2017-02-13 09:45:06 -06:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
namespace Opm {
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-13 09:45:06 -06:00
|
|
|
StandardWellsDense(const Wells* wells_arg,
|
|
|
|
WellCollection* well_collection,
|
2017-05-09 01:21:51 -05:00
|
|
|
const std::vector< const Well* >& wells_ecl,
|
2017-02-13 09:45:06 -06:00
|
|
|
const ModelParameters& param,
|
2017-08-10 04:20:09 -05:00
|
|
|
const RateConverterType& rate_converter,
|
2017-05-09 01:21:51 -05:00
|
|
|
const bool terminal_output,
|
|
|
|
const int current_timeIdx)
|
2017-02-13 09:45:06 -06:00
|
|
|
: wells_active_(wells_arg!=nullptr)
|
|
|
|
, wells_(wells_arg)
|
2017-05-09 01:21:51 -05:00
|
|
|
, wells_ecl_(wells_ecl)
|
2017-06-27 05:17:36 -05:00
|
|
|
, number_of_wells_(wells_arg ? (wells_arg->number_of_wells) : 0)
|
2017-07-25 03:15:27 -05:00
|
|
|
, number_of_phases_(wells_arg ? (wells_arg->number_of_phases) : 0) // TODO: not sure if it is proper for this way
|
2017-02-13 09:45:06 -06:00
|
|
|
, well_collection_(well_collection)
|
|
|
|
, param_(param)
|
|
|
|
, terminal_output_(terminal_output)
|
2017-05-09 01:21:51 -05:00
|
|
|
, has_solvent_(GET_PROP_VALUE(TypeTag, EnableSolvent))
|
2017-06-07 02:29:31 -05:00
|
|
|
, has_polymer_(GET_PROP_VALUE(TypeTag, EnablePolymer))
|
2017-05-09 01:21:51 -05:00
|
|
|
, current_timeIdx_(current_timeIdx)
|
2017-08-10 04:20:09 -05:00
|
|
|
, rate_converter_(rate_converter)
|
2017-02-13 09:45:06 -06:00
|
|
|
, well_perforation_efficiency_factors_((wells_!=nullptr ? wells_->well_connpos[wells_->number_of_wells] : 0), 1.0)
|
|
|
|
, well_perforation_densities_( wells_ ? wells_arg->well_connpos[wells_arg->number_of_wells] : 0)
|
|
|
|
, well_perforation_pressure_diffs_( wells_ ? wells_arg->well_connpos[wells_arg->number_of_wells] : 0)
|
2017-05-03 06:34:15 -05:00
|
|
|
, wellVariables_( wells_ ? (wells_arg->number_of_wells * numWellEq) : 0)
|
2017-02-13 09:45:06 -06:00
|
|
|
{
|
2017-06-28 08:02:34 -05:00
|
|
|
createWellContainer(wells_arg);
|
2017-02-13 09:45:06 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 09:45:06 -06:00
|
|
|
void
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-13 09:45:06 -06:00
|
|
|
init(const PhaseUsage phase_usage_arg,
|
|
|
|
const std::vector<bool>& active_arg,
|
|
|
|
const double gravity_arg,
|
|
|
|
const std::vector<double>& depth_arg,
|
|
|
|
const std::vector<double>& pv_arg,
|
2017-06-07 02:29:31 -05:00
|
|
|
long int global_nc,
|
2017-06-27 09:51:11 -05:00
|
|
|
const Grid& grid)
|
2017-02-13 09:45:06 -06:00
|
|
|
{
|
2017-03-24 09:12:42 -05:00
|
|
|
// has to be set always for the convergence check!
|
|
|
|
global_nc_ = global_nc;
|
|
|
|
|
2017-02-13 09:45:06 -06:00
|
|
|
if ( ! localWellsActive() ) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
phase_usage_ = phase_usage_arg;
|
|
|
|
active_ = active_arg;
|
|
|
|
gravity_ = gravity_arg;
|
|
|
|
cell_depths_ = extractPerfData(depth_arg);
|
|
|
|
pv_ = pv_arg;
|
|
|
|
|
|
|
|
calculateEfficiencyFactors();
|
|
|
|
|
|
|
|
const int nw = wells().number_of_wells;
|
|
|
|
const int nperf = wells().well_connpos[nw];
|
|
|
|
const int nc = numCells();
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
const auto pu = phase_usage_;
|
|
|
|
const int np = pu.num_phases;
|
|
|
|
|
|
|
|
// assumes the gas fractions are stored after water fractions
|
|
|
|
// WellVariablePositions needs to be changed for 2p runs
|
|
|
|
assert (np == 3 || (np == 2 && !pu.phase_used[Gas]) );
|
|
|
|
#endif
|
|
|
|
|
2017-06-07 02:29:31 -05:00
|
|
|
if (has_polymer_)
|
|
|
|
{
|
|
|
|
if (PolymerModule::hasPlyshlog()) {
|
|
|
|
computeRepRadiusPerfLength(grid);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-06-21 07:07:11 -05:00
|
|
|
// do the initialization for all the wells
|
|
|
|
// TODO: to see whether we can postpone of the intialization of the well containers to
|
|
|
|
// optimize the usage of the following several member variables
|
|
|
|
for (auto& well : well_container_) {
|
|
|
|
well->init(&phase_usage_, &active_, vfp_properties_, gravity_, nc);
|
|
|
|
}
|
2017-02-13 09:45:06 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-08-07 04:35:59 -05:00
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
|
|
void
|
|
|
|
StandardWellsDense<TypeTag>::
|
|
|
|
setVFPProperties(const VFPProperties* vfp_properties_arg)
|
|
|
|
{
|
|
|
|
vfp_properties_ = vfp_properties_arg;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-08-09 05:32:45 -05:00
|
|
|
|
2017-06-15 10:19:49 -05:00
|
|
|
|
|
|
|
template<typename TypeTag>
|
2017-06-28 08:02:34 -05:00
|
|
|
void
|
2017-06-15 10:19:49 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-06-28 08:02:34 -05:00
|
|
|
createWellContainer(const Wells* wells_arg)
|
2017-06-15 10:19:49 -05:00
|
|
|
{
|
2017-06-28 08:02:34 -05:00
|
|
|
well_container_.clear();
|
2017-06-15 10:19:49 -05:00
|
|
|
// There might be no wells in the process
|
|
|
|
if (localWellsActive()) {
|
2017-06-28 08:02:34 -05:00
|
|
|
const int nw = number_of_wells_;
|
2017-06-15 10:19:49 -05:00
|
|
|
|
2017-06-28 08:02:34 -05:00
|
|
|
well_container_.reserve(nw);
|
2017-06-15 10:19:49 -05:00
|
|
|
|
|
|
|
// With the following way, it will have the same order with wells struct
|
|
|
|
// Hopefully, it can generate the same residual history with master branch
|
|
|
|
for (int w = 0; w < nw; ++w) {
|
|
|
|
const std::string well_name = std::string(wells_arg->name[w]);
|
|
|
|
|
|
|
|
// finding the location of the well in wells_ecl
|
2017-06-28 08:02:34 -05:00
|
|
|
const int nw_wells_ecl = wells_ecl_.size();
|
2017-06-15 10:19:49 -05:00
|
|
|
int index_well = 0;
|
|
|
|
for (; index_well < nw_wells_ecl; ++index_well) {
|
2017-06-28 08:02:34 -05:00
|
|
|
if (well_name == wells_ecl_[index_well]->name()) {
|
2017-06-15 10:19:49 -05:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// It should be able to find in wells_ecl.
|
|
|
|
if (index_well == nw_wells_ecl) {
|
|
|
|
OPM_THROW(std::logic_error, "Could not find well " << well_name << " in wells_ecl ");
|
|
|
|
}
|
|
|
|
|
2017-06-28 08:02:34 -05:00
|
|
|
const Well* well_ecl = wells_ecl_[index_well];
|
|
|
|
if (well_ecl->getStatus(current_timeIdx_) == WellCommon::SHUT) {
|
2017-06-15 10:19:49 -05:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2017-06-28 08:02:34 -05:00
|
|
|
if (well_ecl->isMultiSegment(current_timeIdx_)) {
|
2017-06-15 10:19:49 -05:00
|
|
|
OPM_THROW(Opm::NumericalProblem, "Not handling Multisegment Wells for now");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Basically, we are handling all the wells as StandardWell for the moment
|
|
|
|
// TODO: to be changed when we begin introducing MultisegmentWell
|
2017-06-28 08:02:34 -05:00
|
|
|
well_container_.push_back(std::make_shared<StandardWell<TypeTag> >(well_ecl, current_timeIdx_, wells_arg) );
|
2017-06-15 10:19:49 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 09:45:06 -06:00
|
|
|
SimulatorReport
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-13 09:45:06 -06:00
|
|
|
assemble(Simulator& ebosSimulator,
|
|
|
|
const int iterationIdx,
|
|
|
|
const double dt,
|
|
|
|
WellState& well_state)
|
|
|
|
{
|
2017-03-09 08:43:13 -06:00
|
|
|
|
2017-03-24 09:11:49 -05:00
|
|
|
if (iterationIdx == 0) {
|
|
|
|
prepareTimeStep(ebosSimulator, well_state);
|
|
|
|
}
|
|
|
|
|
2017-02-13 09:45:06 -06:00
|
|
|
SimulatorReport report;
|
2017-04-12 10:37:34 -05:00
|
|
|
if ( ! wellsActive() ) {
|
2017-02-13 09:45:06 -06:00
|
|
|
return report;
|
|
|
|
}
|
|
|
|
|
|
|
|
updateWellControls(well_state);
|
2017-06-28 06:46:01 -05:00
|
|
|
updateGroupControls(well_state);
|
2017-02-13 09:45:06 -06:00
|
|
|
// Set the primary variables for the wells
|
|
|
|
setWellVariables(well_state);
|
|
|
|
|
|
|
|
if (iterationIdx == 0) {
|
|
|
|
computeWellConnectionPressures(ebosSimulator, well_state);
|
|
|
|
computeAccumWells();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (param_.solve_welleq_initially_ && iterationIdx == 0) {
|
|
|
|
// solve the well equations as a pre-processing step
|
|
|
|
report = solveWellEq(ebosSimulator, dt, well_state);
|
|
|
|
}
|
|
|
|
assembleWellEq(ebosSimulator, dt, well_state, false);
|
|
|
|
|
|
|
|
report.converged = true;
|
|
|
|
return report;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 09:45:06 -06:00
|
|
|
void
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-13 09:45:06 -06:00
|
|
|
assembleWellEq(Simulator& ebosSimulator,
|
|
|
|
const double dt,
|
|
|
|
WellState& well_state,
|
|
|
|
bool only_wells)
|
|
|
|
{
|
2017-06-27 05:17:36 -05:00
|
|
|
for (int w = 0; w < number_of_wells_; ++w) {
|
|
|
|
well_container_[w]->assembleWellEq(ebosSimulator, dt, well_state, only_wells);
|
2017-02-13 09:45:06 -06:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2017-06-27 09:59:52 -05:00
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 10:07:34 -06:00
|
|
|
void
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-13 10:07:34 -06:00
|
|
|
localInvert(Mat& istlA) const
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-07-21 07:21:17 -05:00
|
|
|
// applying the well residual to reservoir residuals
|
|
|
|
// r = r - duneC_^T * invDuneD_ * resWell_
|
|
|
|
// TODO: for this, we should calcuate the duneC_^T * invDuneD_ * resWell_ for each
|
|
|
|
// well, then sum them up and apply to r finally
|
|
|
|
// In a more general case, the number of the equations for reservoir and wells can be different,
|
|
|
|
// we need to think about the possible data types can be faced.
|
|
|
|
// we do not want to expose the some well related data type even inside the Well Model
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 10:07:34 -06:00
|
|
|
void
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-13 10:07:34 -06:00
|
|
|
print(Mat& istlA) const
|
|
|
|
{
|
|
|
|
for (auto row = istlA.begin(), rowend = istlA.end(); row != rowend; ++row ) {
|
|
|
|
for (auto col = row->begin(), colend = row->end(); col != colend; ++col ) {
|
|
|
|
std::cout << row.index() << " " << col.index() << "/n \n"<<(*col) << std::endl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 10:07:34 -06:00
|
|
|
void
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-13 10:07:34 -06:00
|
|
|
apply( BVector& r) const
|
|
|
|
{
|
|
|
|
if ( ! localWellsActive() ) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2017-07-21 07:21:17 -05:00
|
|
|
for (auto& well : well_container_) {
|
|
|
|
well->apply(r);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* assert( invDrw_.size() == invDuneD_.N() );
|
2017-02-13 10:07:34 -06:00
|
|
|
|
2017-07-21 07:21:17 -05:00
|
|
|
// invDrw_ = invDuneD_ * resWell_
|
2017-02-13 10:07:34 -06:00
|
|
|
invDuneD_.mv(resWell_,invDrw_);
|
2017-07-21 07:21:17 -05:00
|
|
|
// r = r - duneC_^T * invDrw_
|
|
|
|
duneC_.mmtv(invDrw_, r); */
|
2017-02-13 10:07:34 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-07-21 07:21:17 -05:00
|
|
|
// Ax = A x - C D^-1 B x
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 10:07:34 -06:00
|
|
|
void
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-06-07 07:23:43 -05:00
|
|
|
apply(const BVector& x, BVector& Ax) const
|
2017-02-13 10:07:34 -06:00
|
|
|
{
|
2017-07-21 08:30:34 -05:00
|
|
|
// TODO: do we still need localWellsActive()?
|
2017-02-13 10:07:34 -06:00
|
|
|
if ( ! localWellsActive() ) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2017-07-21 07:21:17 -05:00
|
|
|
for (auto& well : well_container_) {
|
|
|
|
well->apply(x, Ax);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* assert( Bx_.size() == duneB_.N() );
|
2017-02-13 10:07:34 -06:00
|
|
|
|
2017-07-21 04:09:28 -05:00
|
|
|
BVector& invDBx = invDrw_;
|
|
|
|
assert( invDBx.size() == invDuneD_.N());
|
2017-02-13 10:07:34 -06:00
|
|
|
|
2017-07-21 07:21:17 -05:00
|
|
|
// Bx_ = duneB_ * x
|
2017-07-21 04:09:28 -05:00
|
|
|
duneB_.mv(x, Bx_);
|
2017-07-21 07:21:17 -05:00
|
|
|
// invDBx = invDuneD_ * Bx_
|
2017-07-21 04:09:28 -05:00
|
|
|
invDuneD_.mv(Bx_, invDBx);
|
2017-07-21 07:21:17 -05:00
|
|
|
// Ax = Ax - duneC_^T * invDBx
|
2017-07-21 04:09:28 -05:00
|
|
|
duneC_.mmtv(invDBx,Ax);
|
2017-07-21 07:21:17 -05:00
|
|
|
*/
|
2017-02-13 10:07:34 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-07-21 07:21:17 -05:00
|
|
|
// Ax = Ax - alpha * C D^-1 B x
|
|
|
|
// TODO: for the new Well Model, we will calcuate
|
|
|
|
// C D^-1 B for each well and sum it up
|
|
|
|
// while it can be implemented in the function apply()
|
|
|
|
// then this function does not need to change
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 10:07:34 -06:00
|
|
|
void
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-06-07 07:23:43 -05:00
|
|
|
applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const
|
2017-02-13 10:07:34 -06:00
|
|
|
{
|
|
|
|
if ( ! localWellsActive() ) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( scaleAddRes_.size() != Ax.size() ) {
|
|
|
|
scaleAddRes_.resize( Ax.size() );
|
|
|
|
}
|
|
|
|
|
|
|
|
scaleAddRes_ = 0.0;
|
2017-07-21 07:21:17 -05:00
|
|
|
// scaleAddRes_ = - C D^-1 B x
|
2017-02-13 10:07:34 -06:00
|
|
|
apply( x, scaleAddRes_ );
|
2017-07-21 07:21:17 -05:00
|
|
|
// Ax = Ax + alpha * scaleAddRes_
|
2017-02-13 10:07:34 -06:00
|
|
|
Ax.axpy( alpha, scaleAddRes_ );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 10:07:34 -06:00
|
|
|
void
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-07-21 08:30:34 -05:00
|
|
|
applySolutionWellState(const BVector& x, WellState& well_state) const
|
2017-02-13 10:07:34 -06:00
|
|
|
{
|
2017-07-21 08:30:34 -05:00
|
|
|
for (auto& well : well_container_) {
|
|
|
|
well->applySolutionWellState(x, param_, well_state);
|
2017-02-13 10:07:34 -06:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-07-21 08:30:34 -05:00
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 10:07:34 -06:00
|
|
|
int
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-06-07 02:29:31 -05:00
|
|
|
flowToEbosPvIdx( const int flowPv ) const
|
2017-02-13 10:07:34 -06:00
|
|
|
{
|
2017-06-07 02:29:31 -05:00
|
|
|
const int flowToEbos[ 3 ] = {
|
|
|
|
BlackoilIndices::pressureSwitchIdx,
|
|
|
|
BlackoilIndices::waterSaturationIdx,
|
|
|
|
BlackoilIndices::compositionSwitchIdx
|
|
|
|
};
|
2017-02-13 10:07:34 -06:00
|
|
|
|
2017-06-07 02:29:31 -05:00
|
|
|
if (flowPv > 2 )
|
|
|
|
return flowPv;
|
2017-02-13 10:07:34 -06:00
|
|
|
|
2017-06-07 02:29:31 -05:00
|
|
|
return flowToEbos[ flowPv ];
|
|
|
|
}
|
2017-02-13 10:07:34 -06:00
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 10:07:34 -06:00
|
|
|
int
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-06-07 02:29:31 -05:00
|
|
|
flowPhaseToEbosCompIdx( const int phaseIdx ) const
|
2017-02-13 10:07:34 -06:00
|
|
|
{
|
2017-06-07 02:29:31 -05:00
|
|
|
const int phaseToComp[ 3 ] = { FluidSystem::waterCompIdx, FluidSystem::oilCompIdx, FluidSystem::gasCompIdx};
|
|
|
|
if (phaseIdx > 2 )
|
|
|
|
return phaseIdx;
|
|
|
|
return phaseToComp[ phaseIdx ];
|
2017-02-13 10:07:34 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-14 06:39:53 -06:00
|
|
|
int
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-14 06:39:53 -06:00
|
|
|
flowPhaseToEbosPhaseIdx( const int phaseIdx ) const
|
|
|
|
{
|
2017-05-03 06:34:15 -05:00
|
|
|
assert(phaseIdx < 3);
|
2017-02-14 06:39:53 -06:00
|
|
|
const int flowToEbos[ 3 ] = { FluidSystem::waterPhaseIdx, FluidSystem::oilPhaseIdx, FluidSystem::gasPhaseIdx };
|
|
|
|
return flowToEbos[ phaseIdx ];
|
|
|
|
}
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 10:07:34 -06:00
|
|
|
std::vector<double>
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-13 10:07:34 -06:00
|
|
|
extractPerfData(const std::vector<double>& in) const
|
|
|
|
{
|
|
|
|
const int nw = wells().number_of_wells;
|
|
|
|
const int nperf = wells().well_connpos[nw];
|
|
|
|
std::vector<double> out(nperf);
|
|
|
|
for (int w = 0; w < nw; ++w) {
|
|
|
|
for (int perf = wells().well_connpos[w] ; perf < wells().well_connpos[w+1]; ++perf) {
|
|
|
|
const int well_idx = wells().well_cells[perf];
|
|
|
|
out[perf] = in[well_idx];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 10:07:34 -06:00
|
|
|
int
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-13 10:07:34 -06:00
|
|
|
numPhases() const
|
|
|
|
{
|
|
|
|
return wells().number_of_phases;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 10:07:34 -06:00
|
|
|
int
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-13 10:07:34 -06:00
|
|
|
numCells() const
|
|
|
|
{
|
|
|
|
return pv_.size();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 10:07:34 -06:00
|
|
|
void
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-03-08 04:29:06 -06:00
|
|
|
resetWellControlFromState(const WellState& xw) const
|
2017-02-13 10:07:34 -06:00
|
|
|
{
|
|
|
|
const int nw = wells_->number_of_wells;
|
|
|
|
for (int w = 0; w < nw; ++w) {
|
|
|
|
WellControls* wc = wells_->ctrls[w];
|
|
|
|
well_controls_set_current( wc, xw.currentControls()[w]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 10:07:34 -06:00
|
|
|
const Wells&
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-13 10:07:34 -06:00
|
|
|
wells() const
|
|
|
|
{
|
|
|
|
assert(wells_ != 0);
|
|
|
|
return *(wells_);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 10:07:34 -06:00
|
|
|
const Wells*
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-13 10:07:34 -06:00
|
|
|
wellsPointer() const
|
|
|
|
{
|
|
|
|
return wells_;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 10:07:34 -06:00
|
|
|
bool
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-13 10:07:34 -06:00
|
|
|
wellsActive() const
|
|
|
|
{
|
|
|
|
return wells_active_;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 10:07:34 -06:00
|
|
|
void
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-13 10:07:34 -06:00
|
|
|
setWellsActive(const bool wells_active)
|
|
|
|
{
|
|
|
|
wells_active_ = wells_active;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 10:07:34 -06:00
|
|
|
bool
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-13 10:07:34 -06:00
|
|
|
localWellsActive() const
|
|
|
|
{
|
|
|
|
return wells_ ? (wells_->number_of_wells > 0 ) : false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 10:07:34 -06:00
|
|
|
const std::vector<double>&
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-13 10:07:34 -06:00
|
|
|
wellPerforationDensities() const
|
|
|
|
{
|
|
|
|
return well_perforation_densities_;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 10:07:34 -06:00
|
|
|
const std::vector<double>&
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-13 10:07:34 -06:00
|
|
|
wellPerforationPressureDiffs() const
|
|
|
|
{
|
|
|
|
return well_perforation_pressure_diffs_;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2017-02-14 08:06:57 -06:00
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
|
|
|
typename StandardWellsDense<TypeTag>::EvalWell
|
|
|
|
StandardWellsDense<TypeTag>::
|
2017-06-08 08:35:40 -05:00
|
|
|
extendEval(const Eval& in) const {
|
2017-02-13 10:07:34 -06:00
|
|
|
EvalWell out = 0.0;
|
|
|
|
out.setValue(in.value());
|
2017-05-03 06:34:15 -05:00
|
|
|
for(int eqIdx = 0; eqIdx < numEq;++eqIdx) {
|
|
|
|
out.setDerivative(eqIdx, in.derivative(flowToEbosPvIdx(eqIdx)));
|
2017-02-13 10:07:34 -06:00
|
|
|
}
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2017-02-14 08:06:57 -06:00
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 10:07:34 -06:00
|
|
|
void
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-13 10:07:34 -06:00
|
|
|
setWellVariables(const WellState& xw)
|
|
|
|
{
|
2017-07-25 03:15:27 -05:00
|
|
|
for (auto& well : well_container_) {
|
|
|
|
well->setWellVariables(xw);
|
2017-06-19 05:43:08 -05:00
|
|
|
}
|
2017-02-13 10:07:34 -06:00
|
|
|
}
|
|
|
|
|
2017-02-14 08:06:57 -06:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 10:07:34 -06:00
|
|
|
void
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-06-08 08:35:40 -05:00
|
|
|
print(const EvalWell& in) const
|
2017-02-13 10:07:34 -06:00
|
|
|
{
|
|
|
|
std::cout << in.value() << std::endl;
|
|
|
|
for (int i = 0; i < in.size; ++i) {
|
|
|
|
std::cout << in.derivative(i) << std::endl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-02-14 08:06:57 -06:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-13 10:07:34 -06:00
|
|
|
void
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-13 10:07:34 -06:00
|
|
|
computeAccumWells()
|
|
|
|
{
|
2017-06-29 06:52:31 -05:00
|
|
|
for (auto& well : well_container_) {
|
|
|
|
well->computeAccumWell();
|
2017-02-13 10:07:34 -06:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2017-02-14 04:34:03 -06:00
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-14 04:34:03 -06:00
|
|
|
SimulatorReport
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-14 04:34:03 -06:00
|
|
|
solveWellEq(Simulator& ebosSimulator,
|
|
|
|
const double dt,
|
|
|
|
WellState& well_state)
|
|
|
|
{
|
|
|
|
const int nw = wells().number_of_wells;
|
|
|
|
WellState well_state0 = well_state;
|
|
|
|
|
2017-07-21 09:01:32 -05:00
|
|
|
const int numComp = numComponents();
|
|
|
|
std::vector< Scalar > B_avg( numComp, Scalar() );
|
|
|
|
computeAverageFormationFactor(ebosSimulator, B_avg);
|
|
|
|
|
2017-02-14 04:34:03 -06:00
|
|
|
int it = 0;
|
|
|
|
bool converged;
|
|
|
|
do {
|
|
|
|
assembleWellEq(ebosSimulator, dt, well_state, true);
|
2017-07-21 09:01:32 -05:00
|
|
|
|
|
|
|
converged = getWellConvergence(ebosSimulator, B_avg);
|
2017-02-14 04:34:03 -06:00
|
|
|
|
|
|
|
// checking whether the group targets are converged
|
|
|
|
if (wellCollection()->groupControlActive()) {
|
|
|
|
converged = converged && wellCollection()->groupTargetConverged(well_state.wellRates());
|
|
|
|
}
|
|
|
|
|
|
|
|
if (converged) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
++it;
|
|
|
|
if( localWellsActive() )
|
|
|
|
{
|
2017-06-28 06:46:01 -05:00
|
|
|
for (auto& well : well_container_) {
|
|
|
|
well->wellEqIteration(ebosSimulator, param_, well_state);
|
|
|
|
}
|
2017-04-12 10:37:34 -05:00
|
|
|
}
|
|
|
|
// updateWellControls uses communication
|
|
|
|
// Therefore the following is executed if there
|
|
|
|
// are active wells anywhere in the global domain.
|
|
|
|
if( wellsActive() )
|
|
|
|
{
|
2017-02-14 04:34:03 -06:00
|
|
|
updateWellControls(well_state);
|
2017-06-28 06:46:01 -05:00
|
|
|
updateGroupControls(well_state);
|
2017-02-14 04:34:03 -06:00
|
|
|
setWellVariables(well_state);
|
|
|
|
}
|
|
|
|
} while (it < 15);
|
|
|
|
|
|
|
|
if (!converged) {
|
|
|
|
well_state = well_state0;
|
2017-03-08 07:02:00 -06:00
|
|
|
// also recover the old well controls
|
|
|
|
for (int w = 0; w < nw; ++w) {
|
|
|
|
WellControls* wc = wells().ctrls[w];
|
|
|
|
well_controls_set_current(wc, well_state.currentControls()[w]);
|
|
|
|
}
|
2017-02-14 04:34:03 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
SimulatorReport report;
|
|
|
|
report.converged = converged;
|
|
|
|
report.total_well_iterations = it;
|
|
|
|
return report;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-14 04:34:03 -06:00
|
|
|
void
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-14 04:34:03 -06:00
|
|
|
printIf(const int c, const double x, const double y, const double eps, const std::string type) const
|
|
|
|
{
|
|
|
|
if (std::abs(x-y) > eps) {
|
|
|
|
std::cout << type << " " << c << ": "<<x << " " << y << std::endl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-14 04:34:03 -06:00
|
|
|
std::vector<double>
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-14 04:34:03 -06:00
|
|
|
residual() const
|
|
|
|
{
|
2017-07-25 03:15:27 -05:00
|
|
|
// TODO: to decide later whether to output this
|
|
|
|
// Even yes, we do not need resWell_. We will use the values
|
|
|
|
// from each individual well.
|
|
|
|
/* if( ! wellsActive() )
|
2017-02-14 04:34:03 -06:00
|
|
|
{
|
|
|
|
return std::vector<double>();
|
|
|
|
}
|
|
|
|
|
|
|
|
const int nw = wells().number_of_wells;
|
2017-05-03 06:34:15 -05:00
|
|
|
const int numComp = numComponents();
|
2017-06-07 02:29:31 -05:00
|
|
|
std::vector<double> res(numEq*nw, 0.0);
|
2017-05-03 06:34:15 -05:00
|
|
|
for( int compIdx = 0; compIdx < numComp; ++compIdx) {
|
2017-06-07 02:29:31 -05:00
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
for (int wellIdx = 0; wellIdx < nw; ++wellIdx) {
|
|
|
|
int idx = wellIdx + nw*compIdx;
|
2017-06-07 05:31:13 -05:00
|
|
|
res[idx] = resWell_[ wellIdx ][ compIdx ];
|
2017-02-14 04:34:03 -06:00
|
|
|
}
|
|
|
|
}
|
2017-07-25 03:15:27 -05:00
|
|
|
return res; */
|
2017-02-14 04:34:03 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-14 04:34:03 -06:00
|
|
|
bool
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-14 04:34:03 -06:00
|
|
|
getWellConvergence(Simulator& ebosSimulator,
|
2017-07-21 09:01:32 -05:00
|
|
|
const std::vector<Scalar>& B_avg) const
|
2017-02-14 04:34:03 -06:00
|
|
|
{
|
2017-06-28 04:15:04 -05:00
|
|
|
bool converged_well = true;
|
2017-02-14 04:34:03 -06:00
|
|
|
|
2017-06-28 04:15:04 -05:00
|
|
|
// TODO: to check the strategy here
|
|
|
|
// currently, if there is any well not converged, we consider the well eqautions do not get converged
|
|
|
|
for (const auto& well : well_container_) {
|
|
|
|
if ( !well->getWellConvergence(ebosSimulator, B_avg, param_) ) {
|
|
|
|
converged_well = false;
|
2017-07-19 09:10:50 -05:00
|
|
|
// break; // TODO: no need to check other wells?
|
2017-03-24 06:12:06 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-06-28 04:15:04 -05:00
|
|
|
// TODO: to think about the output here.
|
|
|
|
/* if ( terminal_output_ )
|
2017-02-14 04:34:03 -06:00
|
|
|
{
|
|
|
|
// Only rank 0 does print to std::cout
|
|
|
|
if (iteration == 0) {
|
|
|
|
std::string msg;
|
|
|
|
msg = "Iter";
|
|
|
|
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
|
|
|
|
const std::string& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
|
|
|
|
msg += " W-FLUX(" + phaseName + ")";
|
|
|
|
}
|
|
|
|
OpmLog::note(msg);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::ostringstream ss;
|
|
|
|
const std::streamsize oprec = ss.precision(3);
|
|
|
|
const std::ios::fmtflags oflags = ss.setf(std::ios::scientific);
|
|
|
|
ss << std::setw(4) << iteration;
|
2017-05-03 06:34:15 -05:00
|
|
|
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
|
|
|
|
ss << std::setw(11) << well_flux_residual[compIdx];
|
2017-02-14 04:34:03 -06:00
|
|
|
}
|
|
|
|
ss.precision(oprec);
|
|
|
|
ss.flags(oflags);
|
|
|
|
OpmLog::note(ss.str());
|
2017-06-28 04:15:04 -05:00
|
|
|
} */
|
|
|
|
return converged_well;
|
2017-02-14 04:34:03 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-14 04:34:03 -06:00
|
|
|
void
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-14 04:34:03 -06:00
|
|
|
computeWellConnectionPressures(const Simulator& ebosSimulator,
|
|
|
|
const WellState& xw)
|
|
|
|
{
|
|
|
|
if( ! localWellsActive() ) return ;
|
|
|
|
|
2017-06-29 06:52:31 -05:00
|
|
|
for (auto& well : well_container_) {
|
|
|
|
well->computeWellConnectionPressures(ebosSimulator, xw);
|
|
|
|
}
|
2017-02-14 04:34:03 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-14 04:34:03 -06:00
|
|
|
void
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-14 04:34:03 -06:00
|
|
|
updateWellControls(WellState& xw) const
|
|
|
|
{
|
2017-04-12 10:37:34 -05:00
|
|
|
// Even if there no wells active locally, we cannot
|
|
|
|
// return as the Destructor of the WellSwitchingLogger
|
|
|
|
// uses global communication. For no well active globally
|
|
|
|
// we simply return.
|
|
|
|
if( !wellsActive() ) return ;
|
2017-02-14 04:34:03 -06:00
|
|
|
|
2017-06-28 04:15:04 -05:00
|
|
|
for (const auto& well : well_container_) {
|
|
|
|
well->updateWellControl(xw);
|
2017-02-14 04:34:03 -06:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2017-02-14 06:39:53 -06:00
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-14 06:39:53 -06:00
|
|
|
void
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-14 06:39:53 -06:00
|
|
|
updateListEconLimited(const Schedule& schedule,
|
|
|
|
const int current_step,
|
|
|
|
const Wells* wells_struct,
|
|
|
|
const WellState& well_state,
|
|
|
|
DynamicListEconLimited& list_econ_limited) const
|
|
|
|
{
|
|
|
|
// With no wells (on process) wells_struct is a null pointer
|
|
|
|
const int nw = (wells_struct)? wells_struct->number_of_wells : 0;
|
|
|
|
|
|
|
|
for (int w = 0; w < nw; ++w) {
|
|
|
|
// flag to check if the mim oil/gas rate limit is violated
|
|
|
|
bool rate_limit_violated = false;
|
|
|
|
const std::string& well_name = wells_struct->name[w];
|
|
|
|
const Well* well_ecl = schedule.getWell(well_name);
|
|
|
|
const WellEconProductionLimits& econ_production_limits = well_ecl->getEconProductionLimits(current_step);
|
|
|
|
|
|
|
|
// economic limits only apply for production wells.
|
|
|
|
if (wells_struct->type[w] != PRODUCER) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// if no limit is effective here, then continue to the next well
|
|
|
|
if ( !econ_production_limits.onAnyEffectiveLimit() ) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
// for the moment, we only handle rate limits, not handling potential limits
|
|
|
|
// the potential limits should not be difficult to add
|
|
|
|
const WellEcon::QuantityLimitEnum& quantity_limit = econ_production_limits.quantityLimit();
|
|
|
|
if (quantity_limit == WellEcon::POTN) {
|
|
|
|
const std::string msg = std::string("POTN limit for well ") + well_name + std::string(" is not supported for the moment. \n")
|
|
|
|
+ std::string("All the limits will be evaluated based on RATE. ");
|
|
|
|
OpmLog::warning("NOT_SUPPORTING_POTN", msg);
|
|
|
|
}
|
|
|
|
|
|
|
|
const WellMapType& well_map = well_state.wellMap();
|
|
|
|
const typename WellMapType::const_iterator i_well = well_map.find(well_name);
|
|
|
|
assert(i_well != well_map.end()); // should always be found?
|
|
|
|
const WellMapEntryType& map_entry = i_well->second;
|
|
|
|
const int well_number = map_entry[0];
|
|
|
|
|
|
|
|
if (econ_production_limits.onAnyRateLimit()) {
|
|
|
|
rate_limit_violated = checkRateEconLimits(econ_production_limits, well_state, well_number);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rate_limit_violated) {
|
|
|
|
if (econ_production_limits.endRun()) {
|
|
|
|
const std::string warning_message = std::string("ending run after well closed due to economic limits is not supported yet \n")
|
|
|
|
+ std::string("the program will keep running after ") + well_name + std::string(" is closed");
|
|
|
|
OpmLog::warning("NOT_SUPPORTING_ENDRUN", warning_message);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (econ_production_limits.validFollowonWell()) {
|
|
|
|
OpmLog::warning("NOT_SUPPORTING_FOLLOWONWELL", "opening following on well after well closed is not supported yet");
|
|
|
|
}
|
|
|
|
|
|
|
|
if (well_ecl->getAutomaticShutIn()) {
|
|
|
|
list_econ_limited.addShutWell(well_name);
|
|
|
|
const std::string msg = std::string("well ") + well_name + std::string(" will be shut in due to economic limit");
|
|
|
|
OpmLog::info(msg);
|
|
|
|
} else {
|
|
|
|
list_econ_limited.addStoppedWell(well_name);
|
|
|
|
const std::string msg = std::string("well ") + well_name + std::string(" will be stopped due to economic limit");
|
|
|
|
OpmLog::info(msg);
|
|
|
|
}
|
|
|
|
// the well is closed, not need to check other limits
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// checking for ratio related limits, mostly all kinds of ratio.
|
|
|
|
bool ratio_limits_violated = false;
|
|
|
|
RatioCheckTuple ratio_check_return;
|
|
|
|
|
|
|
|
if (econ_production_limits.onAnyRatioLimit()) {
|
|
|
|
ratio_check_return = checkRatioEconLimits(econ_production_limits, well_state, map_entry);
|
|
|
|
ratio_limits_violated = std::get<0>(ratio_check_return);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ratio_limits_violated) {
|
|
|
|
const bool last_connection = std::get<1>(ratio_check_return);
|
|
|
|
const int worst_offending_connection = std::get<2>(ratio_check_return);
|
|
|
|
|
|
|
|
const int perf_start = map_entry[1];
|
|
|
|
|
|
|
|
assert((worst_offending_connection >= 0) && (worst_offending_connection < map_entry[2]));
|
|
|
|
|
|
|
|
const int cell_worst_offending_connection = wells_struct->well_cells[perf_start + worst_offending_connection];
|
|
|
|
list_econ_limited.addClosedConnectionsForWell(well_name, cell_worst_offending_connection);
|
|
|
|
const std::string msg = std::string("Connection ") + std::to_string(worst_offending_connection) + std::string(" for well ")
|
|
|
|
+ well_name + std::string(" will be closed due to economic limit");
|
|
|
|
OpmLog::info(msg);
|
|
|
|
|
|
|
|
if (last_connection) {
|
|
|
|
list_econ_limited.addShutWell(well_name);
|
|
|
|
const std::string msg2 = well_name + std::string(" will be shut due to the last connection closed");
|
|
|
|
OpmLog::info(msg2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
} // for (int w = 0; w < nw; ++w)
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-14 06:39:53 -06:00
|
|
|
void
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-14 06:39:53 -06:00
|
|
|
computeWellPotentials(const Simulator& ebosSimulator,
|
2017-03-23 05:36:49 -05:00
|
|
|
const WellState& well_state,
|
2017-04-03 08:07:56 -05:00
|
|
|
std::vector<double>& well_potentials) const
|
2017-02-14 06:39:53 -06:00
|
|
|
{
|
|
|
|
|
|
|
|
// number of wells and phases
|
2017-07-25 03:15:27 -05:00
|
|
|
const int nw = number_of_wells_;
|
|
|
|
const int np = number_of_phases_;
|
2017-02-14 06:39:53 -06:00
|
|
|
|
2017-03-23 05:36:49 -05:00
|
|
|
well_potentials.resize(nw * np, 0.0);
|
|
|
|
|
2017-02-14 06:39:53 -06:00
|
|
|
for (int w = 0; w < nw; ++w) {
|
2017-07-25 03:15:27 -05:00
|
|
|
std::vector<double> potentials;
|
|
|
|
well_container_[w]->computeWellPotentials(ebosSimulator, well_state, potentials);
|
2017-02-14 06:39:53 -06:00
|
|
|
|
2017-03-31 09:33:20 -05:00
|
|
|
// putting the sucessfully calculated potentials to the well_potentials
|
|
|
|
for (int p = 0; p < np; ++p) {
|
|
|
|
well_potentials[w * np + p] = std::abs(potentials[p]);
|
2017-02-14 06:39:53 -06:00
|
|
|
}
|
2017-02-14 08:06:57 -06:00
|
|
|
} // end of for (int w = 0; w < nw; ++w)
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-03-16 10:39:05 -05:00
|
|
|
void
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-03-16 10:39:05 -05:00
|
|
|
prepareTimeStep(const Simulator& ebos_simulator,
|
|
|
|
WellState& well_state)
|
|
|
|
{
|
2017-03-31 05:50:50 -05:00
|
|
|
const int nw = wells().number_of_wells;
|
|
|
|
for (int w = 0; w < nw; ++w) {
|
2017-04-07 07:17:54 -05:00
|
|
|
// after restarting, the well_controls can be modified while
|
|
|
|
// the well_state still uses the old control index
|
|
|
|
// we need to synchronize these two.
|
2017-04-11 08:02:36 -05:00
|
|
|
resetWellControlFromState(well_state);
|
2017-03-31 05:50:50 -05:00
|
|
|
|
|
|
|
if (wellCollection()->groupControlActive()) {
|
2017-04-07 07:17:54 -05:00
|
|
|
WellControls* wc = wells().ctrls[w];
|
2017-03-31 05:50:50 -05:00
|
|
|
WellNode& well_node = well_collection_->findWellNode(std::string(wells().name[w]));
|
|
|
|
|
2017-04-07 07:17:54 -05:00
|
|
|
// handling the situation that wells do not have a valid control
|
|
|
|
// it happens the well specified with GRUP and restarting due to non-convergencing
|
|
|
|
// putting the well under group control for this situation
|
|
|
|
int ctrl_index = well_controls_get_current(wc);
|
|
|
|
|
|
|
|
const int group_control_index = well_node.groupControlIndex();
|
|
|
|
if (group_control_index >= 0 && ctrl_index < 0) {
|
|
|
|
// put well under group control
|
|
|
|
well_controls_set_current(wc, group_control_index);
|
|
|
|
well_state.currentControls()[w] = group_control_index;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Final step, update whehter the well is under group control or individual control
|
|
|
|
// updated ctrl_index from the well control
|
|
|
|
ctrl_index = well_controls_get_current(wc);
|
2017-03-31 05:50:50 -05:00
|
|
|
if (well_node.groupControlIndex() >= 0 && ctrl_index == well_node.groupControlIndex()) {
|
|
|
|
// under group control
|
|
|
|
well_node.setIndividualControl(false);
|
|
|
|
} else {
|
|
|
|
// individual control
|
|
|
|
well_node.setIndividualControl(true);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-03-16 10:39:05 -05:00
|
|
|
if (well_collection_->groupControlActive()) {
|
2017-04-07 04:00:51 -05:00
|
|
|
if (well_collection_->requireWellPotentials()) {
|
2017-03-23 10:41:13 -05:00
|
|
|
|
2017-04-07 07:17:54 -05:00
|
|
|
// calculate the well potentials
|
2017-03-16 10:39:05 -05:00
|
|
|
setWellVariables(well_state);
|
|
|
|
computeWellConnectionPressures(ebos_simulator, well_state);
|
|
|
|
|
|
|
|
// To store well potentials for each well
|
|
|
|
std::vector<double> well_potentials;
|
2017-03-23 05:36:49 -05:00
|
|
|
computeWellPotentials(ebos_simulator, well_state, well_potentials);
|
2017-03-16 10:39:05 -05:00
|
|
|
|
|
|
|
// update/setup guide rates for each well based on the well_potentials
|
2017-03-23 10:41:13 -05:00
|
|
|
well_collection_->setGuideRatesWithPotentials(wellsPointer(), phase_usage_, well_potentials);
|
2017-04-06 07:53:44 -05:00
|
|
|
}
|
2017-03-31 05:50:50 -05:00
|
|
|
|
2017-03-16 10:39:05 -05:00
|
|
|
applyVREPGroupControl(well_state);
|
2017-03-23 10:41:13 -05:00
|
|
|
|
|
|
|
if (!wellCollection()->groupControlApplied()) {
|
|
|
|
wellCollection()->applyGroupControls();
|
|
|
|
} else {
|
|
|
|
wellCollection()->updateWellTargets(well_state.wellRates());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// since the controls are all updated, we should update well_state accordingly
|
|
|
|
for (int w = 0; w < nw; ++w) {
|
|
|
|
WellControls* wc = wells().ctrls[w];
|
|
|
|
const int control = well_controls_get_current(wc);
|
|
|
|
well_state.currentControls()[w] = control;
|
|
|
|
updateWellStateWithTarget(wc, control, w, well_state);
|
2017-04-03 08:07:56 -05:00
|
|
|
|
|
|
|
// The wells are not considered to be newly added
|
|
|
|
// for next time step
|
|
|
|
if (well_state.isNewWell(w) ) {
|
|
|
|
well_state.setNewWell(w, false);
|
|
|
|
}
|
2017-04-04 07:27:41 -05:00
|
|
|
} // end of for (int w = 0; w < nw; ++w)
|
2017-03-16 10:39:05 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-14 08:06:57 -06:00
|
|
|
WellCollection*
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-14 08:06:57 -06:00
|
|
|
wellCollection() const
|
|
|
|
{
|
|
|
|
return well_collection_;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-14 08:06:57 -06:00
|
|
|
const std::vector<double>&
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-14 08:06:57 -06:00
|
|
|
wellPerfEfficiencyFactors() const
|
|
|
|
{
|
|
|
|
return well_perforation_efficiency_factors_;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-14 08:06:57 -06:00
|
|
|
void
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-14 08:06:57 -06:00
|
|
|
calculateEfficiencyFactors()
|
|
|
|
{
|
|
|
|
if ( !localWellsActive() ) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const int nw = wells().number_of_wells;
|
|
|
|
|
|
|
|
for (int w = 0; w < nw; ++w) {
|
|
|
|
const std::string well_name = wells().name[w];
|
|
|
|
const WellNode& well_node = wellCollection()->findWellNode(well_name);
|
|
|
|
|
|
|
|
const double well_efficiency_factor = well_node.getAccumulativeEfficiencyFactor();
|
|
|
|
|
|
|
|
// assign the efficiency factor to each perforation related.
|
|
|
|
for (int perf = wells().well_connpos[w]; perf < wells().well_connpos[w + 1]; ++perf) {
|
|
|
|
well_perforation_efficiency_factors_[perf] = well_efficiency_factor;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-14 08:06:57 -06:00
|
|
|
void
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-14 08:06:57 -06:00
|
|
|
computeWellVoidageRates(const WellState& well_state,
|
|
|
|
std::vector<double>& well_voidage_rates,
|
|
|
|
std::vector<double>& voidage_conversion_coeffs) const
|
|
|
|
{
|
|
|
|
if ( !localWellsActive() ) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// TODO: for now, we store the voidage rates for all the production wells.
|
|
|
|
// For injection wells, the rates are stored as zero.
|
|
|
|
// We only store the conversion coefficients for all the injection wells.
|
|
|
|
// Later, more delicate model will be implemented here.
|
|
|
|
// And for the moment, group control can only work for serial running.
|
|
|
|
const int nw = well_state.numWells();
|
|
|
|
const int np = well_state.numPhases();
|
|
|
|
|
|
|
|
// we calculate the voidage rate for each well, that means the sum of all the phases.
|
|
|
|
well_voidage_rates.resize(nw, 0);
|
|
|
|
// store the conversion coefficients, while only for the use of injection wells.
|
|
|
|
voidage_conversion_coeffs.resize(nw * np, 1.0);
|
|
|
|
|
|
|
|
std::vector<double> well_rates(np, 0.0);
|
|
|
|
std::vector<double> convert_coeff(np, 1.0);
|
|
|
|
|
|
|
|
for (int w = 0; w < nw; ++w) {
|
|
|
|
const bool is_producer = wells().type[w] == PRODUCER;
|
|
|
|
|
|
|
|
// not sure necessary to change all the value to be positive
|
|
|
|
if (is_producer) {
|
|
|
|
std::transform(well_state.wellRates().begin() + np * w,
|
|
|
|
well_state.wellRates().begin() + np * (w + 1),
|
|
|
|
well_rates.begin(), std::negate<double>());
|
|
|
|
|
|
|
|
// the average hydrocarbon conditions of the whole field will be used
|
|
|
|
const int fipreg = 0; // Not considering FIP for the moment.
|
|
|
|
|
2017-08-10 04:20:09 -05:00
|
|
|
rate_converter_.calcCoeff(well_rates, fipreg, convert_coeff);
|
2017-02-14 08:06:57 -06:00
|
|
|
well_voidage_rates[w] = std::inner_product(well_rates.begin(), well_rates.end(),
|
|
|
|
convert_coeff.begin(), 0.0);
|
|
|
|
} else {
|
|
|
|
// TODO: Not sure whether will encounter situation with all zero rates
|
|
|
|
// and whether it will cause problem here.
|
|
|
|
std::copy(well_state.wellRates().begin() + np * w,
|
|
|
|
well_state.wellRates().begin() + np * (w + 1),
|
|
|
|
well_rates.begin());
|
|
|
|
// the average hydrocarbon conditions of the whole field will be used
|
|
|
|
const int fipreg = 0; // Not considering FIP for the moment.
|
2017-08-10 04:20:09 -05:00
|
|
|
rate_converter_.calcCoeff(well_rates, fipreg, convert_coeff);
|
2017-02-14 08:06:57 -06:00
|
|
|
std::copy(convert_coeff.begin(), convert_coeff.end(),
|
|
|
|
voidage_conversion_coeffs.begin() + np * w);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-14 08:06:57 -06:00
|
|
|
void
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-14 08:06:57 -06:00
|
|
|
applyVREPGroupControl(WellState& well_state) const
|
|
|
|
{
|
|
|
|
if ( wellCollection()->havingVREPGroups() ) {
|
|
|
|
std::vector<double> well_voidage_rates;
|
|
|
|
std::vector<double> voidage_conversion_coeffs;
|
|
|
|
computeWellVoidageRates(well_state, well_voidage_rates, voidage_conversion_coeffs);
|
|
|
|
wellCollection()->applyVREPGroupControls(well_voidage_rates, voidage_conversion_coeffs);
|
|
|
|
|
2017-03-09 08:54:23 -06:00
|
|
|
// for the wells under group control, update the control index for the well_state and well_controls
|
2017-02-14 08:06:57 -06:00
|
|
|
for (const WellNode* well_node : wellCollection()->getLeafNodes()) {
|
|
|
|
if (well_node->isInjector() && !well_node->individualControl()) {
|
|
|
|
const int well_index = well_node->selfIndex();
|
|
|
|
well_state.currentControls()[well_index] = well_node->groupControlIndex();
|
2017-03-09 08:54:23 -06:00
|
|
|
|
|
|
|
WellControls* wc = wells().ctrls[well_index];
|
|
|
|
well_controls_set_current(wc, well_node->groupControlIndex());
|
2017-02-14 08:06:57 -06:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-06-28 06:46:01 -05:00
|
|
|
template<typename TypeTag>
|
|
|
|
void
|
|
|
|
StandardWellsDense<TypeTag>::
|
|
|
|
updateGroupControls(WellState& well_state) const
|
|
|
|
{
|
|
|
|
if (wellCollection()->groupControlActive()) {
|
|
|
|
applyVREPGroupControl(well_state);
|
|
|
|
wellCollection()->updateWellTargets(well_state.wellRates());
|
|
|
|
|
|
|
|
// TODO: group control has to be applied in the level of the all wells
|
|
|
|
// upate the well targets following group controls
|
|
|
|
// it will not change the control mode, only update the targets
|
|
|
|
for (int w = 0; w < number_of_wells_; ++w) {
|
|
|
|
// TODO: check whether we need current argument in updateWellStateWithTarget
|
|
|
|
// maybe there is some circumstances that the current is different from the one
|
|
|
|
// in the WellState.
|
|
|
|
// while probalby, the current argument can be removed
|
|
|
|
const int current = well_state.currentControls()[w];
|
|
|
|
well_container_[w]->updateWellStateWithTarget(current, well_state);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-14 08:06:57 -06:00
|
|
|
bool
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-14 08:06:57 -06:00
|
|
|
checkRateEconLimits(const WellEconProductionLimits& econ_production_limits,
|
|
|
|
const WellState& well_state,
|
|
|
|
const int well_number) const
|
|
|
|
{
|
2017-05-03 06:34:15 -05:00
|
|
|
|
2017-02-14 08:06:57 -06:00
|
|
|
const Opm::PhaseUsage& pu = phase_usage_;
|
|
|
|
const int np = well_state.numPhases();
|
|
|
|
|
|
|
|
if (econ_production_limits.onMinOilRate()) {
|
|
|
|
assert(active_[Oil]);
|
|
|
|
const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ];
|
|
|
|
const double min_oil_rate = econ_production_limits.minOilRate();
|
|
|
|
if (std::abs(oil_rate) < min_oil_rate) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (econ_production_limits.onMinGasRate() ) {
|
|
|
|
assert(active_[Gas]);
|
|
|
|
const double gas_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Gas ] ];
|
|
|
|
const double min_gas_rate = econ_production_limits.minGasRate();
|
|
|
|
if (std::abs(gas_rate) < min_gas_rate) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (econ_production_limits.onMinLiquidRate() ) {
|
|
|
|
assert(active_[Oil]);
|
|
|
|
assert(active_[Water]);
|
|
|
|
const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ];
|
|
|
|
const double water_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Water ] ];
|
|
|
|
const double liquid_rate = oil_rate + water_rate;
|
|
|
|
const double min_liquid_rate = econ_production_limits.minLiquidRate();
|
|
|
|
if (std::abs(liquid_rate) < min_liquid_rate) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (econ_production_limits.onMinReservoirFluidRate()) {
|
|
|
|
OpmLog::warning("NOT_SUPPORTING_MIN_RESERVOIR_FLUID_RATE", "Minimum reservoir fluid production rate limit is not supported yet");
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
|
|
|
typename StandardWellsDense<TypeTag>::RatioCheckTuple
|
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-14 08:06:57 -06:00
|
|
|
checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits,
|
|
|
|
const WellState& well_state,
|
|
|
|
const WellMapEntryType& map_entry) const
|
|
|
|
{
|
|
|
|
// TODO: not sure how to define the worst-offending connection when more than one
|
|
|
|
// ratio related limit is violated.
|
|
|
|
// The defintion used here is that we define the violation extent based on the
|
|
|
|
// ratio between the value and the corresponding limit.
|
|
|
|
// For each violated limit, we decide the worst-offending connection separately.
|
|
|
|
// Among the worst-offending connections, we use the one has the biggest violation
|
|
|
|
// extent.
|
|
|
|
|
|
|
|
bool any_limit_violated = false;
|
|
|
|
bool last_connection = false;
|
|
|
|
int worst_offending_connection = INVALIDCONNECTION;
|
|
|
|
double violation_extent = -1.0;
|
|
|
|
|
|
|
|
if (econ_production_limits.onMaxWaterCut()) {
|
|
|
|
const RatioCheckTuple water_cut_return = checkMaxWaterCutLimit(econ_production_limits, well_state, map_entry);
|
|
|
|
bool water_cut_violated = std::get<0>(water_cut_return);
|
|
|
|
if (water_cut_violated) {
|
|
|
|
any_limit_violated = true;
|
|
|
|
const double violation_extent_water_cut = std::get<3>(water_cut_return);
|
|
|
|
if (violation_extent_water_cut > violation_extent) {
|
|
|
|
violation_extent = violation_extent_water_cut;
|
|
|
|
worst_offending_connection = std::get<2>(water_cut_return);
|
|
|
|
last_connection = std::get<1>(water_cut_return);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (econ_production_limits.onMaxGasOilRatio()) {
|
|
|
|
OpmLog::warning("NOT_SUPPORTING_MAX_GOR", "the support for max Gas-Oil ratio is not implemented yet!");
|
|
|
|
}
|
|
|
|
|
|
|
|
if (econ_production_limits.onMaxWaterGasRatio()) {
|
|
|
|
OpmLog::warning("NOT_SUPPORTING_MAX_WGR", "the support for max Water-Gas ratio is not implemented yet!");
|
|
|
|
}
|
|
|
|
|
|
|
|
if (econ_production_limits.onMaxGasLiquidRatio()) {
|
|
|
|
OpmLog::warning("NOT_SUPPORTING_MAX_GLR", "the support for max Gas-Liquid ratio is not implemented yet!");
|
|
|
|
}
|
|
|
|
|
|
|
|
if (any_limit_violated) {
|
|
|
|
assert(worst_offending_connection >=0);
|
|
|
|
assert(violation_extent > 1.);
|
|
|
|
}
|
|
|
|
|
|
|
|
return std::make_tuple(any_limit_violated, last_connection, worst_offending_connection, violation_extent);
|
2017-02-14 06:39:53 -06:00
|
|
|
}
|
|
|
|
|
2017-02-14 08:06:57 -06:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
|
|
|
typename StandardWellsDense<TypeTag>::RatioCheckTuple
|
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-14 08:06:57 -06:00
|
|
|
checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits,
|
|
|
|
const WellState& well_state,
|
|
|
|
const WellMapEntryType& map_entry) const
|
|
|
|
{
|
|
|
|
bool water_cut_limit_violated = false;
|
|
|
|
int worst_offending_connection = INVALIDCONNECTION;
|
|
|
|
bool last_connection = false;
|
|
|
|
double violation_extent = -1.0;
|
|
|
|
|
|
|
|
const int np = well_state.numPhases();
|
|
|
|
const Opm::PhaseUsage& pu = phase_usage_;
|
|
|
|
const int well_number = map_entry[0];
|
|
|
|
|
|
|
|
assert(active_[Oil]);
|
|
|
|
assert(active_[Water]);
|
|
|
|
|
|
|
|
const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ];
|
|
|
|
const double water_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Water ] ];
|
|
|
|
const double liquid_rate = oil_rate + water_rate;
|
|
|
|
double water_cut;
|
|
|
|
if (std::abs(liquid_rate) != 0.) {
|
|
|
|
water_cut = water_rate / liquid_rate;
|
|
|
|
} else {
|
|
|
|
water_cut = 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
const double max_water_cut_limit = econ_production_limits.maxWaterCut();
|
|
|
|
if (water_cut > max_water_cut_limit) {
|
|
|
|
water_cut_limit_violated = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (water_cut_limit_violated) {
|
|
|
|
// need to handle the worst_offending_connection
|
|
|
|
const int perf_start = map_entry[1];
|
|
|
|
const int perf_number = map_entry[2];
|
|
|
|
|
|
|
|
std::vector<double> water_cut_perf(perf_number);
|
|
|
|
for (int perf = 0; perf < perf_number; ++perf) {
|
|
|
|
const int i_perf = perf_start + perf;
|
|
|
|
const double oil_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Oil ] ];
|
|
|
|
const double water_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Water ] ];
|
|
|
|
const double liquid_perf_rate = oil_perf_rate + water_perf_rate;
|
|
|
|
if (std::abs(liquid_perf_rate) != 0.) {
|
|
|
|
water_cut_perf[perf] = water_perf_rate / liquid_perf_rate;
|
|
|
|
} else {
|
|
|
|
water_cut_perf[perf] = 0.;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
last_connection = (perf_number == 1);
|
|
|
|
if (last_connection) {
|
|
|
|
worst_offending_connection = 0;
|
|
|
|
violation_extent = water_cut_perf[0] / max_water_cut_limit;
|
|
|
|
return std::make_tuple(water_cut_limit_violated, last_connection, worst_offending_connection, violation_extent);
|
|
|
|
}
|
|
|
|
|
|
|
|
double max_water_cut_perf = 0.;
|
|
|
|
for (int perf = 0; perf < perf_number; ++perf) {
|
|
|
|
if (water_cut_perf[perf] > max_water_cut_perf) {
|
|
|
|
worst_offending_connection = perf;
|
|
|
|
max_water_cut_perf = water_cut_perf[perf];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(max_water_cut_perf != 0.);
|
|
|
|
assert((worst_offending_connection >= 0) && (worst_offending_connection < perf_number));
|
|
|
|
|
|
|
|
violation_extent = max_water_cut_perf / max_water_cut_limit;
|
|
|
|
}
|
|
|
|
|
|
|
|
return std::make_tuple(water_cut_limit_violated, last_connection, worst_offending_connection, violation_extent);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-03 06:34:15 -05:00
|
|
|
template<typename TypeTag>
|
2017-02-14 08:06:57 -06:00
|
|
|
void
|
2017-05-03 06:34:15 -05:00
|
|
|
StandardWellsDense<TypeTag>::
|
2017-02-14 08:06:57 -06:00
|
|
|
updateWellStateWithTarget(const WellControls* wc,
|
|
|
|
const int current,
|
|
|
|
const int well_index,
|
|
|
|
WellState& xw) const
|
|
|
|
{
|
|
|
|
// number of phases
|
|
|
|
const int np = wells().number_of_phases;
|
|
|
|
// Updating well state and primary variables.
|
|
|
|
// Target values are used as initial conditions for BHP, THP, and SURFACE_RATE
|
|
|
|
const double target = well_controls_iget_target(wc, current);
|
|
|
|
const double* distr = well_controls_iget_distr(wc, current);
|
|
|
|
switch (well_controls_iget_type(wc, current)) {
|
|
|
|
case BHP:
|
|
|
|
xw.bhp()[well_index] = target;
|
2017-03-08 04:33:16 -06:00
|
|
|
// TODO: similar to the way below to handle THP
|
|
|
|
// we should not something related to thp here when there is thp constraint
|
2017-02-14 08:06:57 -06:00
|
|
|
break;
|
|
|
|
|
|
|
|
case THP: {
|
2017-03-08 04:33:16 -06:00
|
|
|
xw.thp()[well_index] = target;
|
|
|
|
|
2017-02-14 08:06:57 -06:00
|
|
|
double aqua = 0.0;
|
|
|
|
double liquid = 0.0;
|
|
|
|
double vapour = 0.0;
|
|
|
|
|
|
|
|
const Opm::PhaseUsage& pu = phase_usage_;
|
|
|
|
|
|
|
|
if (active_[ Water ]) {
|
|
|
|
aqua = xw.wellRates()[well_index*np + pu.phase_pos[ Water ] ];
|
|
|
|
}
|
|
|
|
if (active_[ Oil ]) {
|
|
|
|
liquid = xw.wellRates()[well_index*np + pu.phase_pos[ Oil ] ];
|
|
|
|
}
|
|
|
|
if (active_[ Gas ]) {
|
|
|
|
vapour = xw.wellRates()[well_index*np + pu.phase_pos[ Gas ] ];
|
|
|
|
}
|
|
|
|
|
|
|
|
const int vfp = well_controls_iget_vfp(wc, current);
|
|
|
|
const double& thp = well_controls_iget_target(wc, current);
|
|
|
|
const double& alq = well_controls_iget_alq(wc, current);
|
|
|
|
|
|
|
|
//Set *BHP* target by calculating bhp from THP
|
|
|
|
const WellType& well_type = wells().type[well_index];
|
|
|
|
|
|
|
|
// pick the density in the top layer
|
|
|
|
const int perf = wells().well_connpos[well_index];
|
|
|
|
const double rho = well_perforation_densities_[perf];
|
|
|
|
|
|
|
|
if (well_type == INJECTOR) {
|
|
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(
|
|
|
|
wells(), well_index, vfp_properties_->getInj()->getTable(vfp)->getDatumDepth(),
|
|
|
|
rho, gravity_);
|
|
|
|
|
|
|
|
xw.bhp()[well_index] = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp;
|
|
|
|
}
|
|
|
|
else if (well_type == PRODUCER) {
|
|
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(
|
|
|
|
wells(), well_index, vfp_properties_->getProd()->getTable(vfp)->getDatumDepth(),
|
|
|
|
rho, gravity_);
|
|
|
|
|
|
|
|
xw.bhp()[well_index] = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2017-04-11 08:02:36 -05:00
|
|
|
case RESERVOIR_RATE: // intentional fall-through
|
2017-02-14 08:06:57 -06:00
|
|
|
case SURFACE_RATE:
|
2017-03-21 11:04:42 -05:00
|
|
|
// checking the number of the phases under control
|
|
|
|
int numPhasesWithTargetsUnderThisControl = 0;
|
|
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
|
|
if (distr[phase] > 0.0) {
|
|
|
|
numPhasesWithTargetsUnderThisControl += 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(numPhasesWithTargetsUnderThisControl > 0);
|
|
|
|
|
2017-02-14 08:06:57 -06:00
|
|
|
const WellType& well_type = wells().type[well_index];
|
|
|
|
if (well_type == INJECTOR) {
|
2017-03-21 11:04:42 -05:00
|
|
|
// assign target value as initial guess for injectors
|
|
|
|
// only handles single phase control at the moment
|
|
|
|
assert(numPhasesWithTargetsUnderThisControl == 1);
|
|
|
|
|
2017-02-14 08:06:57 -06:00
|
|
|
for (int phase = 0; phase < np; ++phase) {
|
2017-03-21 11:04:42 -05:00
|
|
|
if (distr[phase] > 0.) {
|
|
|
|
xw.wellRates()[np*well_index + phase] = target / distr[phase];
|
2017-03-20 11:11:46 -05:00
|
|
|
} else {
|
2017-03-21 11:04:42 -05:00
|
|
|
xw.wellRates()[np * well_index + phase] = 0.;
|
2017-03-20 11:11:46 -05:00
|
|
|
}
|
2017-02-14 08:06:57 -06:00
|
|
|
}
|
|
|
|
} else if (well_type == PRODUCER) {
|
2017-03-20 11:11:46 -05:00
|
|
|
// update the rates of phases under control based on the target,
|
|
|
|
// and also update rates of phases not under control to keep the rate ratio,
|
|
|
|
// assuming the mobility ratio does not change for the production wells
|
2017-04-11 08:02:36 -05:00
|
|
|
double original_rates_under_phase_control = 0.0;
|
2017-02-14 08:06:57 -06:00
|
|
|
for (int phase = 0; phase < np; ++phase) {
|
2017-03-20 11:11:46 -05:00
|
|
|
if (distr[phase] > 0.0) {
|
2017-04-11 08:02:36 -05:00
|
|
|
original_rates_under_phase_control += xw.wellRates()[np * well_index + phase] * distr[phase];
|
2017-02-14 08:06:57 -06:00
|
|
|
}
|
|
|
|
}
|
2017-03-20 11:11:46 -05:00
|
|
|
|
2017-04-11 08:02:36 -05:00
|
|
|
if (original_rates_under_phase_control != 0.0 ) {
|
|
|
|
double scaling_factor = target / original_rates_under_phase_control;
|
2017-03-20 11:11:46 -05:00
|
|
|
|
|
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
|
|
xw.wellRates()[np * well_index + phase] *= scaling_factor;
|
|
|
|
}
|
2017-04-11 08:02:36 -05:00
|
|
|
} else { // scaling factor is not well defied when original_rates_under_phase_control is zero
|
2017-03-21 11:04:42 -05:00
|
|
|
// separating targets equally between phases under control
|
2017-04-11 08:02:36 -05:00
|
|
|
const double target_rate_divided = target / numPhasesWithTargetsUnderThisControl;
|
2017-03-21 11:04:42 -05:00
|
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
|
|
if (distr[phase] > 0.0) {
|
2017-04-11 08:02:36 -05:00
|
|
|
xw.wellRates()[np * well_index + phase] = target_rate_divided / distr[phase];
|
2017-03-21 11:04:42 -05:00
|
|
|
} else {
|
|
|
|
// this only happens for SURFACE_RATE control
|
2017-04-11 08:02:36 -05:00
|
|
|
xw.wellRates()[np * well_index + phase] = target_rate_divided;
|
2017-03-20 11:11:46 -05:00
|
|
|
}
|
|
|
|
}
|
2017-03-21 11:04:42 -05:00
|
|
|
}
|
2017-02-14 08:06:57 -06:00
|
|
|
} else {
|
|
|
|
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
|
|
|
|
}
|
|
|
|
|
|
|
|
break;
|
|
|
|
} // end of switch
|
|
|
|
|
|
|
|
|
|
|
|
std::vector<double> g = {1.0, 1.0, 0.01};
|
|
|
|
if (well_controls_iget_type(wc, current) == RESERVOIR_RATE) {
|
|
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
|
|
g[phase] = distr[phase];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// the number of wells
|
|
|
|
const int nw = wells().number_of_wells;
|
|
|
|
|
|
|
|
switch (well_controls_iget_type(wc, current)) {
|
|
|
|
case THP:
|
|
|
|
case BHP: {
|
|
|
|
const WellType& well_type = wells().type[well_index];
|
|
|
|
xw.wellSolutions()[nw*XvarWell + well_index] = 0.0;
|
|
|
|
if (well_type == INJECTOR) {
|
|
|
|
for (int p = 0; p < np; ++p) {
|
|
|
|
xw.wellSolutions()[nw*XvarWell + well_index] += xw.wellRates()[np*well_index + p] * wells().comp_frac[np*well_index + p];
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (int p = 0; p < np; ++p) {
|
|
|
|
xw.wellSolutions()[nw*XvarWell + well_index] += g[p] * xw.wellRates()[np*well_index + p];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case RESERVOIR_RATE: // Intentional fall-through
|
|
|
|
case SURFACE_RATE:
|
|
|
|
xw.wellSolutions()[nw*XvarWell + well_index] = xw.bhp()[well_index];
|
|
|
|
break;
|
|
|
|
} // end of switch
|
|
|
|
|
|
|
|
double tot_well_rate = 0.0;
|
|
|
|
for (int p = 0; p < np; ++p) {
|
|
|
|
tot_well_rate += g[p] * xw.wellRates()[np*well_index + p];
|
|
|
|
}
|
|
|
|
if(std::abs(tot_well_rate) > 0) {
|
|
|
|
if (active_[ Water ]) {
|
|
|
|
xw.wellSolutions()[WFrac*nw + well_index] = g[Water] * xw.wellRates()[np*well_index + Water] / tot_well_rate;
|
|
|
|
}
|
|
|
|
if (active_[ Gas ]) {
|
2017-06-07 02:29:31 -05:00
|
|
|
xw.wellSolutions()[GFrac*nw + well_index] = g[Gas] * (xw.wellRates()[np*well_index + Gas] - xw.solventWellRate(well_index)) / tot_well_rate ;
|
2017-05-09 01:21:51 -05:00
|
|
|
}
|
|
|
|
if (has_solvent_) {
|
2017-06-07 02:29:31 -05:00
|
|
|
xw.wellSolutions()[SFrac*nw + well_index] = g[Gas] * xw.solventWellRate(well_index) / tot_well_rate ;
|
2017-02-14 08:06:57 -06:00
|
|
|
}
|
|
|
|
} else {
|
2017-03-21 11:04:42 -05:00
|
|
|
const WellType& well_type = wells().type[well_index];
|
|
|
|
if (well_type == INJECTOR) {
|
|
|
|
// only single phase injection handled
|
|
|
|
if (active_[Water]) {
|
|
|
|
if (distr[Water] > 0.0) {
|
|
|
|
xw.wellSolutions()[WFrac * nw + well_index] = 1.0;
|
|
|
|
} else {
|
|
|
|
xw.wellSolutions()[WFrac * nw + well_index] = 0.0;
|
|
|
|
}
|
|
|
|
}
|
2017-02-14 08:06:57 -06:00
|
|
|
|
2017-03-21 11:04:42 -05:00
|
|
|
if (active_[Gas]) {
|
|
|
|
if (distr[Gas] > 0.0) {
|
2017-05-09 01:21:51 -05:00
|
|
|
xw.wellSolutions()[GFrac * nw + well_index] = 1.0 - wsolvent(well_index);
|
|
|
|
if (has_solvent_) {
|
|
|
|
xw.wellSolutions()[SFrac * nw + well_index] = wsolvent(well_index);
|
|
|
|
}
|
2017-03-21 11:04:42 -05:00
|
|
|
} else {
|
|
|
|
xw.wellSolutions()[GFrac * nw + well_index] = 0.0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: it is possible to leave injector as a oil well,
|
|
|
|
// when F_w and F_g both equals to zero, not sure under what kind of circumstance
|
|
|
|
// this will happen.
|
|
|
|
} else if (well_type == PRODUCER) { // producers
|
|
|
|
if (active_[Water]) {
|
|
|
|
xw.wellSolutions()[WFrac * nw + well_index] = 1.0 / np;
|
|
|
|
}
|
|
|
|
if (active_[Gas]) {
|
|
|
|
xw.wellSolutions()[GFrac * nw + well_index] = 1.0 / np;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
|
2017-02-14 08:06:57 -06:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2017-03-31 05:52:44 -05:00
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-09 01:21:51 -05:00
|
|
|
template<typename TypeTag>
|
|
|
|
double
|
|
|
|
StandardWellsDense<TypeTag>::
|
|
|
|
wsolvent(const int well_index) const {
|
|
|
|
|
|
|
|
if (!has_solvent_) {
|
|
|
|
return 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// loop over all wells until we find the well with the matching name
|
|
|
|
for (const auto& well : wells_ecl_) {
|
|
|
|
if (well->getStatus( current_timeIdx_ ) == WellCommon::SHUT) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
WellInjectionProperties injection = well->getInjectionProperties(current_timeIdx_);
|
|
|
|
if (injection.injectorType == WellInjector::GAS) {
|
|
|
|
|
|
|
|
double solventFraction = well->getSolventFraction(current_timeIdx_);
|
|
|
|
|
|
|
|
// Look until we find the correct well
|
|
|
|
if (well->name() == wells().name[well_index]) {
|
|
|
|
return solventFraction;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// we didn't find it return 0;
|
2017-05-30 07:33:17 -05:00
|
|
|
assert(false);
|
2017-05-09 01:21:51 -05:00
|
|
|
return 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2017-06-07 02:29:31 -05:00
|
|
|
template<typename TypeTag>
|
|
|
|
double
|
|
|
|
StandardWellsDense<TypeTag>::
|
|
|
|
wpolymer(const int well_index) const {
|
|
|
|
|
|
|
|
if (!has_polymer_) {
|
|
|
|
return 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// loop over all wells until we find the well with the matching name
|
|
|
|
for (const auto& well : wells_ecl_) {
|
|
|
|
if (well->getStatus( current_timeIdx_ ) == WellCommon::SHUT) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
WellInjectionProperties injection = well->getInjectionProperties(current_timeIdx_);
|
|
|
|
WellPolymerProperties polymer = well->getPolymerProperties(current_timeIdx_);
|
|
|
|
if (injection.injectorType == WellInjector::WATER) {
|
|
|
|
|
|
|
|
double polymerFraction = polymer.m_polymerConcentration;
|
|
|
|
|
|
|
|
// Look until we find the correct well
|
|
|
|
if (well->name() == wells().name[well_index]) {
|
|
|
|
return polymerFraction;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// we didn't find it return 0;
|
|
|
|
assert(false);
|
|
|
|
return 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
|
|
void
|
|
|
|
StandardWellsDense<TypeTag>::
|
|
|
|
setupCompressedToCartesian(const int* global_cell, int number_of_cells, std::map<int,int>& cartesian_to_compressed ) const
|
|
|
|
{
|
|
|
|
if (global_cell) {
|
|
|
|
for (int i = 0; i < number_of_cells; ++i) {
|
|
|
|
cartesian_to_compressed.insert(std::make_pair(global_cell[i], i));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
for (int i = 0; i < number_of_cells; ++i) {
|
|
|
|
cartesian_to_compressed.insert(std::make_pair(i, i));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
|
|
void
|
|
|
|
StandardWellsDense<TypeTag>::
|
2017-06-27 13:06:44 -05:00
|
|
|
computeRepRadiusPerfLength(const Grid& grid)
|
2017-06-07 02:29:31 -05:00
|
|
|
{
|
|
|
|
|
|
|
|
// TODO, the function does not work for parallel running
|
|
|
|
// to be fixed later.
|
|
|
|
int number_of_cells = Opm::UgGridHelpers::numCells(grid);
|
|
|
|
const int* global_cell = Opm::UgGridHelpers::globalCell(grid);
|
|
|
|
const int* cart_dims = Opm::UgGridHelpers::cartDims(grid);
|
|
|
|
auto cell_to_faces = Opm::UgGridHelpers::cell2Faces(grid);
|
|
|
|
auto begin_face_centroids = Opm::UgGridHelpers::beginFaceCentroids(grid);
|
|
|
|
|
|
|
|
if (wells_ecl_.size() == 0) {
|
|
|
|
OPM_MESSAGE("No wells specified in Schedule section, "
|
|
|
|
"initializing no wells");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const int nw = wells().number_of_wells;
|
|
|
|
const int nperf = wells().well_connpos[nw];
|
|
|
|
|
|
|
|
const size_t timeStep = current_timeIdx_;
|
|
|
|
|
|
|
|
wells_rep_radius_.clear();
|
|
|
|
wells_perf_length_.clear();
|
|
|
|
wells_bore_diameter_.clear();
|
|
|
|
|
|
|
|
wells_rep_radius_.reserve(nperf);
|
|
|
|
wells_perf_length_.reserve(nperf);
|
|
|
|
wells_bore_diameter_.reserve(nperf);
|
|
|
|
|
|
|
|
std::map<int,int> cartesian_to_compressed;
|
|
|
|
|
|
|
|
setupCompressedToCartesian(global_cell, number_of_cells,
|
|
|
|
cartesian_to_compressed);
|
|
|
|
|
|
|
|
int well_index = 0;
|
|
|
|
|
|
|
|
for (auto wellIter= wells_ecl_.begin(); wellIter != wells_ecl_.end(); ++wellIter) {
|
|
|
|
const auto* well = (*wellIter);
|
|
|
|
|
|
|
|
if (well->getStatus(timeStep) == WellCommon::SHUT) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
{ // COMPDAT handling
|
|
|
|
const auto& completionSet = well->getCompletions(timeStep);
|
|
|
|
for (size_t c=0; c<completionSet.size(); c++) {
|
|
|
|
const auto& completion = completionSet.get(c);
|
|
|
|
if (completion.getState() == WellCompletion::OPEN) {
|
|
|
|
int i = completion.getI();
|
|
|
|
int j = completion.getJ();
|
|
|
|
int k = completion.getK();
|
|
|
|
|
|
|
|
const int* cpgdim = cart_dims;
|
|
|
|
int cart_grid_indx = i + cpgdim[0]*(j + cpgdim[1]*k);
|
|
|
|
std::map<int, int>::const_iterator cgit = cartesian_to_compressed.find(cart_grid_indx);
|
|
|
|
if (cgit == cartesian_to_compressed.end()) {
|
|
|
|
OPM_THROW(std::runtime_error, "Cell with i,j,k indices " << i << ' ' << j << ' '
|
|
|
|
<< k << " not found in grid (well = " << well->name() << ')');
|
|
|
|
}
|
|
|
|
int cell = cgit->second;
|
|
|
|
|
|
|
|
{
|
|
|
|
double radius = 0.5*completion.getDiameter();
|
|
|
|
if (radius <= 0.0) {
|
|
|
|
radius = 0.5*unit::feet;
|
|
|
|
OPM_MESSAGE("**** Warning: Well bore internal radius set to " << radius);
|
|
|
|
}
|
|
|
|
|
|
|
|
const std::array<double, 3> cubical =
|
|
|
|
WellsManagerDetail::getCubeDim<3>(cell_to_faces, begin_face_centroids, cell);
|
|
|
|
|
|
|
|
WellCompletion::DirectionEnum direction = completion.getDirection();
|
|
|
|
|
|
|
|
double re; // area equivalent radius of the grid block
|
|
|
|
double perf_length; // the length of the well perforation
|
|
|
|
|
|
|
|
switch (direction) {
|
|
|
|
case Opm::WellCompletion::DirectionEnum::X:
|
|
|
|
re = std::sqrt(cubical[1] * cubical[2] / M_PI);
|
|
|
|
perf_length = cubical[0];
|
|
|
|
break;
|
|
|
|
case Opm::WellCompletion::DirectionEnum::Y:
|
|
|
|
re = std::sqrt(cubical[0] * cubical[2] / M_PI);
|
|
|
|
perf_length = cubical[1];
|
|
|
|
break;
|
|
|
|
case Opm::WellCompletion::DirectionEnum::Z:
|
|
|
|
re = std::sqrt(cubical[0] * cubical[1] / M_PI);
|
|
|
|
perf_length = cubical[2];
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
OPM_THROW(std::runtime_error, " Dirtecion of well is not supported ");
|
|
|
|
}
|
|
|
|
|
|
|
|
double repR = std::sqrt(re * radius);
|
|
|
|
wells_rep_radius_.push_back(repR);
|
|
|
|
wells_perf_length_.push_back(perf_length);
|
|
|
|
wells_bore_diameter_.push_back(2. * radius);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (completion.getState() != WellCompletion::SHUT) {
|
|
|
|
OPM_THROW(std::runtime_error, "Completion state: " << WellCompletion::StateEnum2String( completion.getState() ) << " not handled");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
well_index++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2017-05-09 01:21:51 -05:00
|
|
|
|
|
|
|
|
2017-06-23 05:24:50 -05:00
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
|
|
void
|
|
|
|
StandardWellsDense<TypeTag>::
|
|
|
|
computeAverageFormationFactor(Simulator& ebosSimulator,
|
|
|
|
std::vector<double>& B_avg) const
|
|
|
|
{
|
|
|
|
const int np = numPhases();
|
|
|
|
const int numComp = numComponents();
|
|
|
|
|
|
|
|
const auto& grid = ebosSimulator.gridManager().grid();
|
|
|
|
const auto& gridView = grid.leafGridView();
|
|
|
|
ElementContext elemCtx(ebosSimulator);
|
|
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
|
|
|
|
|
|
|
|
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
|
|
|
|
elemIt != elemEndIt; ++elemIt)
|
|
|
|
{
|
|
|
|
elemCtx.updatePrimaryStencil(*elemIt);
|
|
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
|
|
|
|
|
|
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
|
|
|
|
for ( int phaseIdx = 0; phaseIdx < np; ++phaseIdx )
|
|
|
|
{
|
|
|
|
auto& B = B_avg[ phaseIdx ];
|
|
|
|
const int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phaseIdx);
|
|
|
|
|
|
|
|
B += 1 / fs.invB(ebosPhaseIdx).value();
|
|
|
|
}
|
|
|
|
if (has_solvent_) {
|
2017-06-27 08:16:22 -05:00
|
|
|
auto& B = B_avg[solventSaturationIdx];
|
2017-06-23 05:24:50 -05:00
|
|
|
B += 1 / intQuants.solventInverseFormationVolumeFactor().value();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// compute global average
|
|
|
|
grid.comm().sum(B_avg.data(), B_avg.size());
|
|
|
|
for(auto& bval: B_avg)
|
|
|
|
{
|
|
|
|
bval/=global_nc_;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-06-29 07:31:17 -05:00
|
|
|
template<typename TypeTag>
|
|
|
|
void
|
|
|
|
StandardWellsDense<TypeTag>::
|
|
|
|
outputWellState(const WellState& well_state) const
|
|
|
|
{
|
|
|
|
std::cout << " output the bhp " << std::endl;
|
|
|
|
for (const double bhp : well_state.bhp()) {
|
|
|
|
std::cout << bhp << " ";
|
|
|
|
}
|
|
|
|
std::cout << std::endl;
|
|
|
|
|
|
|
|
std::cout << " output the well rates " << std::endl;
|
|
|
|
for (const double rate : well_state.wellRates()) {
|
|
|
|
std::cout << rate << " ";
|
|
|
|
}
|
|
|
|
std::cout << std::endl;
|
|
|
|
|
|
|
|
std::cout << " output the wellSolutions " << std::endl;
|
|
|
|
for (const double solution : well_state.wellSolutions()) {
|
|
|
|
std::cout << solution << " ";
|
|
|
|
}
|
|
|
|
std::cout << std::endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-02-13 09:45:06 -06:00
|
|
|
} // namespace Opm
|