofMapper> pffDofData_;
TracerModel tracerModel_;
EclActionHandler actionHandler_;
template<class T>
struct BCData
{
std::array<std::vector<T>,6> data;
void resize(size_t size, T defVal)
{
for (auto& d : data)
d.resize(size, defVal);
}
const std::vector<T>& operator()(FaceDir::DirEnum dir) const
{
if (dir == FaceDir::DirEnum::Unknown)
2022-11-01 15:44:59 -05:00
throw std::runtime_error("Tried to access BC data for the 'Unknown' direction");
int idx = 0;
int div = static_cast<int>(dir);
while ((div /= 2) >= 1)
++idx;
assert(idx >= 0 && idx <= 5);
return data[idx];
}
std::vector<T>& operator()(FaceDir::DirEnum dir)
{
return const_cast<std::vector<T>&>(std::as_const(*this)(dir));
}
};
2022-10-17 04:31:46 -05:00
BCData<bool> freebc_;
BCData<RateVector> massratebc_;
BCData<std::tuple<BCComponent, std::optional<double>, std::optional<double>>> dirichlet_;
2022-10-17 04:31:46 -05:00
bool nonTrivialBoundaryConditions_ = false;
};
} // namespace Opm
#endif