opm-simulators/opm/autodiff/StandardWellsDense_impl.hpp

998 lines
30 KiB
C++
Raw Normal View History

namespace Opm {
template<typename TypeTag>
StandardWellsDense<TypeTag>::
StandardWellsDense(const Wells* wells_arg,
WellCollection* well_collection,
const std::vector< const Well* >& wells_ecl,
const ModelParameters& param,
const RateConverterType& rate_converter,
const bool terminal_output,
const int current_timeIdx,
std::vector<int>& pvt_region_idx)
: wells_active_(wells_arg!=nullptr)
, wells_(wells_arg)
, wells_ecl_(wells_ecl)
, number_of_wells_(wells_arg ? (wells_arg->number_of_wells) : 0)
, number_of_phases_(wells_arg ? (wells_arg->number_of_phases) : 0) // TODO: not sure if it is proper for this way
, well_container_(createWellContainer(wells_arg, wells_ecl, current_timeIdx) )
, well_collection_(well_collection)
, param_(param)
, terminal_output_(terminal_output)
, has_solvent_(GET_PROP_VALUE(TypeTag, EnableSolvent))
, has_polymer_(GET_PROP_VALUE(TypeTag, EnablePolymer))
, current_timeIdx_(current_timeIdx)
, rate_converter_(rate_converter)
, pvt_region_idx_(pvt_region_idx)
{
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
init(const PhaseUsage phase_usage_arg,
const std::vector<bool>& active_arg,
const double gravity_arg,
const std::vector<double>& depth_arg,
long int global_nc,
const Grid& grid)
{
// has to be set always for the convergence check!
global_nc_ = global_nc;
2017-09-19 04:16:34 -05:00
phase_usage_ = phase_usage_arg;
active_ = active_arg;
if ( ! localWellsActive() ) {
return;
}
calculateEfficiencyFactors();
#ifndef NDEBUG
const auto& pu = phase_usage_;
const int np = pu.num_phases;
// assumes the gas fractions are stored after water fractions
// WellVariablePositions needs to be changed for 2p runs
assert (np == 3 || (np == 2 && !pu.phase_used[Gas]) );
#endif
if (has_polymer_)
{
if (PolymerModule::hasPlyshlog()) {
computeRepRadiusPerfLength(grid);
}
}
number_of_cells_ = Opm::UgGridHelpers::numCells(grid);
// do the initialization for all the wells
// TODO: to see whether we can postpone of the intialization of the well containers to
// optimize the usage of the following several member variables
for (auto& well : well_container_) {
well->init(&phase_usage_, &active_, depth_arg, gravity_arg, number_of_cells_);
}
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
setVFPProperties(const VFPProperties* vfp_properties_arg)
{
2017-08-07 07:50:03 -05:00
for (auto& well : well_container_) {
well->setVFPProperties(vfp_properties_arg);
}
}
2017-08-10 08:27:05 -05:00
template<typename TypeTag>
int
StandardWellsDense<TypeTag>::
numWells() const
{
return number_of_wells_;
}
template<typename TypeTag>
std::vector<typename StandardWellsDense<TypeTag>::WellInterfacePtr >
StandardWellsDense<TypeTag>::
createWellContainer(const Wells* wells,
const std::vector< const Well* >& wells_ecl,
const int time_step)
{
std::vector<WellInterfacePtr> well_container;
const int nw = wells ? (wells->number_of_wells) : 0;
if (nw > 0) {
well_container.reserve(nw);
// With the following way, it will have the same order with wells struct
// Hopefully, it can generate the same residual history with master branch
for (int w = 0; w < nw; ++w) {
const std::string well_name = std::string(wells->name[w]);
// finding the location of the well in wells_ecl
const int nw_wells_ecl = wells_ecl.size();
int index_well = 0;
for (; index_well < nw_wells_ecl; ++index_well) {
if (well_name == wells_ecl[index_well]->name()) {
break;
}
}
// It should be able to find in wells_ecl.
if (index_well == nw_wells_ecl) {
OPM_THROW(std::logic_error, "Could not find well " << well_name << " in wells_ecl ");
}
const Well* well_ecl = wells_ecl[index_well];
// TODO: stopping throwing when encoutnering MS wells for now.
/* if (well_ecl->isMultiSegment(time_step)) {
OPM_THROW(Opm::NumericalProblem, "Not handling Multisegment Wells for now");
} */
// Basically, we are handling all the wells as StandardWell for the moment
well_container.emplace_back(new StandardWell<TypeTag>(well_ecl, time_step, wells) );
}
}
return well_container;
}
template<typename TypeTag>
SimulatorReport
StandardWellsDense<TypeTag>::
assemble(Simulator& ebosSimulator,
const int iterationIdx,
const double dt,
WellState& well_state)
{
if (iterationIdx == 0) {
prepareTimeStep(ebosSimulator, well_state);
}
SimulatorReport report;
if ( ! wellsActive() ) {
return report;
}
updateWellControls(well_state);
// Set the well primary variables based on the value of well solutions
initPrimaryVariablesEvaluation();
if (iterationIdx == 0) {
computeWellConnectionPressures(ebosSimulator, well_state);
computeAccumWells();
}
if (param_.solve_welleq_initially_ && iterationIdx == 0) {
// solve the well equations as a pre-processing step
report = solveWellEq(ebosSimulator, dt, well_state);
}
assembleWellEq(ebosSimulator, dt, well_state, false);
report.converged = true;
return report;
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
assembleWellEq(Simulator& ebosSimulator,
const double dt,
WellState& well_state,
2017-08-10 08:27:05 -05:00
bool only_wells) const
{
for (int w = 0; w < number_of_wells_; ++w) {
well_container_[w]->assembleWellEq(ebosSimulator, dt, well_state, only_wells);
}
}
// applying the well residual to reservoir residuals
// r = r - duneC_^T * invDuneD_ * resWell_
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
apply( BVector& r) const
{
if ( ! localWellsActive() ) {
return;
}
for (auto& well : well_container_) {
well->apply(r);
}
}
// Ax = A x - C D^-1 B x
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
apply(const BVector& x, BVector& Ax) const
{
// TODO: do we still need localWellsActive()?
if ( ! localWellsActive() ) {
return;
}
for (auto& well : well_container_) {
well->apply(x, Ax);
}
}
// Ax = Ax - alpha * C D^-1 B x
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const
{
if ( ! localWellsActive() ) {
return;
}
if( scaleAddRes_.size() != Ax.size() ) {
scaleAddRes_.resize( Ax.size() );
}
scaleAddRes_ = 0.0;
// scaleAddRes_ = - C D^-1 B x
apply( x, scaleAddRes_ );
// Ax = Ax + alpha * scaleAddRes_
Ax.axpy( alpha, scaleAddRes_ );
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
recoverWellSolutionAndUpdateWellState(const BVector& x, WellState& well_state) const
{
for (auto& well : well_container_) {
well->recoverWellSolutionAndUpdateWellState(x, param_, well_state);
}
}
template<typename TypeTag>
int
StandardWellsDense<TypeTag>::
flowPhaseToEbosPhaseIdx( const int phaseIdx ) const
{
const auto& pu = phase_usage_;
if (active_[Water] && pu.phase_pos[Water] == phaseIdx)
return FluidSystem::waterPhaseIdx;
if (active_[Oil] && pu.phase_pos[Oil] == phaseIdx)
return FluidSystem::oilPhaseIdx;
if (active_[Gas] && pu.phase_pos[Gas] == phaseIdx)
return FluidSystem::gasPhaseIdx;
assert(phaseIdx < 3);
// for other phases return the index
return phaseIdx;
}
template<typename TypeTag>
int
StandardWellsDense<TypeTag>::
numPhases() const
{
return number_of_phases_;
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
resetWellControlFromState(const WellState& xw) const
{
const int nw = wells_->number_of_wells;
for (int w = 0; w < nw; ++w) {
WellControls* wc = wells_->ctrls[w];
well_controls_set_current( wc, xw.currentControls()[w]);
}
}
template<typename TypeTag>
bool
StandardWellsDense<TypeTag>::
wellsActive() const
{
return wells_active_;
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
setWellsActive(const bool wells_active)
{
wells_active_ = wells_active;
}
template<typename TypeTag>
bool
StandardWellsDense<TypeTag>::
localWellsActive() const
{
return number_of_wells_ > 0;
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
initPrimaryVariablesEvaluation() const
{
for (auto& well : well_container_) {
well->initPrimaryVariablesEvaluation();
}
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
2017-08-10 08:27:05 -05:00
computeAccumWells() const
{
for (auto& well : well_container_) {
well->computeAccumWell();
}
}
template<typename TypeTag>
SimulatorReport
StandardWellsDense<TypeTag>::
solveWellEq(Simulator& ebosSimulator,
const double dt,
2017-08-10 08:27:05 -05:00
WellState& well_state) const
{
const int nw = number_of_wells_;
WellState well_state0 = well_state;
const int numComp = numComponents();
std::vector< Scalar > B_avg( numComp, Scalar() );
computeAverageFormationFactor(ebosSimulator, B_avg);
int it = 0;
bool converged;
do {
assembleWellEq(ebosSimulator, dt, well_state, true);
converged = getWellConvergence(ebosSimulator, B_avg);
// checking whether the group targets are converged
if (wellCollection()->groupControlActive()) {
converged = converged && wellCollection()->groupTargetConverged(well_state.wellRates());
}
if (converged) {
break;
}
++it;
if( localWellsActive() )
{
for (auto& well : well_container_) {
well->solveEqAndUpdateWellState(param_, well_state);
}
}
// updateWellControls uses communication
// Therefore the following is executed if there
// are active wells anywhere in the global domain.
if( wellsActive() )
{
updateWellControls(well_state);
initPrimaryVariablesEvaluation();
}
} while (it < 15);
if (converged) {
if ( terminal_output_ ) {
OpmLog::debug("Well equation solution gets converged with " + std::to_string(it) + " iterations");
}
} else {
if ( terminal_output_ ) {
OpmLog::debug("Well equation solution failed in getting converged with " + std::to_string(it) + " iterations");
}
well_state = well_state0;
updatePrimaryVariables(well_state);
// also recover the old well controls
for (int w = 0; w < nw; ++w) {
WellControls* wc = well_container_[w]->wellControls();
well_controls_set_current(wc, well_state.currentControls()[w]);
}
}
SimulatorReport report;
report.converged = converged;
report.total_well_iterations = it;
return report;
}
template<typename TypeTag>
bool
StandardWellsDense<TypeTag>::
getWellConvergence(Simulator& ebosSimulator,
const std::vector<Scalar>& B_avg) const
{
ConvergenceReport report;
for (const auto& well : well_container_) {
report += well->getWellConvergence(ebosSimulator, B_avg, param_);
}
// checking NaN residuals
{
bool nan_residual_found = report.nan_residual_found;
const auto& grid = ebosSimulator.gridManager().grid();
int value = nan_residual_found ? 1 : 0;
nan_residual_found = grid.comm().max(value);
if (nan_residual_found) {
for (const auto& well : report.nan_residual_wells) {
OpmLog::debug("NaN residual found with phase " + well.phase_name + " for well " + well.well_name);
}
OPM_THROW(Opm::NumericalProblem, "NaN residual found!");
}
}
// checking too large residuals
{
bool too_large_residual_found = report.too_large_residual_found;
const auto& grid = ebosSimulator.gridManager().grid();
int value = too_large_residual_found ? 1 : 0;
too_large_residual_found = grid.comm().max(value);
if (too_large_residual_found) {
for (const auto& well : report.too_large_residual_wells) {
OpmLog::debug("Too large residual found with phase " + well.phase_name + " fow well " + well.well_name);
}
OPM_THROW(Opm::NumericalProblem, "Too large residual found!");
}
}
// checking convergence
bool converged_well = report.converged;
{
const auto& grid = ebosSimulator.gridManager().grid();
2017-08-10 09:56:03 -05:00
int value = converged_well ? 1 : 0;
2017-08-10 09:56:03 -05:00
converged_well = grid.comm().min(value);
}
return converged_well;
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
computeWellConnectionPressures(const Simulator& ebosSimulator,
2017-08-10 08:27:05 -05:00
const WellState& xw) const
{
if( ! localWellsActive() ) return ;
for (auto& well : well_container_) {
well->computeWellConnectionPressures(ebosSimulator, xw);
}
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
updateWellControls(WellState& xw) const
{
// Even if there no wells active locally, we cannot
// return as the Destructor of the WellSwitchingLogger
// uses global communication. For no well active globally
// we simply return.
if( !wellsActive() ) return ;
wellhelpers::WellSwitchingLogger logger;
for (const auto& well : well_container_) {
well->updateWellControl(xw, logger);
}
2017-08-10 08:27:05 -05:00
updateGroupControls(xw);
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
updateListEconLimited(const Schedule& schedule,
const int current_step,
const Wells* wells_struct,
const WellState& well_state,
DynamicListEconLimited& list_econ_limited) const
{
for (const auto& well : well_container_) {
well->updateListEconLimited(well_state, list_econ_limited);
}
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
computeWellPotentials(const Simulator& ebosSimulator,
const WellState& well_state,
std::vector<double>& well_potentials) const
{
updatePrimaryVariables(well_state);
computeWellConnectionPressures(ebosSimulator, well_state);
// initialize the primary variables in Evaluation, which is used in computePerfRate for computeWellPotentials
// TODO: for computeWellPotentials, no derivative is required actually
initPrimaryVariablesEvaluation();
// number of wells and phases
const int nw = number_of_wells_;
const int np = number_of_phases_;
well_potentials.resize(nw * np, 0.0);
for (int w = 0; w < nw; ++w) {
std::vector<double> potentials;
well_container_[w]->computeWellPotentials(ebosSimulator, well_state, potentials);
// putting the sucessfully calculated potentials to the well_potentials
for (int p = 0; p < np; ++p) {
well_potentials[w * np + p] = std::abs(potentials[p]);
}
} // end of for (int w = 0; w < nw; ++w)
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
prepareTimeStep(const Simulator& ebos_simulator,
WellState& well_state)
{
const int nw = number_of_wells_;
for (int w = 0; w < nw; ++w) {
// after restarting, the well_controls can be modified while
// the well_state still uses the old control index
// we need to synchronize these two.
// keep in mind that we set the control index of well_state to be the same with
// with the wellControls from the deck when we create well_state at the beginning of the report step
2017-04-11 08:02:36 -05:00
resetWellControlFromState(well_state);
if (wellCollection()->groupControlActive()) {
WellControls* wc = well_container_[w]->wellControls();
WellNode& well_node = well_collection_->findWellNode(well_container_[w]->name());
// handling the situation that wells do not have a valid control
// it happens the well specified with GRUP and restarting due to non-convergencing
// putting the well under group control for this situation
int ctrl_index = well_controls_get_current(wc);
const int group_control_index = well_node.groupControlIndex();
if (group_control_index >= 0 && ctrl_index < 0) {
// put well under group control
well_controls_set_current(wc, group_control_index);
well_state.currentControls()[w] = group_control_index;
}
// Final step, update whehter the well is under group control or individual control
// updated ctrl_index from the well control
ctrl_index = well_controls_get_current(wc);
if (well_node.groupControlIndex() >= 0 && ctrl_index == well_node.groupControlIndex()) {
// under group control
well_node.setIndividualControl(false);
} else {
// individual control
well_node.setIndividualControl(true);
}
}
}
if (well_collection_->groupControlActive()) {
if (well_collection_->requireWellPotentials()) {
// calculate the well potentials
std::vector<double> well_potentials;
computeWellPotentials(ebos_simulator, well_state, well_potentials);
// update/setup guide rates for each well based on the well_potentials
// TODO: this is one of two places that still need Wells struct. In this function, only the well names
// well types are used, probably the order of the wells to locate the correct values in well_potentials.
well_collection_->setGuideRatesWithPotentials(wells_, phase_usage_, well_potentials);
2017-04-06 07:53:44 -05:00
}
applyVREPGroupControl(well_state);
if (!wellCollection()->groupControlApplied()) {
wellCollection()->applyGroupControls();
} else {
wellCollection()->updateWellTargets(well_state.wellRates());
}
}
// since the controls are all updated, we should update well_state accordingly
for (int w = 0; w < nw; ++w) {
WellControls* wc = well_container_[w]->wellControls();
const int control = well_controls_get_current(wc);
well_state.currentControls()[w] = control;
2017-08-07 07:50:03 -05:00
// TODO: for VFP control, the perf_densities are still zero here, investigate better
// way to handle it later.
well_container_[w]->updateWellStateWithTarget(control, well_state);
// The wells are not considered to be newly added
// for next time step
if (well_state.isNewWell(w) ) {
well_state.setNewWell(w, false);
}
} // end of for (int w = 0; w < nw; ++w)
}
template<typename TypeTag>
WellCollection*
StandardWellsDense<TypeTag>::
wellCollection() const
{
return well_collection_;
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
calculateEfficiencyFactors()
{
if ( !localWellsActive() ) {
return;
}
const int nw = number_of_wells_;
for (int w = 0; w < nw; ++w) {
const std::string well_name = well_container_[w]->name();
const WellNode& well_node = wellCollection()->findWellNode(well_name);
const double well_efficiency_factor = well_node.getAccumulativeEfficiencyFactor();
well_container_[w]->setWellEfficiencyFactor(well_efficiency_factor);
}
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
computeWellVoidageRates(const WellState& well_state,
std::vector<double>& well_voidage_rates,
std::vector<double>& voidage_conversion_coeffs) const
{
if ( !localWellsActive() ) {
return;
}
// TODO: for now, we store the voidage rates for all the production wells.
// For injection wells, the rates are stored as zero.
// We only store the conversion coefficients for all the injection wells.
// Later, more delicate model will be implemented here.
// And for the moment, group control can only work for serial running.
const int nw = numWells();
const int np = numPhases();
// we calculate the voidage rate for each well, that means the sum of all the phases.
well_voidage_rates.resize(nw, 0);
// store the conversion coefficients, while only for the use of injection wells.
voidage_conversion_coeffs.resize(nw * np, 1.0);
std::vector<double> well_rates(np, 0.0);
std::vector<double> convert_coeff(np, 1.0);
for (int w = 0; w < nw; ++w) {
const bool is_producer = well_container_[w]->wellType() == PRODUCER;
const int well_cell_top = well_container_[w]->cells()[0];
const int pvtRegionIdx = pvt_region_idx_[well_cell_top];
// not sure necessary to change all the value to be positive
if (is_producer) {
std::transform(well_state.wellRates().begin() + np * w,
well_state.wellRates().begin() + np * (w + 1),
well_rates.begin(), std::negate<double>());
// the average hydrocarbon conditions of the whole field will be used
const int fipreg = 0; // Not considering FIP for the moment.
rate_converter_.calcCoeff(fipreg, pvtRegionIdx, convert_coeff);
well_voidage_rates[w] = std::inner_product(well_rates.begin(), well_rates.end(),
convert_coeff.begin(), 0.0);
} else {
// TODO: Not sure whether will encounter situation with all zero rates
// and whether it will cause problem here.
std::copy(well_state.wellRates().begin() + np * w,
well_state.wellRates().begin() + np * (w + 1),
well_rates.begin());
// the average hydrocarbon conditions of the whole field will be used
const int fipreg = 0; // Not considering FIP for the moment.
rate_converter_.calcCoeff(fipreg, pvtRegionIdx, convert_coeff);
std::copy(convert_coeff.begin(), convert_coeff.end(),
voidage_conversion_coeffs.begin() + np * w);
}
}
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
applyVREPGroupControl(WellState& well_state) const
{
if ( wellCollection()->havingVREPGroups() ) {
std::vector<double> well_voidage_rates;
std::vector<double> voidage_conversion_coeffs;
computeWellVoidageRates(well_state, well_voidage_rates, voidage_conversion_coeffs);
wellCollection()->applyVREPGroupControls(well_voidage_rates, voidage_conversion_coeffs);
// for the wells under group control, update the control index for the well_state and well_controls
for (const WellNode* well_node : wellCollection()->getLeafNodes()) {
if (well_node->isInjector() && !well_node->individualControl()) {
const int well_index = well_node->selfIndex();
well_state.currentControls()[well_index] = well_node->groupControlIndex();
WellControls* wc = well_container_[well_index]->wellControls();
well_controls_set_current(wc, well_node->groupControlIndex());
}
}
}
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
updateGroupControls(WellState& well_state) const
{
if (wellCollection()->groupControlActive()) {
for (int w = 0; w < number_of_wells_; ++w) {
// update whether well is under group control
// get well node in the well collection
WellNode& well_node = well_collection_->findWellNode(well_container_[w]->name());
// update whehter the well is under group control or individual control
const int current = well_state.currentControls()[w];
if (well_node.groupControlIndex() >= 0 && current == well_node.groupControlIndex()) {
// under group control
well_node.setIndividualControl(false);
} else {
// individual control
well_node.setIndividualControl(true);
}
}
applyVREPGroupControl(well_state);
// upate the well targets following group controls
// it will not change the control mode, only update the targets
wellCollection()->updateWellTargets(well_state.wellRates());
for (int w = 0; w < number_of_wells_; ++w) {
// TODO: check whether we need current argument in updateWellStateWithTarget
// maybe there is some circumstances that the current is different from the one
// in the WellState.
// while probalby, the current argument can be removed
const int current = well_state.currentControls()[w];
well_container_[w]->updateWellStateWithTarget(current, well_state);
}
}
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
setupCompressedToCartesian(const int* global_cell, int number_of_cells, std::map<int,int>& cartesian_to_compressed ) const
{
if (global_cell) {
for (int i = 0; i < number_of_cells; ++i) {
cartesian_to_compressed.insert(std::make_pair(global_cell[i], i));
}
}
else {
for (int i = 0; i < number_of_cells; ++i) {
cartesian_to_compressed.insert(std::make_pair(i, i));
}
}
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
computeRepRadiusPerfLength(const Grid& grid)
{
// TODO, the function does not work for parallel running
// to be fixed later.
const int* global_cell = Opm::UgGridHelpers::globalCell(grid);
std::map<int,int> cartesian_to_compressed;
setupCompressedToCartesian(global_cell, number_of_cells_,
cartesian_to_compressed);
for (const auto& well : well_container_) {
well->computeRepRadiusPerfLength(grid, cartesian_to_compressed);
}
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
computeAverageFormationFactor(Simulator& ebosSimulator,
std::vector<double>& B_avg) const
{
const int np = numPhases();
const auto& grid = ebosSimulator.gridManager().grid();
const auto& gridView = grid.leafGridView();
ElementContext elemCtx(ebosSimulator);
const auto& elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
elemIt != elemEndIt; ++elemIt)
{
elemCtx.updatePrimaryStencil(*elemIt);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
for ( int phaseIdx = 0; phaseIdx < np; ++phaseIdx )
{
auto& B = B_avg[ phaseIdx ];
const int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phaseIdx);
B += 1 / fs.invB(ebosPhaseIdx).value();
}
if (has_solvent_) {
auto& B = B_avg[solventSaturationIdx];
B += 1 / intQuants.solventInverseFormationVolumeFactor().value();
}
}
// compute global average
grid.comm().sum(B_avg.data(), B_avg.size());
for(auto& bval: B_avg)
{
bval/=global_nc_;
}
}
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
updatePrimaryVariables(const WellState& well_state) const
{
for (const auto& well : well_container_) {
well->updatePrimaryVariables(well_state);
}
}
} // namespace Opm